
SOFTWARE REFERENCE MANUAL
Version 7.4

Motion Coordinator - 4xx Range

Trio Motion Technology

Motion Coordinator 4xx Range
Software Reference Manual

Seventh Edition • 2012
Revision 4

All goods supplied by Trio are subject to Trio’s standard terms and conditions of sale.
This manual applies to systems based on the Motion Coordinator MC4xx range.

The material in this manual is subject to change without notice. Despite every effort, in a manual
of this scope errors and omissions may occur. Therefore Trio cannot be held responsible for any

malfunctions or loss of data as a result.

Copyright (C) 2000-2012 Trio Motion Technology Ltd.
All Rights Reserved

UK
Trio Motion Technology Ltd.
Phone: +44 (0)1684 292333
Fax: +44 (0)1684 297929

USA
Trio Motion Technology LLC.

Phone: + 1 724 540 5018
Fax: +1 724 540 5098

CHINA
Trio Shanghai

Tel: +86 21 5879 7659
Fax: +86 21 5879 4289

INDIA

Trio India
Phone: +91 20 681 149 02

SAFETY WARNING
During the installation or use of a control system, users of Trio products must ensure there is no

possibility of injury to any person, or damage to machinery.
Control systems, especially during installation, can malfunction or behave unexpectedly. Bearing
this in mind, users must ensure that even in the event of a malfunction or unexpected behaviour

the safety of an operator or programmer is never compromised.

This manual uses the following icons for your reference:

M
Information that relates to
safety issues and critical

software information

Information to highlight key
features or methods.

Useful tips and techinques.

Software Reference Manual

CONTENTS

I

INTRODUCTION TO PROGRAMMING 1-3
Languages ...1-3
Setup and Programming1-4

INTRODUCTION TO TRIOBASIC 2-7
A ..2-13
B ..2-51
C ... 2-63
D .. 2-117
E .. 2-159
F .. 2-201
G ... 2-257
H.. 2-263
I ...2-277
J .. 2-297
K .. 2-297
L ..2-299
M ... 2-311
N .. 2-359
O ... 2-367
P .. 2-381
Q ... 2-381
R .. 2-397
S ..2-443
T ..2-483
U ..2-503
V .. 2-513
W ... 2-521
Z .. 2-521

INTRODUCTION TO THE IEC MOTION LIBRARY 3-4
MC4xx IEC 61131-3 overview3-4
IEC 61131-3 Motion Library3-4

INTRODUCTION TO MOTION PERFECT 3 4-3
System Requirements..4-4
Operating Modes ...4-4
Main Window ..4-6
Main Menu ...4-7
Main Toolbar ...4-11
Controller Tree .. 4-12
Project Tree ... 4-16
Output Window ... 4-17
Solutions ... 4-18
Project ... 4-20
Project Check ... 4-20
Program Types .. 4-23
Creating a New Program 4-23
Program Editor .. 4-24

Connection Dialogue ... 4-27
Initial Connection .. 4-29
Recent Work Dialogue 4-31
Tools .. 4-31
Terminal ... 4-32
Axis Parameters .. 4-34
Digital I/O Viewer .. 4-35
Analogue I/O Viewer ... 4-37
Table Viewer .. 4-38
VR Viewer .. 4-39
Watch Variables ..4-40
Options Dialogue ...4-40
Options – Axis Parameters Tool 4-41
Options - Diagnostics .. 4-41
Options – General .. 4-42
Options – IEC 61131 Editing 4-43
Options - Language .. 4-43
Options – Oscilloscope4-44
Options – Plug-ins ... 4-45
Options – Program Editor 4-45
Options – Project Synchronization 4-47
Diagnostics ..4-48
Jog Axes ...4-48
Oscilloscope ... 4-51
General Oscilloscope Information 4-58
Intelligent Drives ... 4-59
Controller Project Dialogue 4-59
Controller Tools ...4-60
Feature Configuration4-60
Load System Firmware 4-61
Lock / Unlock Controller4-64
Memory Card Manager 4-65
Directory Viewer ... 4-67
Process Viewer .. 4-67
Date And Time Tool ..4-68
STARTUP Program .. 4-69
Modify STARTUP Program 4-69
MC_CONFIG Program .. 4-71
Backup Manager .. 4-73

INTRODUCTION TO IEC 61131-3 5-3
Controller and Project Trees5-3
Languages ...5-4
The IEC 61131 Environment5-5
Adding a New IEC 61131 Program5-5
Editing Programs ...5-8
Editing LD Programs ...5-9
Editing ST Programs ...5-11
Editing FBD Programs .. 5-12

Contents

Trio Motion Technology

CONTENTS

II

Editing SFC Programs ...5-13
IEC Types Editor ...5-16
Program Local Variables5-18
Variable Editor ...5-18
Selecting or Inserting a Variable 5-20
Selecting or Inserting a Function Block 5-20
Compiling ...5-21
Running and Debugging a Program 5-22
Spy List window .. 5-22
IEC Settings .. 5-23

INTRODUCTION TO MC400 SIMULATOR 6-3
Running the Simulator ...6-3
Communications ..6-4
Context Menu ...6-4
Options ...6-5

TRIOPC MOTION ACTIVEX CONTROL7-3
Connection Commands ..7-4
Properties ...7-8
Motion Commands...7-11

Process Control Commands7-20
Variable Commands ...7-21
Input / Output Commands7-29
General commands ...7-36
Events ...7-39
Intelligent Drive Commands7-41
Program Manipulation Commands 7-42
Data Types ... 7-45
TrioPC status .. 7-46

PROJECT AUTOLOADER ... 8-3
Using the Autoloader ..8-3
Script File ...8-17
Trio MC Loader ...8-18
Methods .. 8-26

INDEX .. III

Software Reference Manual

CONTENTS

III

1INTRODUCTION

Trio Motion Technology

INTROduCTION

1-2

Software Reference Manual

1-3INTROduCTION
Languages

Introduction to Programming

MC4XX MOTION COORDINATOR SOFTWARE
The MC4xx range makes a huge advance in programming as well as with its leading hardware design. This
manual is a complete reference work covering all the main programming
methods, the programming software and the use of remote access
methods for Microsoft Windows® packages.

The system designer is free to choose the motors, drives and IO
components that best suit the application. Interface options are
provided for traditional servo, stepper and piezo control together with
and expanding range of digital fieldbus connected drives and IO devices.
The MC4xx range can support any number of axes between 1 and 64 in
a modular, expandable and cost effective way. Precise and fast motion
control is run by 64 bit software developed independently by Trio,
benefitting from over a quarter of a century of experience on thousands
of real machines world-wide.

The choices available to the system designer now extends to the
choice of programming software. Motion Perfect 3 and the run-time
environment in the Motion Coordinator firmware support both TrioBASIC
and the industry standard IEC61131-3 programming environment. In
addition, there is support for text based languages like HPGL and G-Code
within the much extended multi-tasking BASIC. For those applications
which need a Windows® PC front-end, the well-established TrioPC Motion
ActiveX has been extended and improved and is well suited to high speed
connection to the Motion Coordinator via Ethernet. For more everyday
user interface requirements, Motion Perfect v3 includes a complete set
of visual programming tools for the Trio Uniplay range of integrated HMIs.

Languages
TrioBASIC has been greatly extended for the MC4xx range. It now includes features such as array variables,
string handling, text-file handling and user definable system configuration. The combination of string
variable types and the ability to load, save and manipulate text files, is a powerful tool which allows the
implementation of text based motion languages like G-Code and HPGL. A new program type, called MC _
CONFIG, is used to store all the user defined system configuration changes. This allows the Motion Perfect
project to store the complete configuration as well as application programs and data. A “must have” for
project maintainability.

Motion Perfect v3 introduces the option of constructing programs using up to 4 of the IEC61131-3 methods.
Ladder (LD), function block (FB), structured text (ST) and sequential function chart (SFC) are all supported
through appropriate editor pages and toolbox functions. Only instruction list (IL) is unsupported because
its application to motion programming is very limited. All the familiar Trio motion functions are provided as
pre-defined function blocks in two special libraries within the MPv3 toolbox.

New to the MC4xx range and Motion Perfect v3 is the Uniplay HMI programming system. Create your HMI

Trio Motion Technology

INTROduCTION
Setup and Programming

1-4

pages with the MPv3 graphical editor and store them within the Motion Coordinator as part of the project.
The Uniplay HMI downloads the pages from the Motion Coordinator during system startup and interacts with
the Motion Coordinator during run-time. Uniplay HMI programming does away with the need for a separate
programming tool for the HMI. All the machine programming can therefore be stored in one place; the MPv3
project, thus making long term support and software maintenance easier to control.

Setup and Programming
To program the Motion Coordinator, a PC is connected via an Ethernet link. The dedicated Motion Perfect
version 3 Windows® application is normally used to provide a wide range of programming facilities on a PC
running Microsoft Windows XP, Vista or Windows 7.

Once connected to the Motion Coordinator, the user has direct access to TrioBASIC which provides an easy,
rapid way to develop control programs. All the standard program constructs are provided; variables, loops,
input/output, maths and conditions. Extensions to this basic instruction set exist to permit a wide variety of

motion control facilities, such as single axis
moves, synchronised multi axis moves and
unsynchronised multi axis moves as well as
the control of the digital I/O. Commands for
both 2D and 3D interpolated motion are
provided as well as transform algorithms for
different robot geometries such as SCARA and
Delta arrangements.

The MC4xx range of controllers feature
a multi-tasking operating system which
efficiently allows TrioBASIC and IEC 61131-
3 programs to work alongside the motion
processing. Multiple TrioBASIC programs
plus Ladder Diagram (LD), Function Block
(FB), Structured Text (ST) and Sequential
Function Chart (SFC) can be constructed and
run simultaneously to make programming
complex applications much easier.

Motion Perfect version 3 uses the latest .NET
technology to provide a more intuitive and

familiar user experience. It gives a seamless programming, compilation and debug environment that can
work in real-time with the MC4xx range. TrioBASIC support is backwards compatible with Motion Perfect 2
projects developed on earlier Motion Coordinator platforms. A motion library is provided which enables the
familiar Trio Motion Technology commands to be included in IEC 61131-3 programs.

Software Reference Manual

1-5INTROduCTION
Setup and Programming

2TRIOBASIC COMMANDS

Trio Motion Technology

TRIOBaSIC COMMaNdS

2-2

Contents

ABS2-13
ACC2-13
ACCEL2-14
ACOS2-15
+ Add..................................2-15
ADD_DAC2-16
ADDAX2-18
ADDAX_AXIS 2-22
ADDRESS 2-22
AFF_GAIN2-23
AIN2-23
AIN0..3 / AINBI0..32-24
AND2-24
ANYBUS2-26
AOUT2-31
AOUT0..32-32
ASIN2-32
ATAN2-33
ATAN2 2-34
ATYPE................................. 2-34
AUTO_ETHERCAT2-36
AUTORUN2-37
AXIS2-37
AXIS_ADDRESS2-38
AXIS_DEBUG_A2-39
AXIS_DEBUG_B2-39
AXIS_DISPLAY2-39
AXIS_DPOS2-39
AXIS_ENABLE 2-40
AXIS_ERROR_COUNT 2-41
AXIS_FS_LIMIT 2-42
AXIS_MODE 2-43
AXIS_OFFSET 2-43
AXIS_RS_LIMIT 2-45
AXIS_UNITS 2-46
AXISSTATUS 2-47
AXISVALUES 2-48
B_SPLINE2-51
BACKLASH 2-54
BACKLASH_DIST 2-55
BASE 2-55
BASICERROR 2-57
BATTERY_LOW 2-57
. Bit number 2-58
BOOT_LOADER 2-59
BREAK_ADD.......................... 2-59
BREAK_DELETE 2-60
BREAK_LIST.......................... 2-60
BREAK_RESET2-61
CAM 2-63
CAMBOX 2-67

CAN2-75
CANCEL 2-81
CANIO_ADDRESS 2-84
CANIO_ENABLE 2-84
CANIO_MODE 2-85
CANIO_STATUS 2-85
CANOPEN_OP_RATE 2-86
CHANGE_DIR_LAST 2-86
CHANNEL_READ 2-87
CHANNEL_WRITE 2-88
CHECKSUM 2-88
CHR 2-88
CLEAR 2-89
CLEAR_BIT 2-90
CLEAR_PARAMS 2-90
CLOSE 2-91
CLOSE_WIN 2-91
CLUTCH_RATE 2-92
CO_READ 2-92
CO_READ_AXIS 2-94
CO_WRITE 2-95
CO_WRITE_AXIS 2-96
: Colon 2-98
‘ Comment 2-99
COMMSERROR 2-100
COMMSPOSITION 2-100
COMMSTYPE 2-100
COMPILE 2-101
COMPILE_ALL 2-102
COMPILE_MODE 2-102
CONNECT 2-103
CONNPATH 2-106
CONSTANT 2-107
CONTROL 2-108
COORDINATOR_DATA 2-109
COPY 2-109
CORNER_MODE 2-110
CORNER_STATE2-111
COS................................... 2-112
CPU_EXCEPTIONS 2-112
CRC162-113
CREEP 2-115
D_GAIN2-117
D_ZONE_MAX2-117
D_ZONE_MIN 2-118
DAC 2-119
DAC_OUT 2-120
DAC_SCALE 2-120
DATE$ 2-121
DATE 2-122
DATUM 2-124
DATUM_IN 2-129
DAY$ 2-129
DAY 2-130
DECEL 2-131
DECEL_ANGLE 2-131

DEFPOS 2-132
DEL 2-135
DEMAND_EDGES 2-135
DEMAND_SPEED 2-136
DEVICENET 2-136
DIM.. AS.. STRING 2-138
DIR 2-140
DISABLE_GROUP 2-140
DISPLAY 2-144
DISTRIBUTOR_KEY 2-145
/ Divide 2-145
DLINK 2-146
$ Dollar 2-151
DPOS 2-152
DRIVE_CONTROLWORD 2-153
DRIVE_CW_MODE 2-153
DRIVE_FE............................ 2-155
DRIVE_STATUS...................... 2-156
DRIVE_TORQUE..................... 2-156
DUMP 2-157
EDPROG 2-159
EDPROG1 2-165
ENCODER 2-171
ENCODER_BITS 2-171
ENCODER_CONTROL 2-172
ENCODER_FILTER 2-173
ENCODER_ID 2-173
ENCODER_RATIO 2-174
ENCODER_READ 2-176
ENCODER_STATUS 2-176
ENCODER_TURNS 2-177
ENCODER_WRITE 2-177
END_DIR_LAST 2-178
ENDMOVE 2-179
ENDMOVE_BUFFER 2-180
ENDMOVE_SPEED 2-180
EPROM 2-181
EPROM_STATUS 2-181
= Equals 2-182
ERROR_AXIS 2-183
ERROR_LINE 2-183
ERRORMASK 2-184
ETHERCAT........................... 2-185
ETHERNET 2-189
EX 2-198
EXECUTE 2-199
EXP 2-199
FALSE 2-201
FAST_JOG 2-201
FASTDEC 2-202
FE 2-202
FE_LATCH 2-203
FE_LIMIT 2-204
FE_LIMIT_MODE 2-204
FE_RANGE 2-205
FEATURE_ENABLE 2-206

Software Reference Manual

TRIOBaSIC COMMaNdS

2-3

FHOLD_IN 2-208
FHSPEED............................. 2-209
FILE 2-209
FLAG 2-217
FLAGS 2-218
FLASH_DUMP 2-218
FLASHTABLE 2-219
FLASHVR 2-219
FLEXLINK 2-220
FOR..TO.. STEP .. NEXT 2-222
FORCE_SPEED 2-224
FORWARD 2-225
FPGA_PROGRAM 2-227
FPGA_VERSION 2-228
FPU_EXCEPTIONS 2-229
FRAC 2-229
FRAME 2-230
FRAME_GROUP 2-248
FRAME_TRANS 2-250
FREE 2-252
FS_LIMIT 2-252
FULL_SP_RADIUS 2-253
FWD_IN 2-254
FWD_JOG 2-255
GET 2-257
GLOBAL 2-258
GOSUB..RETURN 2-259
GOTO 2-260
>= Greater Than or Equal 2-261
> Greater Than 2-262
HALT 2-263
HEX 2-263
HLM_COMMAND 2-264
HLM_READ 2-266
HLM_STATUS 2-267
HLM_TIMEOUT 2-267
HLM_WRITE 2-268
HLS_MODEL 2-269
HLS_NODE 2-269
HMI_PROC........................... 2-270
HMI_SERVER 2-270
HW_TIMER 2-274
HW_TIMER_DONE 2-276
I_GAIN 2-277
IDLE 2-277
IEEE_IN 2-278
IEEE_OUT 2-278
IF..THEN..ELSEIF..ELSE..ENDIF ... 2-279
IN 2-281
INCLUDE 2-282
INDEVICE 2-283
INITIALISE 2-284
INPUT 2-284
INPUTS0 / INPUTS1 2-285
INSTR 2-286
INT 2-287

INTEGER_READ 2-288
INTEGER_WRITE 2-288
INTERP_FACTOR 2-289
INVERT_IN........................... 2-289
INVERT_STEP 2-290
IP_ADDRESS 2-291
IP_GATEWAY 2-291
IP_MAC 2-292
IP_MEMORY_CONFIG............... 2-293
IP_NETMASK 2-293
IP_PROTOCOL_CONFIG 2-294
IP_TCP_TX_THRESHOLD 2-295
IP_TCP_TX_TIMEOUT 2-296
JOGSPEED 2-297
KEY 2-297
LAST_AXIS 2-299
LCASE 2-299
LCDSTR 2-300
LEFT 2-301
LEN 2-301
<= Less Than or Equal 2-302
< Less Than 2-302
LIMIT_BUFFERED 2-303
_ (Line Continue) 2-304
LINK_AXIS 2-304
LINPUT 2-305
LIST 2-306
LIST_GLOBAL 2-306
LN 2-307
LOAD_PROJECT 2-307
LOADED 2-308
LOADSYSTEM 2-308
LOCK 2-309
LOOKUP 2-310
MARK 2-311
MARKB 2-311
MERGE 2-312
MHELICAL 2-313
MHELICALSP 2-316
MID 2-316
MOD 2-317
MODBUS 2-318
MODULE_IO_MODE 2-323
MOTION_ERROR 2-325
MOVE 2-325
MOVEABS 2-328
MOVEABSSP 2-331
MOVECIRC 2-332
MOVECIRCSP 2-335
MOVELINK 2-336
MOVEMODIFY 2-340
MOVES_BUFFERED 2-344
MOVESP 2-344
MOVETANG 2-345
MPE 2-348
MPOS 2-349

MSPEED 2-350
MSPHERICAL 2-351
MSPHERICALSP 2-355
MTYPE 2-355
* Multiply 2-357
N_ANA_IN 2-359
N_ANA_OUT 2-359
NEG_OFFSET 2-360
NEW 2-360
NIN 2-361
NIO 2-362
NOP 2-362
<> Not Equal 2-363
NOT 2-363
NTYPE 2-364
OFF 2-367
OFFPOS 2-367
ON 2-369
ON.. GOSUB/ GOTO 2-369
OP 2-371
OPEN 2-373
OPEN_WIN 2-375
OR 2-376
OUTDEVICE 2-377
OUTLIMIT 2-378
OV_GAIN 2-378
P_GAIN............................... 2-381
PEEK 2-381
PI 2-382
PLM_OFFSET 2-382
PMOVE 2-383
POKE 2-383
PORT 2-384
POS_OFFSET 2-384
^ Power 2-385
POWER_UP 2-385
PP_STEP 2-385
PRINT 2-386
PRMBLK 2-388
PROC 2-388
PROC_LINE 2-389
PROC_STATUS 2-389
PROCESS............................. 2-390
PROCNUMBER 2-390
PROJECT_KEY 2-391
PROTOCOL 2-392
PS_ENCODER 2-393
PSWITCH 2-394
‘ Quote 2-395
R_MARK 2-397
R_REGISTSPEED 2-398
R_REGPOS 2-399
RAISE_ANGLE.......................2-400
.. (Range)2-401
RAPIDSTOP2-401
READ_BIT2-404

Trio Motion Technology

TRIOBaSIC COMMaNdS

2-4

READ_OP2-405
READPACKET2-406
REG_INPUTS2-407
REG_POS2-409
REG_POSB 2-410
REGIST 2-411
REGIST_CONTROL2-420
REGIST_DELAY2-420
REGIST_SPEED2-421
REGIST_SPEEDB2-422
REMAIN2-422
REMOTE2-423
REMOTE_PROC2-424
RENAME2-425
REP_DIST2-425
REP_OPTION2-426
REPEAT.. UNTIL2-427
RESET2-428
REV_IN2-429
REV_JOG2-429
REVERSE.............................2-430
RIGHT2-432
RS_LIMIT2-433
RUN2-434
RUN_ERROR2-435
RUNTYPE2-441
S_REF2-443
S_REF_OUT2-443
SCHEDULE_OFFSET2-443
SCHEDULE_TYPE2-443
SCOPE2-444
SCOPE_POS2-445
SELECT2-446
SERCOS2-446
SERCOS_PHASE2-453
SERIAL_NUMBER2-453
SERVO2-454
SERVO_OFFSET2-454
SERVO_PERIOD2-455
SERVO_READ2-456
SET_BIT..............................2-456
SETCOM2-457
SGN2-459
<< Shift Left2-459
>> Shift Right2-460
SIN2-461
SLOT2-461
SLOT_NUMBER2-462
SPEED2-462
SPEED_SIGN2-463
SPHERE_CENTRE2-463
SQR2-464
SRAMP2-464
START_DIR_LAST2-465
STARTMOVE_SPEED2-466
STEP_RATIO2-466

STEPLINE2-468
STICK_READ2-468
STICK_READVR2-469
STICK_WRITE2-470
STICK_WRITEVR2-471
STOP2-472
STOP_ANGLE2-473
STORE 2-474
STR 2-474
STRTOD2-475
- Subtract2-477
SYNC2-478
SYNC_CONTROL2-481
SYNC_TIMER2-481
SYSTEM_ERROR2-482
T_REF2-483
T_REF_OUT2-483
TABLE2-483
TABLE_POINTER....................2-484
TABLEVALUES.......................2-486
TAN2-487
TANG_DIRECTION2-488
TEXT_FILE_LOADER2-488
TEXT_FILE_LOADER_PROC2-491
TICKS2-492
TIME$2-492
TIME2-493
TIMER 2-494
TOKENTABLE2-495
TOOL_OFFSET2-496
TRIGGER.............................2-497
TRIOPCTESTVARIAB2-498
TROFF2-498
TRON2-499
TRUE2-500
TSIZE2-500
UCASE 2-503
UNIT_CLEAR 2-503
UNIT_DISPLAY2-504
UNIT_ERROR2-504
UNIT_SW_VERSION2-505
UNITS2-505
UNOCK2-506
USER_FRAME2-506
USER_FRAME_TRANS2-509
USER_FRAMEB...................... 2-510
VAL 2-513
VECTOR_BUFFERED 2-513
VERIFY 2-514
VERSION 2-514
VFF_GAIN 2-514
VOLUME_LIMIT 2-515
VP_SPEED 2-518
VR 2-518
VRSTRING 2-520
WA 2-521

WAIT 2-521
WDOG2-522
WHILE .. WEND2-523
WORLD_DPOS 2-524
XOR 2-524

Software Reference Manual

TRIOBaSIC COMMaNdS

2-5

Trio Motion Technology

TRIOBaSIC COMMaNdS

2-6

Software Reference Manual

TRIOBaSIC COMMaNdS

2-7

Introduction to TrioBASIC

INTRODUCTION
The TrioBASIC programming reference guide lists all the TrioBASIC keywords used in the MC4xx range of
Motion Coordinators in alphabetical order. A TrioBASIC keyword can be a simple parameter, or a command
with a clearly defined function, such as FORWARD or HALT, whereas others may take one or more parameters
which affect the operation of the command.

This short introduction is intended to provide a guide to using the main programming reference. It identifies
the concepts and some words and phrases which have a particular meaning within the context of this
manual.

COMMAND REFERENCE ENTRY
Each TrioBASIC keyword is described in the technical reference manual using a standard format. The
keyword name is given, what type of TrioBASIC keyword it is, an example of syntax and then a description of
its parameters and overall operation. Finally an example of it in a typical program is given when available.

Here is the typical layout.

KEYWORD_NAME
Type:
The keyword type; e.g. SYSTEM PARAMETER

Syntax:
The definition of the keyword syntax. Where parameters are optional, they
are enclosed in square brackets [].

Description:
A brief description of command or parameter, informing what it does and how
it may interact with other parameters or commands.

Parameters:
A table of all the parameters for the command. If the keyword is a parameter
itself, then this section will be missed.

Examples:
Example 1:
Where available, at least one example will be shown. When the command
is a motion command, the example may be a small sub-set of the sequence
needed to show the command working in a realistic application.

See also:
A list of other related keywords so that the reader can easily cross-reference.

Trio Motion Technology

TRIOBaSIC COMMaNdS

2-8

KEYWORD TYPES
Keywords are split into groups according to their function, where they may be used and where they are
stored in the Motion Coordinator. A keyword may have more than one type. For example, a keyword can be
a System Variable and be available for use in the MC _ CONFIG initialisation program.

Below is a table describing all the keyword types.

Axis command A command sent to a particular axis. An axis command will usually have one or
more parameters in parentheses. It will operate on the BASE axis that is set, but
it can also take the AXIS modifier keyword.

e.g. MOVE(100), REGIST(21, 4, 0, 1, 0) AXIS(15)

Axis Parameter A parameter which is associated with a particular axis. An axis parameter will
operate on the BASE axis that is set, but it can also take the AXIS modifier
keyword.

e.g. P _ GAIN = 1.2, x = MPOS AXIS(2)

Command line only The command or parameter may be entered in the command line on Motion
Perfect terminal 0. It may NOT be used within an executable TrioBASIC program.

Constant The keyword returns a constant value. Used to make common program constants
more readable.

e.g. OP(10, ON), WAIT UNTIL MARK = TRUE

FLASH The parameter is automatically stored in the flash memory and will therefore be
available on the next and all subsequent power ups.

Note that parameters stored to Flash from the command line are not referenced
in the Motion Perfect project and must be documented separately. For this
reason, the use of MC _ CONFIG is recommended even if the parameter is also
stored in the Flash.

Mathematical function The keyword is a typical TrioBASIC mathematical function which can take one or
more operands and which returns a result.

e.g. x = COS(y), value = ATAN2(VR(10), VR(11))

MC_CONFIG The parameter is available for use in the MC _ CONFIG script which runs
automatically on power up while configuring the system.

Modifier A modifier keyword is used to modify the target axis, process, port or slot that a
command is sent to, or that a parameter is sent to or read from.

e.g. CONNECT(1,3) AXIS(10), x = PROC _ STATUS PROC(21), PRINT
FPGA _ VERSION SLOT(2)

Process parameter A parameter which gives the status of a process in the multi-tasking, or which, if
written to, has some control function in the multi-tasking. A process parameter
operates on process 0 unless the PROC modifier is used.

Program Structure

Slot Parameter A slot parameter gives some information about the status of the hardware on that
slot. Some slot parameters also have a control function when written to. A slot
parameter operates on slot 0 unless the SLOT modifier is used.

e.g. VR(10) = SERCOS _ PHASE SLOT(2), PRINT FPGA _ VERSION SLOT(-1)

Software Reference Manual

TRIOBaSIC COMMaNdS

2-9

System command A command which operates on the system firmware, or on a part of the Motion
Coordinator hardware. A system command may have one or more parameters
contained within parentheses.

e.g. AUTORUN, SETCOM(19200,8,1,2,2,4)

System parameter A parameter which is associated with the system as a whole. A system parameter
may control or give the status of something in the operating firmware, or it may
be hardware specific.

e.g. NIO, TIME$

All functions and commands will accept an expression as well as a single variable. For example; a valid
expression might be MOVE(COS(x)*VR(1)/100).

KEYWORD SYNTAX
Each entry in the TrioBASIC reference manual shows the syntax of the keyword in a standard form. Syntax,
the way you use the keyword, appears in 3 formats in TrioBASIC.

COMMAND
Commands come in 3 types; those which take parameters and those which do not. An example of a
command with parameters is shown here.
MHELICAL(end1, end2, centre1, centre2, direction, distance3 [,mode])
Parameters are contained within parentheses. (round brackets) If there is more than one parameter, then
they are separated by a comma. Optional parameters are shown in the syntax description within square
brackets. The square brackets are not used when writing the command in a program, so if the optional
parameter is used, just insert the comma and the value or expression without square brackets.

Commands which do not have parameters are just entered as the keyword with no parentheses or brackets.
For example; FORWARD

FUNCTION
Functions can both take a value, or values, and will also return a value. The values given to the function
are in parentheses, in the same way as for a command. One or more values may be passed to the function.
Mathematical functions are typical of this syntax type;
value = COS(expression)
value = ABS(expression)

PARAMETER
A parameter carries a value and therefore works in the same way as a variable. A value can be assigned to a
parameter or a value can be read from a parameter. Some parameters are read only. This will be shown in
the keyword type information.

Some examples of parameter syntax are;
P _ GAIN = 1.0
VR(10) = PROC _ STATUS PROC(3)
IF MPOS AXIS(10) > (ENDMOVE AXIS(10) – 200) THEN
CANIO _ ADDRESS = 40

Trio Motion Technology

TRIOBaSIC COMMaNdS

2-10

CONSTANT
Some keywords are provided to make common constants available to the programmer. These are, of course,
read-only. Constants, for the purpose of syntax, can be thought of as a sub-set of the parameter type.
Some examples are;
circumference = PI * diameter
IF result = FALSE THEN
WHILE TRUE
OP(30,OFF)
bit3 = ON

VARIABLES
Variables that may be used in expressions or as parameters within a command or function can be stored in
volatile RAM, in non-volatile battery backed RAM or in non-volatile Flash memory. A variable may also be
local or global.

Local variable A local variable is given a user defined name. The name can contain letters,
numbers and the underscore “_” character. It can be of any length, but only the
first 32 characters are used to identify the unique variable name. The value of a
local variable is known only to the process that it was defined in.

Local variables are volatile and will be lost at power down.

e.g. elapsed _ time = -TICKS/1000

Global variables Global variables, otherwise known as VR variables, are held in non-volatile memory.
In the MC464 this is maintained by a lithium battery. In the MC403/MC405, the
global variables are stored in the Flash memory. Global variables can be accessed
from all processes including the command line in terminal 0.

There are a fixed number of global variables. Each variable is accessed by index
number, e.g. value=VR(123). See the relevant hardware manual for the highest
index number.

e.g. batch _ size = VR(101)

TABLE values Another range of globally accessible values is the TABLE memory. This is a large
indexed array of variables which has a special purpose in some commands. It can
also be used as a general memory for application programs.

Table memory may be either volatile or non-volatile. See the appropriate hardware
manual for details.

e.g. TABLE(100, 1.2, 2.3, 4.5, 6.8, 9.0, 15.4, 23.7)

VARIABLE SYNTAX
The default data type of all variables is double precision float. However, the floating point data type can
also store integers up to 52 bits plus sign. Therefore all variables and most parameters can be referenced as
if they are integers, without any need to create a separate integer data type definition.
my _ variable = 450.023 ‘ decimal float
my _ variable = 450 ‘ decimal integer
my _ variable = $FF6A ‘ hexadecimal integer
my _ variable.5 = 1 ‘ sets bit 5 to 1

Software Reference Manual

TRIOBaSIC COMMaNdS

2-11

Versions of firmware released after the middle of 2012 have more advanced data types available. For
example the String type can be defined by the use of the DIM statement. See under DIM in the Trio BASIC
reference manual for further information.

LABELS
A label is a place marker in the program. Labels are given user defined names. The name can contain
letters, numbers and the underscore “_” character. It can be of any length, but only the first 32 characters
are used to identify the unique variable name. The label position is defined by putting the colon “:”
character after the label name. The line containing the label can then be referenced within a GOTO or
GOSUB command.
start _ of _ program:

 raduis1 = 123
 GOSUB calc _ circle _ radius
 PRINT #5,area1
 WA(500)
GOTO start _ of _ program

calc _ circle _ area:
 area1 = PI * radius1 ^ 2
RETURN

EXAMPLES
Each keyword entry shows one or more example of how to use the keyword in a realistic context.
Sophisticated commands, like the main motion commands, will show a reasonably complete example with all
the other associated commands which are required to make the core of a typical application.

More complete programming solutions can be found in Trio’s wide range of application notes and
programming guides.

Trio Motion Technology

TRIOBaSIC COMMaNdS

2-12

TRIOBaSIC COMMaNdS
aBS

2-13

Software Reference Manual

ATrioBASIC Commands A - Z

ABS
TYPE:
Mathematical function

SYNTAX:
value = ABS(expression)

DESCRIPTION:
The ABS function converts a negative number into its positive equal. Positive numbers are unaltered.

PARAMETERS:

Expression: Any valid TrioBASIC expression

EXAMPLE:
Check to see if the value from analogue input is outside of the range -100 to 100.

IF ABS(AIN(0))>100 THEN
 PRINT “Analogue Input Outside +/-100”
ENDIF

ACC
TYPE:
Axis command

SYNTAX:
ACC(rate)

DESCRIPTION:
Sets both the acceleration and deceleration rate simultaneously.

This command is provided to aid compatibility with older Trio controllers. Use the ACCEL and DECEL
axis parameters in new programs.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ACCEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DECEL.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
aCCEL

2-14

PARAMETERS:

rate: The acceleration rate in UNITS/SEC/SEC.

EXAMPLES:

EXAMPLE 1:
Move an axis at a given speed and using the same rates for both acceleration and deceleration.

ACC(120) ‘set accel and decel to 120 units/sec/sec
SPEED=14.5 ‘set programmed speed to 14.5 units/sec
MOVE(200) ‘start a relative move with distance of 200

EXAMPLE 2:
Changing the ACC whilst motion is in progress.

SPEED=100000 ‘set required target speed (units/sec)
ACC(1000) ‘set initial acc rate
FORWARD
WAIT UNTIL VP _ SPEED>5000 ‘wait for actual speed to exceed 5000
ACC(100000) ‘change to high acc rate
WAIT UNTIL SPEED=VP _ SPEED ‘wait until final speed is reached
WAIT UNTIL IN(2)=OFF
CANCEL

ACCEL
TYPE:
Axis parameter

DESCRIPTION:
The ACCEL axis parameter may be used to set or read back the acceleration rate of each axis fitted. The
acceleration rate is in UNITS/sec/sec.

EXAMPLE:
Set the acceleration rate and print it to the terminal

ACCEL=130
PRINT “ Acceleration rate= “;ACCEL;”mm/sec/sec”

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
aCOS

2-15

ACOS
TYPE:
Mathematical Function

SYNTAX:
ACOS(expression)

DESCRIPTION:
The ACOS function returns the arc-cosine of a number which should be in the range 1 to -1. The result in
radians is in the range 0..PI

PARAMETERS:

Expression: Any valid TrioBASIC expression returning a value between -1 and 1.

EXAMPLE:
Print the arc-cosine of -1 on the command line

>>PRINT ACOS(-1)
3.1416
>>

+ Add
TYPE:
Mathematical operator

SYNTAX:
<expression1> + <expression2>

DESCRIPTION:
Adds two expressions

PARAMETERS:

Expression1: Any valid TrioBASIC expression
Expression2: Any valid TrioBASIC expression

Trio Motion Technology

TRIOBaSIC COMMaNdS
add_daC

2-16

EXAMPLE:
Add 10 onto the expression in the parentheses and store in a local variable. Therefore ‘result’ holds the
value 28.9

result=10+(2.1*9)

ADD_DAC
TYPE:
Axis Command

SYNTAX:
ADD _ DAC(axis)

DESCRIPTION:
Adds the output from the servo control block of a secondary axis to the output of the base axis. The
resulting DAC _ OUT of the base axis is then the sum of the two control loop outputs.

The ADD _ DAC command is provided to allow a secondary encoder to be used on a servo axis to implement
dual feedback control.

� This would typically be used in applications such as a roll-feed where a secondary encoder to
compensate for slippage is required.

PARAMETERS:

axis: Number of the second axis, who’s output will be added to the base axis.
-1 will terminate the ADD _ DAC link.

EXAMPLE:
Use ADD _ DAC to add the output of a measuring wheel to the servo motor axis controlling a roll-feed. Set
up the servo motor axis as usual with encoder feedback from the motor drive. The measuring wheel axis
must also be set up as a servo. This is so that the software will perform the servo control calculations on
that axis.

It is necessary for the two axes to be controlled by a common demand position. Typically this would be
achieved by using ADDAX to produce a matching DPOS on BOTH axes. The servo gains are then set up on BOTH
axes, and the output summed on to one physical output using ADD _ DAC.

� If the required demand positions on both axes are not identical due to a difference in resolution
between the 2 feedback devices, ENCODER _ RATIO can be used on one axis to produce matching
UNITS.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DAC_OUT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ADDAX.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
add_daC

2-17

BASE(1)
ATYPE = 44
‘ No need to scale the servo encoder as it is the highest resolution
ENCODER _ RATIO(1,1)

‘ Link to the output of the encoders virtual DAC
ADD _ DAC(1)
UNITS = 10000

‘ Disable the output from the servo control block by setting PGAIN = 0
P _ GAIN = 0
SERVO = ON

BASE(2)
‘ ATYPE must be set to a servo ATYPE to enable the closed position loop
ATYPE = 44

‘ Set the encoder ratio so that it has the same counts per rev as the
servo
ENCODER _ RATIO(10000,4096)

Trio Motion Technology

TRIOBaSIC COMMaNdS
addaX

2-18

‘ Superimpose axis 1 demand on axis 2
ADDAX(1)
UNITS = 10000

‘ Use servo control block from encoder axis by setting >0 P _ GAIN
P _ GAIN = 0.5
SERVO = ON

WDOG=ON

BASE(1)
‘ Start movements
MOVE(1200)
WAIT IDLE

ADDAX
TYPE:
Axis command

SYNTAX:
ADDAX(axis)

DESCRIPTION:
The ADDAX command is used to superimpose 2 or more movements to build up a more complex movement
profile:

The ADDAX command takes the demand position changes from the specified axis and adds them to any
movements running on the base axis.

After the ADDAX command has been issued the link between the two axes remains until broken and any
further moves on the specified axis will be added to the base axis.

� The specified axis can be any axis and does not have to physically exist in the system

The ADDAX command therefore allows an axis to perform the moves specified on TWO axes added together.

� When using an encoder with SERVO=OFF the MPOS is copied into the DPOS. This allows ADDAX to be
used to sum encoder inputs.

PARAMETER:
axis: Axis to superimpose.

-1 breaks the link with the other axis.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SERVO.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
addaX

2-19

The ADDAX command sums the movements in encoder edge units.

EXAMPLES:

EXAMPLE 1:
Using ADDAX on axis with different UNITS, Axis 0 will move 1*1000+2*20=1040 edges.

UNITS AXIS(0)=1000
UNITS AXIS(1)=20
‘Superimpose axis 1 on axis 0
ADDAX(1) AXIS(0)
MOVE(1) AXIS(0)
MOVE(2) AXIS(1)

EXAMPLE 2:
Pieces are placed randomly onto a continuously moving belt and further along the line are transferred to a
second flighted belt. A detection system gives an indication as to whether a piece is in front of or behind its
nominal position, and how far.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
addaX

2-20

 expected=2000 ‘sets expected position
 BASE(0)
 ADDAX(1)
 CONNECT(1,2) ‘continuous geared connection to flighted belt
 REPEAT
 GOSUB getoffset ‘get offset to apply
 MOVE(offset) AXIS(1) ‘make correcting move on virtual axis
 UNTIL IN(2)=OFF ‘repeat until stop signal on input 2
 RAPIDSTOP
 ADDAX(-1) ‘clear ADDAX connection
 STOP

Getoffset: ‘subroutine to register the position of the
 ‘piece and calculate the offset
 BASE(0)
 REGIST(3)
 WAIT UNTIL MARK
 seenat=REG _ POS
 offset=expected-seenat
 RETURN

Axis 0 in this example is connected to the second conveyor’s encoder and a superimposed MOVE on axis 1 is
used to apply offsets

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
addaX

2-21

EXAMPLE 3:
An XY marking machine must mark boxes as they move along a conveyor. Using CONNECT enables the X
marking axis to follow the conveyor. A virtual axis is used to program the marking absolute positions; this is
then superimposed onto the X axis using ADDAX.

ATYPE AXIS(3)=0 ‘set axis 3 as virtual axis
SERVO AXIS(3)=ON
DEFPOS(0) AXIS(3)
ADDAX (3)AXIS(0) ‘connect axis 3 requirement to axis 0
WHILE IN(2)=ON
 REGIST(3) ‘registration input detects a box on the conveyor
 WAIT UNTIL MARK OR IN(2)=OFF
 IF MARK THEN
 CONNECT(1,2) AXIS(0) ‘connect axis 0 to the moving belt
 BASE(3,1) ‘set the drawing motion to axis 3 and 1
 ‘Draw the M
 MOVEABS(1200,0)’move A > B
 MOVEABS(600,1500)’move B > C
 MOVEABS(1200,3000)’ move C > D
 MOVEABS(0,0)’move D > E
 WAIT IDLE

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CONNECT.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
addaX_aXIS

2-22

 BASE(0)
 CANCEL ‘stop axis 0 from following the belt
 WAIT IDLE
 MOVEABS(0) ‘move axis 0 to home position
 ENDIF
WEND
CANCEL

ADDAX_AXIS
TYPE:
Axis Parameter (Read Only)

DESCRIPTION:
Returns the axis currently linked to with the ADDAX command, if none the parameter returns -1.

EXAMPLE:
Check if an ADDAX to axis 2 exists as part of a reset sequence, if it does then cancel it.

IF ADDAX _ AXIS = 2 then
 ADDAX(-1)
ENDIF

ADDRESS
TYPE:
System Parameter

DESCRIPTION:
Sets the RS485 or Modbus multi-drop address for the controller.

VALUE:
Node address, should be in the range of 1..32. If it is set to 255 addressing is not used and all 8 characters
from the packet are sent through to the user.

EXAMPLE:
Initialise Modbus as node 5

ADDRESS=5
SETCOM(19200,8,1,2,1,4)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ADDAX.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ADDAX.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
aFF_GaIN

2-23

AFF_GAIN
TYPE:
Axis Parameter

DESCRIPTION:
Sets the acceleration Feed Forward for the axis. This is a multiplying factor which is applied to the rate of
change of demand speed. The result is summed to the control loop output to give the DAC _ OUT value.

AFF _ GAIN is only effective in systems with very high counts per revolution in the feedback. I.e.
65536 counts per rev or greater.

AIN
TYPE:
System Command

SYNTAX:
AIN(channel)

DESCRIPTION:
Reads a value from an analogue input. Analogue inputs are either built in to the Motion Coordinator or
available from the CAN Analogue modules.

The value returned is the decimal equivalent of the binary number read from the A to D converter.

The built in analogue inputs are updated every servo period.

The CAN analogue inputs are updated every 10msec

PARAMETERS:
channel: Analogue input channel number 0...35

0 to 31 CAN analogue input channel number
32 to 35 Built in analogue input channel number

If no CAN Analog modules are fitted, AIN(0) and AIN(1) will read the first two built-in channels so as to
maintain compatibility with previous versions.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DAC_OUT.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
aIN0..3 / aINBI0..3

2-24

EXAMPLE:
Material is to be fed off a roll at a constant speed. There is an ultrasonic height sensor that returns 4V when
the roll is empty and 0V when the roll is full. A lazy loop is written in the BASIC to control the speed of the
roll.

MOVE(-5000)
REPEAT
 a=AIN(1)
 IF a<0 THEN a=0
 SPEED=a*0.25
UNTIL MTYPE=0

The analogue input value is checked to ensure it is above zero even though it always should be positive.
This is to allow for any noise on the incoming signal which could make the value negative and cause an error
because a negative speed is not valid for any move type except FORWARD or REVERSE.

AIN0..3 / AINBI0..3
TYPE:
System Parameter

DESCRIPTION:
These system parameters duplicate the AIN() command.

AIN0..3 is used for single sided analogue inputs.

AINBI0..3 is used for bipolar inputs.

They provide the value of the analogue input channels in system parameter format to allow the SCOPE
function (Which can only store parameters) to read the analogue inputs.

If no CAN Analog modules are fitted, AIN0 and AIN1 will read the first two built-in channels.

AND
TYPE:
Logical and Bitwise operator

SYNTAX:
<expression1> AND <expression2>

DESCRIPTION:
This performs an AND function between corresponding bits of the integer part of two valid TrioBASIC

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FORWARD.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REVERSE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AIN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SCOPE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
aNd

2-25

expressions.

The AND function between two bits is defined as follows:

AND 0 1
0 0 0

1 0 1

PARAMETERS:

expression1: Any valid TrioBASIC expression
expression2: Any valid TrioBASIC expression

EXAMPLES:

EXAMPLE 1:
Using AND to compare two logical expressions, if they are both true then set a local variable.

IF (IN(6)=ON) AND (DPOS>100) THEN
 tap=ON
ENDIF

EXAMPLE 2:
Use AND as a bitwise operator.

VR(0)=10 AND (2.1*9)
Trio BASIC evaluates the parentheses first giving the value 18.9, but as was specified earlier, only the
integer part of the number is used for the operation, therefore this expression is equivalent to:

VR(0)=10 AND 18
AND is a bitwise operator and so the binary action taking place is:

 01010
AND 10010
 00010

Therefore VR(0) holds the value 2

EXAMPLE 3:
If both MPOS are set to 0 then run a sub routine ‘cycle’

IF MPOS AXIS(0)>0 AND MPOS AXIS(1)>0 THEN
 GOSUB cycle
ENDIF

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
aNYBuS

2-26

ANYBUS
TYPE:
System Function

SYNTAX:
ANYBUS(function, slot [, parameters…])

DESCRIPTION:
This function allows the user to configure the active Anybus module and set the network to an operation
state. Some networks have limitations on data types and size, please refer the Anybus data sheet for details.

Passive modules require no setup and will appear as a communication channel, they can then be used
with PRINT, GET etc. These modules can be configured using the SETCOM command.

PARAMETERS:

function: 0 Configure map
1 Configure module and start protocol
2 Stop protocol
3 Read status byte
4 Auto configure mapping

FUNCTION = 0;

SYNTAX:
value = ANYBUS(0,slot [, map, source [, index, type, count, direction]])

DESCRIPTION:
Assigns a VR or table point to the memory area that is updated over the network. Individual or all maps can
be deleted using the first 4 parameters.

The current mapping can be printed to the terminal using the first 2 parameters.

PARAMETERS:

value: TRUE = the command was successful
FALSE = the command was unsuccessful

slot: Module slot in which the Anybus is fitted
map: Map number, use -1 to delete all maps

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PRINT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GET.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SETCOM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
aNYBuS

2-27

source: Location for data on the MC464
-1 delete map
0 VR
1 Table

index: Start position in data source
type: The size and type of data that is sent across the bus

0 boolean
1 signed 8 bit integer
2 signed 16 bit integer
3 signed 32 bit integer
4 unsigned 8 bit integer
5 unsigned 16 bit integer
6 unsigned 32 bit integer
7 character
8 enumeration
9-15 (reserved)
16 signed 64 bit integer
17 unsigned 64 bit integer
18 floating point/real number

count: Number of data types mapped
direction: Data direction

0 data read into the controller
1 data transmitted from the controller

FUNCTION = 1:

SYNTAX:
value = ANYBUS(1,slot, address [, baud])

DESCRIPTION:
Resets the Anybus module, loads the mapping and then sets the network to operational mode using the
parameters provided.

PARAMETERS:

value: TRUE the command was successful
FALSE the command was unsuccessful

slot: Module slot in which the Anybus is fitted
address: Module address, node number, MAC id. etc
baud: Baud rate CC Link - required

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
aNYBuS

2-28

0 156 kbps
1 625 kbps
2 2.5 Mbps
3 5 Mbps
4 10 Mbps
Baud rate Devicenet – optional
0 125 kbps
1 250 kbps
2 500 kbps
3 autobaud (default)
Baud rate Profibus – automatic, not required

FUNCTION = 2:

SYNTAX:
value = ANYBUS(2,slot)

DESCRIPTION:
Stops the cyclic data transfer.

PARAMETERS:

value: TRUE the command was successful
FALSE the command was unsuccessful

slot: Module slot in which the Anybus is fitted

FUNCTION = 3:

SYNTAX:
value = ANYBUS(3,slot)

DESCRIPTION:
Reads the status byte from the Anybus module.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
aNYBuS

2-29

PARAMETERS:

value: Anybus status byte:
Bits 0-2: Anybus State:

0 SETUP
1 NW _ INIT
2 WAIT _ PROCESS
3 IDLE
4 PROCESS _ ACTIVE
5 ERROR
6 (reserved)
7 EXCEPTION

Bit 3 Supervisory bit:
0 Module is not supervised
1 Module is supervised by another network device

Bits 4-7 (reserved)
slot: Module slot in which the Anybus is fitted

FUNCTION = 4:

SYNTAX:
value = ANYBUS(4,slot, address, type, inoff, outoff)

DESCRIPTION:
Auto-configure and start the cyclic network. The mapping can still be read using function 0.

Currently only available for the Profibus network.

PARAMETERS:

value: TRUE the command was successful
FALSE the command was unsuccessful

slot: Module slot in which the Anybus is fitted
address: Module address, node number, MAC id. Etc
type: Data type and location

0 VR Integer
1 Table Integer
2 VR Float
3 Table Float

inoff: Offset for inputs
outoff: Offset for outputs

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
aNYBuS

2-30

EXAMPLES:

EXAMPLE 1:
Configure Device Net with 2 16-bit integer inputs and 2 16-bit integer outputs. This data is transmitted
cyclically using the ‘Polled Connection’ method. Ensure to configure the master identically to the slave
otherwise the data will not transmit.

device _ net:
 slotnum=0 ‘Local variable with module slot number

‘Map data
 map=FALSE
‘Map received data
 map= ANYBUS(0, slotnum, 1, 0, 0, 2, 4, 0) ‘4*16-bit Int Rx
 IF map=TRUE THEN
 ‘Map transmit data
 map= ANYBUS(0, slotnum, 2, 0, 4, 2, 4, 1) ‘4*16-bit Int Tx
 ENDIF

 IF map=FALSE THEN
 PRINT#term, “Mapping failed”
 STOP
 ENDIF

‘Print mapped data to the terminal
 ANYBUS(0,slotnum)

‘Start Network
 map= ANYBUS(1, slotnum, 3, 2) ‘MAC ID=3, Baud=500k
 IF map=FALSE THEN
 PRINT#term, “Failed to start network”
 STOP
 ELSE
 PRINT#term, “Network Started”
 ENDIF
 RETURN

EXAMPLE 2:
Configure CC-Link with 2 stations, both with 16 bits in, 16 bits out, 2 SINT16 in and 2 SINT16 out. Ensure that
the master is configured identically and that the handshaking bits are implemented.

cc _ link:
‘Function 0 - Set up mapping
‘station 1
 map = ANYBUS(0, slotnum, 0, 0, 0, 0, 16, 0) ‘16*BOOL Rx
 map = ANYBUS(0, slotnum, 1, 0, 1, 0, 16, 1) ‘16*BOOL Tx

Software Reference Manual

TRIOBaSIC COMMaNdS
aOuT

2-31

 map = ANYBUS(0, slotnum, 2, 0, 2, 2, 2, 0)’2*16-bit Int Rx
 map = ANYBUS(0, slotnum, 3, 0, 4, 2, 2, 1) ‘2*16-bit Int Tx
‘station 2
 map = ANYBUS(0, slotnum, 4, 0, 6, 0, 16, 0) ‘16*BOOL Rx
 map = ANYBUS(0, slotnum, 5, 0, 7, 0, 16, 1) ‘16*BOOL Tx
 map = ANYBUS(0, slotnum, 6, 0, 8, 2, 2, 0) ‘2*16-bit Int Rx
 map = ANYBUS(0, slotnum, 7, 0, 10, 2, 2, 1) ‘2*16-bit Int Tx

 ANYBUS(0,slotnum) ‘print mapping to terminal

‘Function 1 - Start Protocol
 IF map = FALSE THEN
 map = ANYBUS(1, slotnum, 1, 2)
 ENDIF

EXAMPLE 3:
Configure Profibus using the automated mapping.

Profibus:
 vrint=0
 tableint=1
 vrfloat=2
 tablefloat=3
 slotnum=0

 ‘Function 4, read network mapping, configure and start.
 map=ANYBUS(4, slotnum, 5, vrint, 100, 200)

 IF map=FALSE THEN
 PRINT#term, “Failed to start network”
 STOP
 ENDIF
 ANYBUS(0,slotnum) ‘print mapping to terminal

AOUT
TYPE:
System Command

SYNTAX:
AOUT(channel)

Trio Motion Technology

TRIOBaSIC COMMaNdS
aOuT0..3

2-32

DESCRIPTION:
Writes a value to an analogue output. Analogue outputs available from the CAN Analogue module.

The value sent is the decimal equivalent of the binary number to be written to the D to A converter.

PARAMETERS:

channel: Analogue output channel number 0...15

EXAMPLE:
An output is to be set to the speed input of an open-loop inverter drive. 10V is 1500 rpm and the required
speed is 300 rpm.

value = 300 * 2048 / 1500
AOUT(1) = value

The analogue output voltage is set to 2V.

The voltage is approximate and the output must be calibrated by the user if high accuracy is required.

AOUT0..3
TYPE:
System Parameter

DESCRIPTION:
These system parameters duplicate the AOUT command.

They provide the value of the analogue output channels in system parameter format to allow the SCOPE
function (Which can only store parameters) to read the analogue outputs.

ASIN
TYPE:
Mathematical Function

SYNTAX:
ASIN(expression)

ALTERNATE FORMAT:
ASN(expression)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AOUT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SCOPE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
aTaN

2-33

DESCRIPTION:
The ASIN function returns the arc-sine of a number which should be in the range +/-1. The result in radians
is in the range -PI/2.. +PI/2.

PARAMETERS:

Expression: Any valid TrioBASIC expression returning a value between -1 and 1.

EXAMPLE:
Print the arc-sine of -1 on the command line

>>PRINT ASIN(-1)
-1.5708

ATAN
TYPE:
Mathematical Function

SYNTAX:
ATAN(expression)

ALTERNATE FORMAT:
ATN(expression)

DESCRIPTION:
The ATAN function returns the arc-tangent of a number. The result in radians is in the range -PI/2.. +PI/2

PARAMETERS:

Expression: Any valid TrioBASIC expression

EXAMPLE:
Print the arc-tangent of -1 on the command line

>>PRINT ATAN(1)
0.7854

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PI.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PI.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PI.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PI.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
aTaN2

2-34

ATAN2
TYPE:
Mathematical Function

SYNTAX:
ATAN2(expression1,expression2)

DESCRIPTION:
The ATAN2 function returns the arc-tangent of the ratio expression1/expression2. The result in radians is in
the range -PI.. +PI

� Use ATAN2 when calculating vectors as it is quicker to execute than ATAN(x/y)

PARAMETERS:

Expression1: Any valid TrioBASIC expression.
Expression2: Any valid TrioBASIC expression.

EXAMPLE:
Print the arc-tangent of 0 divided by 1 on the command line

>>PRINT ATAN2(0,1)
0.0000

ATYPE
TYPE:
Axis Parameter (MC _ CONFIG)

DESCRIPTION:
The ATYPE axis parameter indicates the type of axis fitted. By default this will be set to match the
hardware, but some modules allow configuration of different operation.

If you are setting an ATYPE, this must be done during initialisation through the MC _ CONFIG.bas program.

When using ATYPE in MC _ CONFIG you must use the AXIS modifier, BASE is not allowed.

VALUE:
The following ATYPE’s are currently active values

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PI.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PI.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
aTYPE

2-35

Value Description
0 No axis daughter board fitted/ virtual axis
30 Analogue feedback Servo
43 Pulse and direction output with enable output
44 Incremental encoder Servo with Z input
45 Quadrature encoder output with enable output
46 Tamagawa absolute Servo
47 Endat absolute Servo
48 SSI absolute Servo
50 RTEX position
51 RTEX speed
52 RTEX torque
53 Sercos velocity
54 Sercos position
55 Sercos torque
56 Sercos open
57 Sercos velocity with drive registration
58 Sercos position with drive registration
59 Sercos spare
60 Pulse and direction feedback Servo with Z input
61 SLM
62 PLM
63 Pulse and direction output with Z input
64 Quadrature encoder output with Z input
65 EtherCAT position
66 EtherCAT speed
67 EtherCAT Torque
68 EtherCAT Open Speed
69 EtherCAT Reference Encoder
75 SSI 32 Absolute Slave
76 Incremental encoder with Z input
77 Incremental encoder Servo with enable output
78 Pulse and direction with VFF_GAIN and enable output

� Which ATYPE s are supported is controller and module dependent.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VFF_GAIN.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
auTO_ETHERCaT

2-36

EXAMPLES:

EXAMPLE 1:
Set a stepper on axis 0 and SSI encoder on axis 1. The default for a flexible axis is servo

ATYPE AXIS(0) = 43
ATYPE AXIS(1) = 48

EXAMPLE 2:
Set a the ATYPE so a SERCOS axis uses velocity mode with drive registration

ATYPE AXIS(12)=57

EXAMPLE 3:
Setting the ATYPE for the first 4 axis in the MC _ CONFIG file so that the first two axes are SSI and the rest
incremental servo.

ATYPE AXIS(0) = 48
ATYPE AXIS(1) = 48
ATYPE AXIS(2) = 44
ATYPE AXIS(2) = 44

AUTO_ETHERCAT
TYPE:
System Parameter (MC _ CONFIG)

DESCRIPTION:
Controls the action of the system software on power up. If present, the EtherCAT network is initialized
automatically on power up or soft reset (EX). If this is not required, then setting AUTO _ ETHERCAT to
OFF will prevent the EtherCAT from being set up and it is then up to the programmer to start the EtherCAT
network from a BASIC program.

This command should not be used in a TrioBASIC program. You must use it in the special MC _ CONFIG
script which runs automatically on power up. This parameter is NOT stored in FLASH.

VALUE:

Value Description
0 EtherCAT network does not initialise on power up.
1 EtherCAT network searches for drives and sets up the system

automatically.

Software Reference Manual

TRIOBaSIC COMMaNdS
auTORuN

2-37

EXAMPLE:
Prevent the EtherCAT system from starting on power up.

‘ MC _ CONFIG script file
AUTO _ ETHERCAT = OFF

AUTORUN
TYPE:
System Command

DESCRIPTION:
Starts running all the programs that have been set to run at power up.

This command should not be used in a TrioBASIC program. You can use it in the command line or a
TRIOINIT.bas in a SD card.

EXAMPLE:
Using a TRIOINIT.bas file in a SD card to load and run a new project

FILE “LOAD _ PROJECT” “ROBOT _ ARM”
AUTORUN

AXIS
TYPE:
Modifier (MC _ CONFIG)

SYNTAX:
AXIS(expression)

DESCRIPTION:
Assigns ONE command, function or axis parameter operation to a particular axis.

� If it is required to change the axis used in every subsequent command, the BASE command should be
used instead.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
aXIS_addRESS

2-38

PARAMETERS:

Expression: Any valid TrioBASIC expression. The result of the expression should be a valid integer axis
number.

EXAMPLES:

EXAMPLE 1:
The command line has a default base axis of 0. To print the measured position of axis 3 to the terminal in
Motion Perfect, you must add the axis number after the parameter name.

>>PRINT MPOS AXIS(3)

EXAMPLE 2:
The base axis is 0, but it is required to start moves on other axes as well as the base axis.

MOVE(450) ‘Start a move on the base axis (axis 0)
MOVE(300) AXIS(2) ‘Start a move on axis 2
MOVEABS(120) AXIS(5) ‘Start an absolute move on axis 5

EXAMPLE 3:
Set up the repeat distance and repeat option on axis 3, then return to using the base axis for all later
commands.

REP _ DIST AXIS(3)=100
REP _ OPTION AXIS(3)=1
SPEED=2.30 ‘set speed accel and decel on the BASE axis
ACCEL=5.35
DECEL=8.55

SEE ALSO:
BASE()

AXIS_ADDRESS
TYPE:
Axis Parameter

DESCRIPTION:
The AXIS _ ADDRESS parameter holds the address of the drive or feedback device. For example can be used
to specify the Sercos drive address or AIN channel that is used for feedback on the base axis.

VALUE:
Drive address / node number or analogue input number

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
aXIS_dEBuG_a

2-39

� You may require additional Feature Enable Codes before using the remote axis functionality.

EXAMPLE:
Assigning the Sercos drive with the node address 4 to axis 8 in the controller. Then starting it in position
mode with drive registration.

BASE(8)
AXIS _ ADDRES = 4
ATYPE = 58

AXIS_DEBUG_A
TYPE:
Reserved Keyword

DESCRIPTION:
Use only when instructed by Trio as part of an operational analysis.

AXIS_DEBUG_B
TYPE:
Reserved Keyword

DESCRIPTION:
Use only when instructed by Trio as part of an operational analysis.

AXIS_DISPLAY
TYPE:
Reserved Keyword

AXIS_DPOS
TYPE:
Axis Parameter (Read Only)

Trio Motion Technology

TRIOBaSIC COMMaNdS
aXIS_ENaBLE

2-40

ALTERNATE FORMAT:
TRANS _ DPOS

DESCRIPTION:
AXIS _ DPOS is the axis demand position at the output of the FRAME transformation.

AXIS _ DPOS is normally equal to DPOS on each axis. The frame transformation is therefore equivalent
to 1:1 for each axis (FRAME = 0). For some machinery configurations it can be useful to install a frame
transformation which is not 1:1, these are typically machines such as robotic arms or machines with
parasitic motions on the axes. In this situation when FRAME is not zero AXIS _ DPOS returns the demand
position for the actual motor.

AXIS _ DPOS is set to MPOS when SERVO or WDOG are OFF

VALUE:
The axis demand position at the output of the FRAME transformation in AXIS _ UNITS. Default 0 on power
up.

EXAMPLE:
Return the axis position in user AXIS _ UNITS using the command line.

>>PRINT AXIS _ DPOS
125.22
>>

SEE ALSO:
AXIS _ UNITS, FRAME

AXIS_ENABLE
TYPE:
Axis Parameter

DESCRIPTION:
Can be used to independently disable an axis. ON by default, can be set to OFF to disable the axis. The axis
is enabled if AXIS _ ENABLE = ON and WDOG = ON.

On stepper axis AXIS _ ENABLE will turn on the hardware enable outputs.

� If the axis is part of a DISABLE _ GROUP and an error occurs AXIS _ ENABLE is set to OFF but the
WDOG remains ON.

VALUE:
Accepts the values ON or OFF, default is ON.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SERVO.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/WDOG.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/WDOG.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DISABLE_GROUP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/WDOG.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
aXIS_ERROR_COuNT

2-41

EXAMPLE:
Re-enabling a group of axes after a motion error

DEFPOS(0) ‘Clear the error
For axis _ number = 4 to 8
BASE(axis _ number)
AXIS _ ENABLE = ON ‘Enable the axis
NEXT axis _ number

SEE ALSO:
DISABLE _ GROUP

AXIS_ERROR_COUNT
TYPE:
Axis Parameter.

DESCRIPTION:
Each time there is a communications error on a digital axis, the AXIS _ ERROR _ COUNT parameter is
incremented. Where supported, this value can be used as an indication of the error rate on a digital axis.
Not all digital axis types have the ability to count the errors. Further information can be found in the
description of each type of digital communications bus.

VALUE:
The communications error count since last reset.

EXAMPLE:
Initialise the error counter

AXIS _ ERROR _ COUNT = 0
In the terminal, check the latest error count value.

>>?AXIS _ ERROR _ COUNT AXIS(3)
10.0000
>>

Keep a record of the overall error rate for an axis.
TICKS = 600000
AXIS _ ERROR _ COUNT = 0
REPEAT
 IF TICKS<0 THEN
 VR(10) = AXIS _ ERROR _ COUNT ‘ number of errors counted in ten minutes
 TICKS = 600000
 AXIS _ ERROR _ COUNT = 0
 ENDIF

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DISABLE_GROUP.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
aXIS_FS_LIMIT

2-42

 …
 …
UNTIL FALSE

AXIS_FS_LIMIT
TYPE:
Axis Parameter

DESCRIPTION:
An end of travel limit may be set up in software thus allowing the program control of the working range of
an axis. This parameter holds the absolute position of the forward travel limit in user AXIS _ UNITS.

Bit 16 of the AXISSTATUS register is set when the axis position is greater than the AXIS _ FS _ LIMIT.

Axis software limits are only enabled when FRAME<>0 so that the user can limit the range of motion of the
motor/ joint.

When AXIS _ DPOS reaches AXIS _ FS _ LIMIT the controller will CANCEL all moves on the FRAME _
GROUP, the axis will decelerate at DECEL or FASTDEC. Any SYNC is also stopped. As this software limit
uses AXIS _ DPOS it will require a negative change in AXIS _ DPOS to move off the limit. This may not
be a negative movement on DPOS due to the selected FRAME transformation..

� AXIS _ FS _ LIMIT is disabled when it has a value greater than REP _ DIST or when FRAME=0.

VALUE:
The absolute position of the software forward travel limit in user UNITS. (default = 200000000000)

EXAMPLES:
Set up an axis software limit so that the axis operates between 180 degrees and 270 degrees. The encoder
returns 4000 counts per revolution.

AXIS _ UNITS=4000/360
AXIS _ FS _ LIMIT=270
AXIS _ RS _ LIMIT=180

SEE ALSO:
AXIS _ DPOS, AXIS _ RS _ LIMIT, AXIS _ UNITS, FS _ LIMIT, FWD _ IN, REV _ IN, RS _ LIMIT,

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXISSTATUS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CANCEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DECEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FASTDEC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SYNC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_RS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FWD_IN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REV_IN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RS_LIMIT.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
aXIS_MOdE

2-43

AXIS_MODE
TYPE:
Axis Parameter

DESCRIPTION:
This parameter enables various different features that an axis can use.

VALUE:

Bit Description Value
1 Prevents CONNECT from canceling

when a hardware or software limit is
reached, the ratio is set to 0.

2

2 Enable 3D direction calculations
(default 2D)

4

6 Use non sign-extended analogue
feedback

64

EXAMPLES:

EXAMPLE 1:
Enable bit 2 so that you can use 3D direction calculations, the AND is used so that only bit 2 is changed.

AXIS _ MODE AXIS(18) = AXIS _ MODE AXIS(18) AND 4

EXAMPLE 2:
Enable bit 6 so that you can use a 0 to 10V analogue input as axis feedback. The AND is used so that only bit
6 is changed.

BASE(5)
AXIS _ MODE = AXIS _ MODE AND 64

SEE ALSO:
ERRORMASK, DATUM(0)

AXIS_OFFSET
TYPE:
Slot Parameter (MC _ CONFIG / FLASH)

DESCRIPTION:
AXIS _ OFFSET is the first axis number that a slot tries to assign its axis to. If the axis is already being used

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CONNECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AND.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AND.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ERRORMASK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DATUM.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
aXIS_OFFSET

2-44

(its ATYPE is non zero) then the axis is assigned to the next free axis. The controller will assign the axis
depending on their SLOTs and the module type as per the following sequence:

1. EtherCAT and Panasonic axis will be assigned by SLOT to the first available axis starting at AXIS _
OFFSET (plus node address -1 for Ethercat)

2. Then FlexAxis will be assigned by SLOT to the first available axis starting at AXIS _ OFFSET

3. The built in axis is assigned to the first available axis starting at AXIS _ OFFSET

4. Finally any BASIC axis are assigned as per the BASIC program. This includes SLM and SERCOS as well
as any EtherCAT or Panasonic axis that is configured in BASIC.

The axis assignment is only performed on power up. you will need to power cycle for this to have an
effect.

VALUE:
The first axis that the module tries to assign its axis to, range = 0 to max axis, default = 0.

EXAMPLES:

EXAMPLE 1:
SLOT -1 = built in, AXIS _ OFFSET=0
SLOT 0 = EtherCAT, 4 axis, no node addresses set, AXIS _ OFFSET=0
AXIS(0-3) Ethercat
AXIS(4) Built in

AXIS _ OFFSET=0

EXAMPLE 2:
SLOT -1 = built in, AXIS _ OFFSET=2
SLOT 0 = EtherCAT, 4 axis, no node addresses set, AXIS _ OFFSET=0
AXIS(0-3) Ethercat
AXIS(4) Built in

AXIS _ OFFSET=0

The built in is still last as it is assigned last, the controller tries to assign the built in axis to the first
available axis from 2 which is 4.

EXAMPLE 3:
SLOT -1 = built in, AXIS _ OFFSET=0
SLOT 0 = EtherCAT, 4 axis, no node addresses set, AXIS _ OFFSET=1
AXIS(0) Built in
AXIS(1-4) Ethercat

AXIS _ OFFSET=1

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ATYPE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SLOT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SLOT.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
aXIS_RS_LIMIT

2-45

The offset pushes the Ethercat out one axis so AXIS(0) is still spare when the built in axis is assigned

EXAMPLE 4:
SLOT -1 = built in, AXIS _ OFFSET=0
SLOT 0 = EtherCAT, 4 axis, nodes set to 2,3,4,5 , AXIS _ OFFSET=0
AXIS(0) Built in
AXIS(1-4) Ethercat

AXIS _ OFFSET=0

The EtherCAT axis are set from their node address-1+AXIS _ OFFSET

EXAMPLE 5:
SLOT -1 = built in, AXIS _ OFFSET=0
SLOT 0 = EtherCAT, 4 axis, nodes set to 2,3,4,5 , AXIS _ OFFSET=1
AXIS(0) Built in
AXIS(2-5) Ethercat

AXIS _ OFFSET=1

The EtherCAT axis are set from their node address-1+AXIS _ OFFSET

EXAMPLE 6:
SLOT -1 = built in, AXIS _ OFFSET=0
SLOT 0 = EtherCAT, 4 axis, nodes set to 0,0,4,6 , AXIS _ OFFSET=0
AXIS(0-1) Ethercat
AXIS(2) Built in
AXIS(3) Ethercat
AXIS(5) Ethercat

AXIS _ OFFSET=0

The EtherCAT axis with node address 0 are automatically assigned to the lowest values. The EtherCAT
axis with node addresses assigned are set to the axis from the normal equation. There is a space at
axis 2, so the built in axis is assigned here along with the rule first available axis starting at AXIS _
OFFSET

SEE ALSO:
SLOT

AXIS_RS_LIMIT
TYPE:
Axis Parameter

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SLOT.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
aXIS_uNITS

2-46

DESCRIPTION:
An end of travel limit may be set up in software thus allowing the program control of the working range of
an axis. This parameter holds the absolute position of the reverse travel limit in user AXIS _ UNITS.

Bit 17 of the AXISSTATUS register is set when the axis position is less than the AXIS _ RS _ LIMIT.

Axis software limits are only enabled when FRAME<>0 so that the user can limit the range of motion of the
motor/ joint.

When AXIS _ DPOS reaches AXIS _ RS _ LIMIT the controller will CANCEL all moves on the FRAME _
GROUP, the axis will decelerate at DECEL or FASTDEC. Any SYNC is also stopped. As this software limit
uses AXIS _ DPOS it will require a positive change in AXIS _ DPOS to move off the limit. This may not
be a positive movement on DPOS due to the selected FRAME transformation..

� AXIS _ RS _ LIMIT is disabled when it has a value greater than REP _ DIST or when FRAME=0.

VALUE:
The absolute position of the software forward travel limit in user UNITS. (default = 200000000000)

EXAMPLES:
An arm on a robots joint can move 90degrees. The encoder returns 400 counts per revolution and there is a
50:1 gearbox

AXIS _ UNITS=4000*50/360
AXIS _ FS _ LIMIT=0
AXIS _ RS _ LIMIT=90

SEE ALSO:
AXIS _ DPOS, AXIS _ FS _ LIMIT, AXIS _ UNITS, FS _ LIMIT, FWD _ IN, REV _ IN, RS _ LIMIT,

AXIS_UNITS
TYPE:
Axis Parameter

DESCRIPTION:
AXIS _ UNITS is a conversion factor that allows the user to scale the edges/ stepper pulses to a more
convenient scale. AXIS _ UNITS is only used when a FRAME is active and only applies to the parameters
in the axis coordinate system (after the FRAME). This includes AXIS _ DPOS, AXIS _ FS _ LIMIT, AXIS _
RS _ LIMIT and MPOS.

 M MPOS WILL USE UNITS WHEN FRAME =0 AND AXIS _ UNITS WHEN FRAME <> 0

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXISSTATUS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CANCEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DECEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FASTDEC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SYNC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_FS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FWD_IN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REV_IN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_FS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_RS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_RS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
aXISSTaTuS

2-47

VALUE:
The number of counts per required units (default =1). Examples:

EXAMPLE:
A motor on a robot has an 18bit encoder and uses an 18bit encoder and 31:1 ratio gearbox. To simplify
reading AXIS _ DPOS the user wants to use radians.

encoder _ bits = 2^10
gearbox _ ratio = 31
radians _ conversion=2*PI
AXIS _ UNITS=(encoder _ bits * gearbox _ ratio)/ radians _ conversion

SEE ALSO:
AXIS _ DPOS, UNITS

AXISSTATUS
TYPE:
Axis Parameter (Read Only)

DESCRIPTION:
The AXISSTATUS axis parameter may be used to check various status bits held for each axis fitted:

VALUE:
16 bit value, each bit represents a different status bit.

Bit Description Value char

0 Speed limit active 1 l
1 Following error warning range 2 w
2 Communications error to remote drive 4 a
3 Remote drive error 8 m
4 In forward hardware limit 16 f
5 In reverse hardware limit 32 r
6 Datuming in progress 64 d
7 Feedhold active 128 h
8 Following error exceeds limit 256 e
9 FS _ LIMIT active 512 x
10 RS _ LIMIT active 1024 y
11 Canceling move 2048 c
12 Pulse output axis overspeed 4096 o
13 MOVETANG decelerating 8192 t

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVETANG.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
aXISVaLuES

2-48

Bit Description Value char

15 VOLUME _ LIMIT active 32768 v
16 AXIS _ FS _ LIMIT active 65536 i
17 AXIS _ RS _ LIMIT active 131072 j
18 Encoder power supply overload 262144 p

Motion Perfect uses the characters to display the error in the Axis Parameters window.

EXAMPLES:

EXAMPLE 1:
Check bit 4 to see if the axis is in forward limit.

IF (AXISSTATUS AND 16)>0 THEN
 PRINT “In forward limit”
ENDIF

EXAMPLE 2:
Check bit 3 to see if there is a remote drive error.

IF AXISSTATUS.3 = ON THEN
 PRINT “Remote drive error”
ENDIF

SEE ALSO:
ERRORMASK, DATUM(0)

AXISVALUES
TYPE:
AXIS Command

SYNTAX:
AXISVALUES(axis,bank)

DESCRIPTION:
Used by Motion Perfect to read a bank of axis parameters.

The data is returned in the format:

<Parameter> <type>=<value>

<Parameter> is the name of the parameter

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VOLUME_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_FS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_RS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ERRORMASK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DATUM.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
aXISVaLuES

2-49

<type> is the type of the value:

i integer
F float
S string
C string of upper and lower case letters, where upper case letters mean an error

<value> is an integer, a float or a string depending on the type

PARAMETERS:
axis: the axis number where you want to read the parameters
bank: the bank of parameters that you wish to read.

0 displays the data that is only adjusted through the TrioBASIC
1 displays the data that is changed by the motion generator.

Trio Motion Technology

TRIOBaSIC COMMaNdS
B_SPLINE

2-50

TRIOBaSIC COMMaNdS
B_SPLINE

2-51

Software Reference Manual

BB_SPLINE
TYPE:
Command

SYNTAX:
B _ SPLINE(mode, {parameters})

DESCRIPTION:
This function expands data to generate higher resolution motion profiles. It operates in two modes using
either B Spline or Non Uniform Rational B Spline (NURBS) mathematical methods.

PARAMETERS:

mode: 1 Standard B-Spline
2 Non-uniform Rational B-Spline

MODE = 1:

SYNTAX:
B _ SPLINE(1, data _ in, points, data _ out, expansion _ ratio)

DESCRIPTION:
Expands an existing profile stored in the TABLE area using the B Spline mathematical function. The
expansion factor is configurable and the B _ SPLINE stores the expanded profile to another area in the
TABLE.

� This is ideally used where the source CAM profile is too coarse and needs to be extrapolated into a
greater number of points.

PARAMETERS:

data_in: Location in the TABLE where the source profile is stored.
points: Number of points in the source profile.
data_out: Location in the TABLE where the expanded profile will be stored.
expansion_ratio: The expansion ratio of the B _ SPLINE function.

Total output points = (Number of points+1) * expansion

(i.e. if the source profile is 100 points and the expansion ratio is set to 10 the
resulting profile will be 1010 point ((100+1) * 10).

EXAMPLE:
Expands a 10 point profile in TABLE locations 0 to 9 to a larger 110 point profile starting at TABLE address

file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\TABLE.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\TABLE.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\CAM.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\TABLE.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\TABLE.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\TABLE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
B_SPLINE

2-52

200.
B _ SPLINE(1,0,10,200,10)

MODE = 2:

SYNTAX:
B _ SPLINE(2, dimensions, curve _ type, weight _ op, points, knots, expansion, in _
data, out _ data)

DESCRIPTION:
Non Uniform Rational B-Splines, commonly referred to as NURBS, have become the industry standard way of
representing geometric surface information designed by a CAD system

NURBS provide a unified mathematical basis for representing analytic shapes such as conic sections and
quadratic surfaces, as well as free form entities, such as car bodies and ship hulls.

NURBS are small for data portability and can be scaled to increase the number of target points along a
curve, increasing accuracy. A series of NURBS are used to describe a complex shape or surface.

NURBS are represented as a series of XYZ points with knots + weightings of the knots.

PARAMETERS:

dimensions: Defines the number of axes.

Reserved for future use must be 3.
curve_type: Classification of the type of NURBS curve.

Reserved for future use must be 3.
weight_op: Sets the weighting of the knots

0 = All weighting set to 1.
knots: Number of knots defined.
points: Number of data points.
expansion: Defines the number of points the expanded curve will have in the table.

Total output points = Number of points * expansion. Minimum value = 3.
in_data: Location of input data.
out_data: Table start location for output points stored X0, Y0, Z0 etc.

EXAMPLE:
Starting with 9 sets of X Y Z data point and expanding by 5, resulting with 45 sets of X Y Z data points (135
table points). The profile is then split from the XYZ groups into separate axis so that the profiles can be
executed using CAMBOX.

weight _ op=0 ‘0 sets all weights to 1.0
points=9 ‘number of data points
knots=13 ‘number of knots
expansion=5 ‘expansion factor
in _ data=100 ‘data points

file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\CAMBOX.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
B_SPLINE

2-53

out _ data=1000 ‘table location to construct output

‘ Data Points:
TABLE(100,150.709,353.8857,0)
TABLE(103,104.5196,337.7142,0)
TABLE(106,320.1131,499.4647,0)
TABLE(109,449.4824,396.4945,0)
TABLE(112,595.3350,136.4910,0)
TABLE(115,156.816,96.3351,0)
TABLE(118,429.4556,313.7982,0)
TABLE(121,213.3019,375.8004,0)
TABLE(124,150.709,353.8857,0)

‘ Knots:
TABLE(127,0,0,0,0,146.8154,325.6644,536.0555,763.4151,910.1338,1109.0886)
TABLE(137,1109.0886,1109.0886,1109.0886)

‘Expand the curve, generate 5*9=45 XYZ points
‘or 135 table locations

B _ SPLINE(2, 3, 3, weight _ op, points, knots, expansion, in _ data, out _
data)

‘Split the profile into X Y Z
FOR p= 0 TO 44
 TABLE(8000+p,TABLE(1000+(p*3)+0))
 TABLE(10000+p,TABLE(1000+(p*3)+1))
 TABLE(12000+p,TABLE(1000+(p*3)+2))
NEXT p

‘Execute the profile using CAMBOX, synchronised using axis 4
BASE(0)
DEFPOS(0,0,0,0)
CAMBOX(8000,8044,1,100,4)
BASE(1)
CAMBOX(10000,10044,1,100,4)
BASE(2)
CAMBOX(12000,12044,1,100,4)
BASE(4)
MOVE(100)

Trio Motion Technology

TRIOBaSIC COMMaNdS
BaCKLaSH

2-54

BACKLASH
TYPE:
Axis Command

SYNTAX:
BACKLASH(enable [,distance, speed, acceleration])

DESCRIPTION:
This axis function allows backlash compensation to be loaded. This is achieved by applying an offset move
when the motor demand is in one direction, then reversing the offset move when the motor demand is in
the opposite direction. These moves are superimposed on the commanded axis movements.

The backlash compensation is applied after a reversal of the direction of change of the DPOS
parameter.

� The backlash compensation can be seen in the AXIS _ DPOS axis parameter. This is effectively DPOS +
backlash compensation.

PARAMETERS:

enable: ON to enable BACKLASH
OFF to disable BACKLASH

distance: The distance to be offset in user units
speed: The speed at which is the compensation move is applied in user units
acceleration: The ACCEL/DECEL rate at which is compensation move is applied in user units

EXAMPLES

EXAMPLE 1:
‘Apply backlash compensation on axes 0 and 1:
BACKLASH(ON,0.5,10,50) AXIS(0)
BACKLASH(ON,0.4,8,50) AXIS(1)

EXAMPLE 2:
‘Turn off backlash compensation on axis 3:
BASE(3)
BACKLASH(OFF)

SEE ALSO:
AXIS _ DPOS

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ACCEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DECEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_DPOS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
BaCKLaSH_dIST

2-55

BACKLASH_DIST
TYPE:
Axis Parameter

DESCRIPTION:
Amount of backlash compensation that is being applied to the axis when BACKLASH is ON.

EXAMPLE:
Illuminate a lamp to show that the backlash has been compensated for.

IF BACKLASH _ DIST>100 THEN
 OP (10, ON) ‘show that backlash compensation has reached
 ‘this value
ELSE
 OP (10, OFF)
END IF

SEE ALSO:
BACKLASH

BASE
TYPE:
Process Command

SYNTAX:
BASE(axis no<,second axis><,third axis>...)

ALTERNATE FORMAT:
BA(...)

DESCRIPTION:
The BASE command is used to direct all subsequent motion commands and axis parameter read/writes to a
particular axis, or group of axes. The default setting is a sequence: 0, 1, 2, 3...

Each process has its own BASE group of axes and each program can set BASE values independently. So
the BASE array will be different for each of your programs and the command line.

The values are stored in an array, when you adjust BASE the controller will automatically fill in the
remaining positions by continuing the sequence and then adding the missed values at the end.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BACKLASH.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BACKLASH.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
BaSE

2-56

� The BASE array can be printed on the command line by simply entering BASE

PARAMETERS:
axis numbers: The number of the axis or axes to become the new base axis array, i.e. the axis/axes to

send the motion commands to or the first axis in a multi axis command.

The BASE array must use ascending values

EXAMPLES:

EXAMPLE 1:
Setting the base array to non sequential values and printing them back on the command line. This example
uses a 16 axis controller.

The controller automatically continues the sequence with 10 and then fills in the missed values at the end of
the list.

>>BASE(1,5,9)
>>BASE
(1, 5, 9, 10, 11, 12, 13, 14, 15, 0, 2, 3, 4, 6, 7, 8)
>>

EXAMPLE 2:
Set up calibration units, speed and acceleration factors for axes 1 and 2.

BASE(1)
UNITS=2000 ‘unit conversion factor
SPEED=100 ‘Set speed axis 1 (units/sec)
ACCEL=5000 ‘acceleration rate (units/sec/sec)
BASE(2)
UNITS=2000 ‘unit conversion factor
SPEED=125 ‘Set speed axis 2
ACCEL=10000 ‘acceleration rate

EXAMPLE 3:
Set up an interpolated move to run on axes; 0 (x), 6 (y) and 9 (z). Axis 0 will move 100 units, axis 6 will
move -23.1 and axis 9 will move 1250 units. The axes will move along the resultant path at the speed and
acceleration set for axis 0.

BASE(0,6,9)
SPEED=120
ACCEL=2000
DECEL=2500
MOVE(100,-23.1,1250)

Software Reference Manual

TRIOBaSIC COMMaNdS
BaSICERROR

2-57

SEE ALSO:
AXIS()

BASICERROR
TYPE:
System Command

DESCRIPTION:
This command is used as part of an ON... GOSUB or ON... GOTO. This lets the user handle program errors.
If the program ends for a reason other than normal stopping then the subroutine is executed, this is when
RUN _ ERROR<>31.

You should include the BASICERROR statement as the first line of the program

EXAMPLE:
When a program error occurs, print the error to the terminal and record the error number in a VR so that it
can be displayed on an HMI through Modbus.

ON BASICERROR GOTO error _ routine
....(rest of program)

error _ routine:
 VR(100) = RUN _ ERROR
 PRINT “The error “;RUN _ ERROR[0];
 PRINT “ occurred in line “;ERROR _ LINE[0]
STOP

SEE ALSO:
RUN _ ERROR, ERROR _ LINE

BATTERY_LOW
TYPE:
System Parameter (Read only)

DESCRIPTION:
This parameter returns the condition of the non-rechargeable battery.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GOSUB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GOTO.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RUN_ERROR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RUN_ERROR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ERROR_LINE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
. Bit number

2-58

VALUE:
0 Battery voltage is OK
1 Battery voltage is low and needs replacing

. Bit number
TYPE:
Mathematical operator

SYNTAX:
<expression1>.bit _ number

DESCRIPTION:
Returns the value of the specified bit of the expression.

 M AS . CAN BE USED AS A DECIMAL POINT BE CAREFUL THAT YOU ONLY USE IT WITH AN EXPRESSION. THERE SHOULD BE
NO SPACED BETWEEN THE EXPRESSION AND THE .BIT_NUMBER.

PARAMETERS:

Expression1: Any valid TrioBASIC expression
bit_number: The bit number of the expression to return

EXAMPLES:

EXAMPLE 1:
Check the AXISSTATUS for remote drive errors, bit3

IF AXISSTATUS.3 = 1 THEN
 PRINT “Remote drive error”
ENDIF

EXAMPLE2:
Set VR(10) to 54.2, then read bit 2 of 54.

VR(10) = 54.2
PRINT (54).2

Software Reference Manual

TRIOBaSIC COMMaNdS
BOOT_LOadER

2-59

BOOT_LOADER
TYPE:
System Command (command line only)

DESCRIPTION:
Used by Motion Perfect to enter the boot loader software.

 M DO NOT USE UNLESS INSTRUCTED BY TRIO OR A DISTRIBUTOR.

BREAK_ADD
TYPE:
System Command (command line only)

SYNTAX:
BREAK _ ADD “program name” line _ number

DESCRIPTION:
Used by Motion Perfect to insert a break point into the specified program at the specified line number.

If there is no code at the given line number BREAK _ ADD will add the breakpoint at the next available line
of code. i.e. If line 8 is empty but line 9 has “NEXT x” and a BREAK _ ADD is issued for line 8, the break
point will be added to line 9.

If a non existent line number is selected (i.e. line 50 when the program only has 40 lines), the
controller will return an error.

PARAMETERS:

program name: the name of any program existing on your controller
line_number: the line umber where to insert the breakpoint

EXAMPLE:
Add a break point at line 8 of program “simpletest”

BREAK _ ADD “simpletest” 8

Trio Motion Technology

TRIOBaSIC COMMaNdS
BREaK_dELETE

2-60

BREAK_DELETE
TYPE:
System Command (command line only)

SYNTAX:
BREAK _ DELETE “program name” line _ number

DESCRIPTION:
Used by Motion Perfect to remove a break point from the specified program at the specified line number.

If a non existent line number is selected (i.e. line 50 when the program only has 40 lines), the
controller will return an error.

PARAMETERS:

program name: the name of any program existing on your controller
line_number: the line umber where to remove the breakpoint

EXAMPLE:
Remove the break point at line 8 of program “simpletest”

BREAK _ DELETE “simpletest” 8

BREAK_LIST
TYPE:
System Command (command line only)

SYNTAX:
BREAK _ LIST “program name”

DESCRIPTION:
Used by Motion Perfect to returns a list of all the break points in the given program name. The program
name, line number and the code associated with that line is displayed.

PARAMETERS:

program name: the name of any program existing on your controller

Software Reference Manual

TRIOBaSIC COMMaNdS
BREaK_RESET

2-61

EXAMPLE:
Show the breakpoints from a program called “simpletest” with break points inserted on lines 8 and 11.

>>BREAK _ LIST “simpletest”

Program: SIMPLETEST
Line 8: SERVO=ON
Line 11: BASE(0)

BREAK_RESET
TYPE:
System Command (command line only)

SYNTAX:
BREAK _ RESET “program name”

DESCRIPTION:
Used by Motion Perfect to remove all break points from the specified program.

PARAMETERS:

program name: the name of any program existing on your controller

EXAMPLE:
Remove all break points from program “simpletest”

BREAK _ RESET “simpletest”

Trio Motion Technology

TRIOBaSIC COMMaNdS
CaM

2-62

TRIOBaSIC COMMaNdS
CaM

2-63

Software Reference Manual

CCAM
TYPE:
Axis Command

SYNTAX:
CAM(start point, end point, table multiplier, distance)

DESCRIPTION:
The CAM command is used to generate movement of an axis according to a table of positions which define
a movement profile. The table of values is specified with the TABLE command. The movement may be
defined with any number of points from 3 up to the maximum table size available. The controller performs
linier interpolation between the values in the table to allow small numbers of points to define a smooth
profile.

The TABLE values are translated into positions by offsetting them by the first value and then multiplying
them by the multiplier parameter. This means that a non-zero starting profile will be offset so that the first
point is zero and then all values are scaled with the multiplier. These are then used as absolute positions
from the start position.

� Two or more CAM commands executing simultaneously can use the same values in the table.

The speed of the CAM profile is defined through the SPEED of the BASE axis and the distance parameter. You
can use these two values to determine the time taken to execute the CAM profile.

As with any motion command the SPEED may be changed at any time to any positive value. The SPEED
is ramped up to using the current ACCEL value.

To obtain a CAM shape where ACCEL has no effect the value should be set to at least 1000 times the SPEED
value (assuming the default SERVO _ PERIOD of 1ms).

When the CAM command is executing, the ENDMOVE parameter is set to the end of the PREVIOUS move

PARAMETERS:

start point: The start position of the cam profile in the TABLE
end point: The end position of the cam profile in the TABLE
multiplier: The table values are multiplied by this value to generate the positions.
distance: The distance parameter relates the speed of the axis to the time taken to complete

the cam profile. The time taken can be calculated using the current axis speed and this
distance parameter (which are in user units).

EXAMPLES:

EXAMPLE 1:
A system is being programmed in mm and the speed is set to 10mm/sec. It is required to take 10 seconds to

file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\TABLE.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\TABLE.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\SPEED.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\BASE.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\SPEED.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\SPEED.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\ACCEL.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\ACCEL.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\SPEED.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\SERVO_PERIOD.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\ENDMOVE.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\TABLE.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\TABLE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
CaM

2-64

complete the profile, so a distance of 100mm should be specified.
SPEED = 10 ‘axis SPEED
time = 10 ‘time to complete profile
distance = SPEED* time ‘distance parameter for CAM
CAM(0, 100, 1, distance)

EXAMPLE2:
Motion is required to follow the POSITION equation:

t(x) = x*25 + 10000(1-cos(x))

Where x is in degrees. This example table provides a simple oscillation superimposed with a constant speed.
To load the table and cycle it continuously the program would be:

FOR deg=0 TO 360 STEP 20 ‘loop to fill in the table
 rad = deg * 2 * PI/360 ‘convert degrees to radians
 x = deg * 25 + 10000 * (1-COS(rad))
 TABLE(deg/20,x) ‘place value of x in table
NEXT deg

WHILE IN(2)=ON ‘repeat cam motion while input 2 is on
 CAM(0,18,1,200)
 WAIT IDLE
WEND

The subroutine camtable loads the data into the cam TABLE, as shown in the graph below.

Table Position Degrees Value
1 0 0
2 20 1103
3 40 3340
4 60 6500
5 80 10263
6 100 14236
7 120 18000
8 140 21160
9 160 23396
10 180 24500
11 200 24396
12 220 23160
13 240 21000
14 260 18236
15 280 15263

file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\TABLE.docx

TRIOBaSIC COMMaNdS
CaM

2-65

Software Reference Manual

Table Position Degrees Value
16 300 12500
17 320 10340
18 340 9103
19 360 9000

EXAMPLE 3:
A masked wheel is used to create a stencil for a laser to shine through for use in a printing system for the
ten numerical digits. The required digits are transmitted through port 1 serial port to the controller as
ASCII text.

The encoder used has 4000 edges per revolution and so must move 400 between each position. The cam
table goes from 0 to 1, which means that the CAM multiplier needs to be a multiple of 400 to move between
the positions.

The wheel is required to move to the pre-set positions every 0.25 seconds. The speed is set to 10000 edges/
second, and we want the profile to be complete in 0.25 seconds. So multiplying the axis speed by the
required completion time

(10000 x 0.25) gives the distance parameter equals 2500.

GOSUB profile _ gen
WHILE IN(2)=ON
 WAIT UNTIL KEY#1 ‘Waits for character on port 1
 GET#1,k
 IF k>47 AND k<58 THEN ‘check for valid ASCII character

Trio Motion Technology

TRIOBaSIC COMMaNdS
CaM

2-66

 position=(k-48)*400 ‘convert to absolute position
 multiplier=position-offset ‘calculate relative movement
 ‘check if it is shorter to move in reverse direction
 IF multiplier>2000 THEN
 multiplier=multiplier-4000
 ELSEIF multiplier<-2000 THEN
 multiplier=multiplier+4000
 ENDIF
 CAM(0,200,multiplier,2500) ‘set the CAM movment
 WAIT IDLE
 OP(15,ON) ‘trigger the laser flash
 WA(20)
 OP(15,OFF)
 offset=(k-48)*400 ‘calculates current absolute position
 ENDIF
WEND

profile _ gen:
 num _ p=201
 scale=1.0
 FOR p=0 TO num _ p-1
 TABLE(p,((-SIN(PI*2*p/num _ p)/(PI*2))+p/num _ p)*scale)
 NEXT p
 RETURN

EXAMPLE 4:
A suction pick and place system must vary its speed depending on the load carried. The mechanism has a
load cell which inputs to the controller on the analogue channel (AIN).

The move profile is fixed, but the time taken to complete this move must be varied depending on the AIN.
The AIN value varies from 100 to 800, which has to result in a move time of 1 to 8 seconds. If the speed is
set to 10000 units per second and the required time is 1 to 8 seconds, then the distance parameter must
range from 10000 to 80000. (distance = speed x time)

The return trip can be completed in 0.5 seconds and so the distance value of 5000 is fixed for the return
movement. The Multiplier is set to -1 to reverse the motion.

GOSUB profile _ gen ‘loads the cam profile into the table
SPEED=10000:ACCEL=SPEED*1000:DECEL=SPEED*1000
WHILE IN(2)=ON
 OP(15,ON) ‘turn on suction
 load=AIN(0) ‘capture load value
 distance = 100*load ‘calculate the distance parameter
 CAM(0,200,50,distance) ‘move 50mm forward in time calculated
 WAIT IDLE
 OP(15,OFF) ‘turn off suction
 WA(100)

file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\AIN.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\AIN.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\AIN.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
CaMBOX

2-67

 CAM(0,200,-50,5000) ‘move back to pick up position
WEND

profile _ gen:
 num _ p=201
 scale=400 ‘set scale so that multiplier is in mm
 FOR p=0 TO num _ p-1
 TABLE(p,((-SIN(PI*2*p/num _ p)/(PI*2))+p/num _ p)*scale)
 NEXT p
 RETURN

CAMBOX
TYPE:
Axis Command

SYNTAX:
CAMBOX(start _ point, end _ point, table _ multiplier, link _ distance , link _ axis[,
link _ options][, link _ pos])

DESCRIPTION:
The CAMBOX command is used to generate movement of an axis according to a table of POSITIONS which
define the movement profile. The motion is linked to the measured motion of another axis to form a
continuously variable software gearbox. The table of values is specified with the TABLE command. The
movement may be defined with any number of points from 3 up to the maximum table size available. The
controller interpolates between the values in the table to allow small numbers of points to define a smooth
profile.

The TABLE values are translated into positions by offsetting them by the first value and then multiplying
them by the multiplier parameter. This means that a non-zero starting profile will be offset so that the first
point is zero and then all values are scaled with the multiplier. These are then used as absolute positions
from the start position.

� Two or more CAMBOX commands executing simultaneously can use the same values in the table.

When the CAMBOX command is executing the ENDMOVE parameter is set to the end of the PREVIOUS
move. The REMAIN axis parameter holds the remainder of the distance on the link axis.

PARAMETERS:
start_point: The start position of the cam profile in the TABLE
end_point: The end position of the cam profile in the TABLE
table_multiplier: The table values are multiplied by this value to generate the positions.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENDMOVE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REMAIN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
CaMBOX

2-68

link_distance: The distance the link axis must move to complete CAMBOX profile.
link_axis: The axis to link to.
link_options: Bit value options to customize how your CAMBOX operates

Bit 0 1 link commences exactly when registration event MARK occurs on link
axis

Bit 1 2 link commences at an absolute position on link axis (see link_pos for
start position)

Bit 2 4 CAMBOX repeats automatically and bi-directionally when this bit is
set. (This mode can be cleared by setting bit 1 of the REP _ OPTION
axis parameter)

Bit 3 8 PATTERN mode. Advanced use of CAMBOX: allows multiple scale
values to be used

Bit 5 32 Link is only active during a positive move on the link axis
Bit 7 128 Forces the profile to start at a defined point in the link_dist (see

offset_start for the position)
Bit 8 256 link commences exactly when registration event MARKB occurs on

link axis
Bit 9 512 link commences exactly when registration event R _ MARK occurs on

link axis. (see link_pos for channel number)
link_pos: link_option bit 1 - the absolute position on the link axis in user UNITS where the

CAMBOX is to be start.

link_option bit 9 – the registration channel to start the movement on
offset_start: The position defined on the link_dist where the profile will start

The link_dist is in the user units of the link axis and should always be specified as a positive distance.

The link options for start (bits 0, 1, 8 and 9) may be combined with the link options for repeat (bits 2
and 5) and direction as well as offset_start (bit 7).

start_pos cannot be at or within one servo period’s worth of movement of the REP _ DIST position.

EXAMPLES:

EXAMPLE 1:
A subroutine can be used to generate a SINE shaped speed profile. This profile is used in the other
examples.

 ‘ p is loop counter
 ‘ num _ p is number of points stored in tables pos 0..num _ p
 ‘ scale is distance travelled scale factor
profile _ gen:
 num _ p=30

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MARK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_OPTION.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MARKB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/R_MARK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
CaMBOX

2-69

 scale=2000
 FOR p=0 TO num _ p
 TABLE(p,((-SIN(PI*2*p/num _ p)/(PI*2))+p/num _ p)*scale)
 NEXT p
 RETURN

This graph plots TABLE contents against table array position. This corresponds to motor POSITION against
link POSITION when called using CAMBOX. The SPEED of the motor will correspond to the derivative of the
position curve above:

Speed Curve

EXAMPLE 2:
A pair of rollers feed plastic film into a machine. The feed is synchronised to a master encoder and is
activated when the master reaches a position held in the variable “start”. This example uses the table
points 0...30 generated in Example 1:

 0 The start of the profile shape in the TABLE

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
CaMBOX

2-70

 30 The end of the profile shape in the TABLE
 800 This scales the TABLE values. Each CAMBOX motion would therefore total 800*2000 encoder

edges steps.
 80 The distance on the product conveyor to link the motion to. The units for this parameter

are the programmed distance units on the link axis.
 15 This specifies the axis to link to.
 2 This is the link option setting - Start at absolute position on the link axis.
variable “start” The motion will execute when the position “start” is reached on axis 15.

start=1000
FORWARD AXIS(1)
WHILE IN(2)=OFF
 CAMBOX(0,30,800,80,15,2,start)
 WA(10)
 WAIT UNTIL MTYPE=0 OR IN(2)=ON
WEND
CANCEL
CANCEL AXIS(1)
WAIT IDLE

EXAMPLE 3:
A motor on Axis 0 is required to emulate a rotating mechanical CAM. The position is linked to motion on axis
3. The “shape” of the motion profile is held in TABLE values 1000..1035.

The table values represent the mechanical cam but are scaled to range from 0-4000
TABLE(1000,0,0,167,500,999,1665,2664,3330,3497,3497)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
CaMBOX

2-71

TABLE(1010,3164,2914,2830,2831,2997,3164,3596,3830,3996,3996)
TABLE(1020,3830,3497,3330,3164,3164,3164,3330,3467,3467,3164)
TABLE(1030,2831,1998,1166,666,333,0)

BASE(3)
MOVEABS(130)
WAIT IDLE
‘start the continuously repeating cambox
CAMBOX(1000,1035,1,360,3,4) AXIS(0)
FORWARD ‘start camshaft axis
WAIT UNTIL IN(2)=OFF
REP _ OPTION = 2 ‘cancel repeating mode by setting bit 1
WAIT IDLE AXIS(0) ‘waits for cam cycle to finish
CANCEL ‘stop camshaft axis
WAIT IDLE

The firmware resets bit 1 of REP _ OPTION after the repeating mode has been cancelled.

Trio Motion Technology

TRIOBaSIC COMMaNdS
CaMBOX

2-72

CAMBOX PATTERN MODE:

SYNTAX:
CAMBOX(start _ point, end _ point, control _ block _ pointer, link _ dist, link _ axis,
options)

DESCRIPTION:
Setting bit 3 (value 8) of the link options parameter enables the CAMBOX pattern mode. This mode enables a
sequence of scaled values to be cycled automatically. This is normally combined with the automatic repeat
mode, so the link options parameter should be set to 12. This diagram shows a typical repeating pattern
which can be automated with the CAMBOX pattern mode:

The start and end parameters specify the basic shape profile ONLY. The pattern sequence is specified in a
separate section of the TABLE memory. There is a new TABLE block defined: The “Control Block”. This block
of seven TABLE values defines the pattern position, repeat controls etc. The block is fixed at 7 values long.

Therefore in this mode only there are 3 independently positioned TABLE blocks used to define the required
motion:

SHAPE BLOCK This is directly pointed to by the CAMBOX command as in any CAMBOX.
CONTROL BLOCK This is pointed to by the Control Block pointer. It is of fixed length (7 table values). It

is important to note that the control block is modified during the CAMBOX operation. It
must therefore be re-initialised prior to each use.

PATTERN BLOCK The start and end of this are pointed to by two of the CONTROL BLOCK values. The
pattern sequence is a sequence of scale factors for the SHAPE.

Negative motion on link axis:
The axis the CAMBOX is linked to may be running in a positive or negative direction. In the case of
a negative direction link the pattern will execute in reverse. In the case where a certain number of
pattern repeats is specified with a negative direction link, the first control block will produce one
repeat less than expected. This is because the CAMBOX loads a zero link position which immediately
goes negative on the next servo cycle triggering a REPEAT COUNT. This effect only occurs when the
CAMBOX is loaded, not on transitions from CONTROL BLOCK to CONTROL BLOCK. This effect can easily

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
CaMBOX

2-73

be compensated for either by increasing the required number of repeats, or setting the initial value of
REPEAT POSITION to 1.

PARAMETERS:

start_point: The start position of the shape block in the TABLE
end_point: The end position of the shape block in the TABLE
control_block_pointer: The position in the table of the 7 point control block
link_distance: The distance the link axis must move to complete CAMBOX profile.
link_axis: The axis to link to.
options: As CAMBOX, bit 3 must be enabled

CONTROL BLOCK PARAMETERS
Name Access Description
0 CURRENT

POSITION
R The current position within the TABLE of the pattern sequence. This

value should be initialised to the START PATTERN number.
1 FORCE POSITION R/W Normally this value is -1. If at the end of a SHAPE the user program has

written a value into this TABLE position the pattern will continue at
this position. The system software will then write -1 into this position.
The value written should be inside the pattern such that the value:
CB(2)<=CB(1)<=CB(3)

2 START PATTERN R The position in the TABLE of the first pattern value.
3 END PATTERN R The position in the TABLE of the final pattern value
4 REPEAT POSITION R/W The current pattern repeat number. Initialise this number to 0. The

number will increment when the pattern repeats if the link axis motion
is in a positive direction. The number will decrement when the pattern
repeats if the link axis motion is in a negative direction. Note that the
counter runs starting at zero: 0,1,2,3…

5 REPEAT COUNT R/W Required number of pattern repeats. If -1 the pattern repeats
endlessly. The number should be positive. When the ABSOLUTE value
of CB(4) reaches CB(5) the CAMBOX finishes if CB(6)=-1. The value can
be set to 0 to terminate the CAMBOX at the end of the current pattern.
See note below, next page, on REPEAT COUNT in the case of negative
motion on the link axis.

6 NEXT CONTROL
BLOCK

R/W If set to -1 the pattern will finish when the required number of repeats
are done. Alternatively a new control block pointer can be used to
point to a further control block.

READ/WRITE values can be written to by the user program during the pattern CAMBOX execution.

EXAMPLE:
A quilt stitching machine runs a feed cycle which stiches a plain pattern before starting a patterned stitch.
The plain pattern should run for 1000 cycles prior to running a pattern continuously until requested to stop

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
CaMBOX

2-74

at the end of the pattern. The cam profile controls the motion of the needle bar between moves and the
pattern table controls the distance of the move to make the pattern.

The same shape is used for the initialisation cycles and the pattern. This shape is held in TABLE values
100..150

The running pattern sequence is held in TABLE values 1000..4999

The initialisation pattern is a single value held in TABLE(160)

The initialisation control block is held in TABLE(200)..TABLE(206)

The running control block is held in TABLE(300)..TABLE(306)
‘ Set up Initialisation control block:
TABLE(200,160,-1,160,160,0,1000,300)

‘ Set up running control block:
TABLE(300,1000,-1,1000,4999,0,-1,-1)

‘ Run whole lot with single CAMBOX:
‘ Third parameter is pointer to first control block

CAMBOX(100,150,200,5000,1,20)
WAIT UNTIL IN(7)=OFF

TABLE(305,0) ‘ Set zero repeats: This will stop at end of pattern

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
CaN

2-75

SEE ALSO:
REP _ OPTION

CAN
TYPE:
System Command

SYNTAX:
CAN(slot, function[, parameters])

DESCRIPTION:
This function allows the CAN communication channels to be controlled from the Trio BASIC. All Motion
Coordinator’s have a single built-in CAN channel which is normally used for digital and analogue I/O using
Trio’s I/O modules.

In addition to using the CAN command to control CAN channels, there are specific protocol functions into the
firmware. These functions are dedicated software modules which interface to particular devices. The built-
in CAN channel will automatically scan for Trio I/O modules if the system parameter CANIO _ ADDRESS is set
to its default value of 32.

Channel: Channel Number: Maximum Baudrate:
Built-in CAN -1 1 Mhz

There are 16 message buffers in the controller

PARAMETERS:
slot: Set to -1 for the built in CAN port

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_OPTION.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CANIO_ADDRESS.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
CaN

2-76

function: 0 Read Register, do not use unless instructed by Trio or a Distributor.
1 Write Register, do not use unless instructed by Trio or a Distributor.
2 Initialise baud rate
3 Check for message received
4 Transmit OK
5 Initialise message
6 Read message
7 Write message
8 Read CANOpen Object
9 Write CANOpen Object
11 Initialise 29bit message
20 CAN mode
21 Enable CAN driver
22 Reset CAN message buffer
23 Specify CAN VR map

FUNCTION = 2:

SYNTAX:
CAN(channel,2,baudrate)

DESCRIPTION:
Initialise the baud rate of the CANBus

PARAMETERS:

baudrate: 0 1MHz
1 500kHz (default value)
2 250kHz
3 125kHz

FUNCTION = 3:

SYNTAX:
value=CAN(channel, 3, message)

DESCRIPTION:
Check to see if there is a new message in the message buffer

Software Reference Manual

TRIOBaSIC COMMaNdS
CaN

2-77

PARAMETERS:

message: message buffer to check
value: TRUE new message available

FALSE no new message

FUNCTION = 4:

SYNTAX:
value=CAN(channel, 4, message)

DESCRIPTION:
Checks that it is ok to transmit a message

PARAMETERS:

message: message buffer to transmit
value: TRUE OK to transmit

FALSE Network busy

FUNCTION = 5:

SYNTAX:
CAN(channel#, 5, message, identifier, length, rw)

DESCRIPTION:
Initialise a message by configuring its buffers size and if it is transmit or receive.

PARAMETERS:

message: message buffer to initialise
identifier: the identifier which the message buffer appears on the CANBus
length: the size of the message buffer
rw: 0 read buffer

1 write buffer

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
CaN

2-78

FUNCTION = 6:

SYNTAX:
CAN(channel, 6, message, variable)

DESCRIPTION:
Read in the message from the specified buffer to a VR array.

The first VR holds the identifier. The subsequent values hold the data bytes from the CAN packet.

PARAMETERS:

message: the message buffer to read in
variable: the start position in the VR memory for the message to be written

FUNCTION = 7:

SYNTAX:
CAN(channel, 7, message, byte0, byte1..)

DESCRIPTION:
Write a message to a message buffer.

PARAMETERS:

message: the message buffer to write the message in
byte0: the first byte of the message
byte1: the second byte of the message
…

FUNCTION = 8:

SYNTAX:
CAN(channel, 8, transbuf, recbuf, object, subindex, variable)

DESCRIPTION:
Read a CANOpen object. The first VR holds the variable data type. The subsequent values hold the data
bytes from the CAN packet.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
CaN

2-79

PARAMETERS:

transbuf: the message buffer used to transmit
recbuf: the message buffer used to recieve
object: the CANOpen object to read
subindex: the sub index of the CANOpen object to read
variable: the start position in the VR memory for the message to be written

FUNCTION = 9:

SYNTAX:
CAN(channel, 9, transbuf, recbuf, format, object, subindex, value, {valuems})

DESCRIPTION:
Write a CANOpen object. This function automatically requests the send so you do not need to use function 4.

PARAMETERS:
transbuf: the message buffer used to transmit
recbuf: the message buffer used to recieve
format: data size in bits 8, 16 or 32
object: the CANOpen object to write to
subindex: the sub index of the CANOpen object to write to
value: the least significant 16 bits of the value to write
valuems: the most significant 16 bit of the value to write

FUNCTION = 11:

SYNTAX:
CAN(channel#, 11, message, identifierms, identifier, length, rw)

DESCRIPTION:
Initialise a message by configuring its buffers size and if it is transmit or receive using 29 bit identifiers.

PARAMETERS:

message: message buffer to initialise
identifierms: the most significant 13 bits of the identifier
identifier: the least significant 16 bits if the identifier
length: the size of the message buffer

Trio Motion Technology

TRIOBaSIC COMMaNdS
CaN

2-80

rw: 0 read buffer
1 write buffer

FUNCTION = 20:

SYNTAX:
CAN(channel, 20,mode)

DESCRIPTION:
Sets the CAN mode, normally this is done using CANIO _ ADDRESS

PARAMETERS:
Mode: 0 Disable all CAN operations

1 CAN command mode
2 CANIO mode (default)
3 CANopenIO mode (CANOPEN _ OP _ RATE controls the cycle period, default = 5ms)

 M UNLIKE CANIO _ ADDRESS THIS IS NOT STORED IN FLASH EPROM

FUNCTION = 21:

SYNTAX:
CAN(channel, 21,enable)

DESCRIPTION:
Provides the ability to reset the CAN driver. Do not use unless instructed by Trio or a Distributor.

PARAMETERS:

Enable: 0 Disable
1 Enable (default)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CANIO_ADDRESS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CANOPEN_OP_RATE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CANIO_ADDRESS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
CaNCEL

2-81

FUNCTION = 22:

SYNTAX:
CAN(channel, 22, message)

DESCRIPTION:
Reset a message buffer

PARAMETERS:

message: the message buffer to reset

FUNCTION = 23:

SYNTAX:
CAN(channel, 23, [message, map, offset, length, order, variable, direction])

DESCRIPTION:
Specify CAN VR map for use with CANOpenIO mode

If no parameters provided then current mappings are displayed

PARAMETERS:

message: message buffer (0..15)
map: MAP number (0..7)
offset: CAN buffer byte offset (0..7)
length: CAN buffer byte length (1..8)
order: Endian Byte order (0=Little, 1=Big)
variable: Index of VR to use (0..65535)
direction: Direction (0=Receive, 1=Transmit)

SEE ALSO:
CANIO _ ADDRESS

CANCEL
TYPE:
Axis Command

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CANIO_ADDRESS.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
CaNCEL

2-82

SYNTAX:
CANCEL([mode])

ALTERNATE FORMAT:
CA([mode])

DESCRIPTION:
Used to cancel current or buffered axis commands on an axis or an interpolating axis group. Velocity
profiled moves, for example; FORWARD, REVERSE, MOVE, MOVEABS, MOVECIRC, MHELICAL, MOVEMODIFY,
will be ramped down at the programmed DECEL or FASTDEC rate then terminated. Other move types will
be terminated immediately.

PARAMETERS:
mode: 0 Cancels axis commands from the MTYPE buffer. Can be used without the parameter

1 Cancels all buffered moves on the base axis (excluding the PMOVE)
2 Cancels all active and buffered moves including the PMOVE if it is to be loaded on the BASE

axis

 M CANCEL WILL ONLY CANCEL THE PRESENTLY EXECUTING MOVE. IF FURTHER MOVES ARE BUFFERED THEY WILL THEN
BE LOADED AND THE AXIS WILL NOT STOP.

EXAMPLES:

EXAMPLE 1:
Move the base axis forward at the programmed SPEED, wait for 10 seconds, then slow down and stop the
axis at the programmed DECEL rate.

FORWARD
WA(10000)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FORWARD.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REVERSE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVEABS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVECIRC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MHELICAL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVEMODIFY.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DECEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FASTDEC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MTYPE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PMOVE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PMOVE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DECEL.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
CaNCEL

2-83

CANCEL’ stop movement after 10 seconds

EXAMPLE 2:
A flying shear uses a sequence of MOVELINKs to make the base axis follow a reference encoder on axis 4.
When the shear returns to the top position an input is triggered, this removes the buffered MOVELINK and
replace with a decelerating MOVELINK to ramp down the slave (base) axis.

ref _ axis = 4
REPEAT
 MOVELINK(100,100,0,0,ref _ axis)
 WAIT LOADED ‘make sure the NTYPE buffer is empty each time
UNTIL IN(5)=ON
CANCEL(1) ‘cancel the movelink in the NTYPE buffer
MOVELINK(100,200,0,200,ref _ axis) ‘ deceleration ramp
CANCEL ‘cancel the main movelink, this starts the decel

EXAMPLE 3:
Two axes are connected with a ratio of 1:2. Axis 0 is cancelled after 1 second, then axis 1 is cancelled when
the speed drops to a specified level. Following the first cancel axis 1 will decelerate at the DECEL rate.
When axis 1’s CONNECT is cancelled it will stop instantly.

BASE(0)
SPEED=10000
FORWARD
CONNECT(0.5,0) AXIS(1)
WA(1000)
CANCEL
WAIT UNTIL VP _ SPEED<=7500
CANCEL AXIS(1)

SEE ALSO:
RAPIDSTOP, FASTDEC

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVELINK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVELINK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVELINK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DECEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CONNECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RAPIDSTOP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FASTDEC.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
CaNIO_addRESS

2-84

CANIO_ADDRESS
TYPE:
System Parameter (MC _ CONFIG / FLASH)

DESCRIPTION:
CANIO _ ADDRESS is used to set the operating mode of the CANBus. You can select between Trio CAN,
DeviceNet, CANOpen and a user configuration when implementing your own can protocol.

The value is held in flash EPROM in the controller and for most systems does not need to be set from the
default value of 32.

 M IF THE VALUE IS NOT SET TO 32 THEN YOU CANNOT CONNECT TO TRIO CAN I/O

VALUES:
32 Trio CAN I/O Master 64in/64out
33 DeviceNet
34...39 User range
40 CanOpen I/O Master 64in/64out
41 CanOpen I/O Master 128in/128out
42 CANOpen I/O Master custom mapping

CANIO_ENABLE
TYPE:
System Parameter

DESCRIPTION:
CANIO _ ENABLE enables the Trio CAN I/O or CANOpen protocol.

When using the Trio I/O protocol it is set automatically by firmware. You have to set CANIO _ ENABLE=ON
manually after configuring CANOpen IO.

VALUE:
ON Enable the CAN protocol (default when CANIO _ ADDRESS=32)
OFF Disable the CAN protocol (default when CANIO _ ADDRESS<>32)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
CaNIO_MOdE

2-85

CANIO_MODE
TYPE:
System Parameter (MC _ CONFIG / FLASH)

DESCRIPTION:
CANIO _ MODE is used to set the operating mode of the Trio CAN I/O system. The MC4xx Motion Coordinators
allow separate Input and Output modules to occupy overlapping addresses. This allows up to 32 Input and
Output modules to be connected. Alternatively, the CANIO _ MODE can be set to force the MC4xx Motion
Coordinator to work in the same way as the MC2xx series, with only 16 digital modules of any type allowed.

The value is held in flash EPROM and can be set in the MC _ CONFIG script.

VALUE:

0 MC4xx CAN IO addressing (default)
1 Compatibility mode CAN IO addressing

CANIO_STATUS
TYPE:
System Parameter

DESCRIPTION:
Returns the status of the Trio CAN I/O network. You can set bit 4 to reset the network.

VALUE:

Bit Description Value

0 Error from the I/O module 0,3,6 or 9 1

1 Error from the I/O module 1,4,7 or 10 2

2 Error from the I/O module 2,5,8 or 11 4

3 Error from the I/O module 12,13,14 or 15 8

4 Should be set to re-initialise the CANIO network 16

5 Is set when initialisation is complete 32

6 Error from Analogue module 64

7 Output error (0-3) 128

Trio Motion Technology

TRIOBaSIC COMMaNdS
CaNOPEN_OP_RaTE

2-86

Bit Description Value

8 Output error (4-7) 256

9 Output error (8-11) 512

10 Output error (12-15) 1024

11 Input error (0-3) 2048

12 Input error (4-7) 4096

13 Input error (8-11) 8192

14 Input error (12-15) 16384

CANOPEN_OP_RATE
TYPE:
System Parameter

DESCRIPTION:
Used to adjust the transmission rate of CanOpen I/O PDO telegrams.

VALUE:
Default is 5msec. Adjustable in 1msec steps.

CHANGE_DIR_LAST
TYPE:
Axis Parameter (read only)

DESCRIPTION:
Returns the difference between the direction of the end of the previous loaded interpolated motion
command and the start direction of the last loaded interpolated motion command. If there is no previous
loaded command then END _ DIR _ LAST can be written to set an initial direction.

This parameter is only available when using SP motion commands such as MOVESP, MOVEABSSP etc.

VALUE:
Change in direction, in radians between 0 and PI. Value is always positive.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/END_DIR_LAST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVESP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVEABSSP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PI.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
CHaNNEL_REad

2-87

EXAMPLE:
Perform a 90 degree move and print the change.
>>MOVESP(0,100)
>>MOVESP(100,0)
>>PRINT CHANGE _ DIR _ LAST
1.5708
>>

SEE ALSO:
END _ DIR _ LAST, START _ DIR _ LAST

CHANNEL_READ
TYPE:
System Command

SYNTAX:
CHANNEL _ READ(channel, buffer _ base, size[, delimiter _ base, delimiter _ size[,
escape _ character[, crc]]])

DESCRIPTION:
CHANNEL _ READ will read bytes from the channel and store them into the VR data starting at buffer_base.

CHANNEL _ READ will stop when it has read size bytes, the channel is empty, or the character read from the
channel is specified in the delimiter buffer.

If the escape character received then the next character is not interpreted. This allows delimiter characters
to be received without stopping the CHANNEL _ READ.

The calculated CRC will be stored in the VR(crc)

PARAMETERS:
channel Communication or file channel.
buffer_base Number of the first VR for the buffer.
size Size of the buffer.
delimiter_base Position in the VR data to the start of the delimiter list.
delimiter_size Size of the delimiter list.
escape_character When this character is received the following character is not interpreted.
crc Position in the VR data where the CRC will be stored.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/END_DIR_LAST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/START_DIR_LAST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
CHaNNEL_WRITE

2-88

CHANNEL_WRITE
TYPE:
System Command

SYNTAX:
CHANNEL _ WRITE(channel, buffer _ base, buffer _ size)

DESCRIPTION:
CHANNEL _ WRITE will send buffer_size bytes from the VR data starting at buffer_base to the channel

PARAMETERS:
channel Communication or file channel.
buffer_base Position in the VR data to the start of the buffer.
buffer_size Size of the buffer.

CHECKSUM
TYPE:
Reserved Keyword

CHR
TYPE:
String Function

SYNTAX:
value = CHR(number)

DESCRIPTION:
CHR returns the ASCII character as a STRING which is referred to by the number, this can be assigned to a
STRING variable or be PRINTed.

PARAMETERS:

number: Any valid numerical value for an ASCII character
value: A STRING containing the character

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DIM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DIM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PRINT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DIM.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
CLEaR

2-89

EXAMPLES:

EXAMPLE 1:
Print the character A on the command line

>>PRINT CHR(65)
A
>>

EXAMPLE 2:
Print a line of text terminating only with a carriage return

PRINT#5, “abcdefghijk”; CHR(13)

EXAMPLE 3:
Append a character from the serial port to a STRING variable

DIM value AS STRING
WHILE KEY#5
 GET#5, char
 value = value + CHR(char)
WEND

SEE ALSO:
PRINT, STRING

CLEAR
TYPE:
System Command

DESCRIPTION:
Sets all global (numbered) variables and VR values to 0 and sets local variables on the process on which
command is run to 0.

Trio BASIC does not clear the global variables automatically following a RUN command. This allows the
global variables, which are all battery-backed to be used to hold information between program runs.
Named local variables are always cleared prior to program running. If used in a program CLEAR sets
local variables in this program only to zero as well as setting the global variables to zero.

CLEAR does not alter the program in memory.

EXAMPLE:
Setting and clearing VR values.
VR(0)=44
VR(10)=12.3456

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DIM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PRINT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DIM.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
CLEaR_BIT

2-90

VR(100)=2
PRINT VR(0),VR(10),VR(100)
CLEAR
PRINT VR(0),VR(10),VR(100)

On execution this would give an output such as:
44.0000 12.345 62.0000
0.0000 0.0000 0.0000

CLEAR_BIT
TYPE:
Logical and Bitwise Command

SYNTAX:
CLEAR _ BIT(bit, variable)

DESCRIPTION:
CLEAR _ BIT can be used to clear the value of a single bit within a VR() variable.

PARAMETERS:

bit: The bit number to clear, valid range is 0 to 52
variable: The VR on which to operate

EXAMPLE:
Set bit 6 in VR 23 to zero.

CLEAR _ BIT(6,23)

SEE ALSO
READ _ BIT, SET _ BIT

CLEAR_PARAMS
TYPE:
System Command

DESCRIPTION:
Resets all flash parameters to the default value. This command must only be used on the command line.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/READ_BIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SET_BIT.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
CLOSE

2-91

You must cycle power after issuing this command to ensure that all parameters take effect.

 M THIS WILL RESET THE IP ADDRESS TO THE DEFAULT VALUE AND SO YOU MAY NOT BE ABLE TO CONNECT AFTER
CYCLING POWER.

� You should use the MC _ CONFIG file to set all FLASH/ MC _ CONFIG parameters so that they are saved
as part of the project.

CLOSE
TYPE:
System command

SYNTAX:
CLOSE channel

DESCRIPTION:
CLOSE will close the file on the specified channel.

PARAMETERS:

Channel The TrioBASIC I/O channel to be associated with the file. It is in the range 40 to 44.

SEE ALSO:
OPEN

CLOSE_WIN
TYPE:
Axis Parameter

ALTERNATE FORMAT:
CW

DESCRIPTION:
By writing to this parameter the end of the window in which a registration mark is expected can be defined.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OPEN.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
CLuTCH_RaTE

2-92

VALUE:
Position of the end of the position window in user units.

EXAMPLE:
Set a position window between 10 and 30

OPEN _ WIN = 10
CLOSE _ WIN = 30

SEE ALSO:
OPEN _ WIN, REGIST

CLUTCH_RATE
TYPE:
Axis Parameter

DESCRIPTION:
This affects operation of CONNECT by changing the connection ratio at the specified rate/second.

Default CLUTCH _ RATE is set very high to ensure compatibility with earlier versions.

VALUE:
Change in connection ratio per second (default 1000000)

EXAMPLE:
The connection ratio will be changed from 0 to 6 when an input is set. It is required to take 2 second to
accelerate the linked axis so the ratio must change at 3 per second.

CLUTCH _ RATE = 3
CONNECT(0,0)
WAIT UNTIL IN(1)=ON
CONNECT(6,0)

CO_READ
TYPE:
System Command

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OPEN_WIN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CONNECT.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
CO_REad

2-93

SYNTAX:
CO _ READ(slot, address, index, subindex ,type [,vr _ number])

DESCRIPTION:
This function gets a CanOpen-over-EtherCAT object from the remote drive or IO device. The Object’s index
and sub-index are used to request a value and that value is either placed in the VR or is displayed in the
Motion Perfect terminal if the VR number is set to -1.

Refer to the remote device’s manual for a list of available objects. If the object value is returned
successfully, the command returns TRUE. (-1) Otherwise, in the case of an error while requesting the value,
the command returns FALSE.

PARAMETERS:

slot: Slot number of the EtherCAT module.
address: Node address of the remote device on the network
index: CanOpen Object index
subindex: CanOpen Object sub-index
Type: 1 Boolean

2 Integer 8
3 Integer 16
4 Integer 32
5 Unsigned 8
6 Unsigned 16
7 Unsigned 32
9 Visible String (to terminal only)

vr_number: VR number between 0 and max VR where the result will be stored.
(-1 means the value will be printed to the terminal)

EXAMPLES:

EXAMPLE 1:

Read the remote drive mode of operation and display to the terminal

>>CO _ READ(0, 1, $6061, 0, 2, -1)
8
>>

EXAMPLE 2:

Get the remote drive interpolation time, objects $60C2 sub-index 1 and sub-index 2, and place in VR(200)
and VR(201).

‘read object $60C2:01 unsigned 8
CO _ READ(0, 5, $60C2, 1, 5, 200)
‘read object $60C2:02 signed 8

Trio Motion Technology

TRIOBaSIC COMMaNdS
CO_REad_aXIS

2-94

CO _ READ(0, 5, $60C2, 2, 2, 201)
PRINT “Drive at node 5: “; VR(200)[0];”x 10^”;VR(201)[0]

CO_READ_AXIS
TYPE:
System Command

SYNTAX:
CO _ READ _ AXIS(axis _ number, index, subindex ,type [,vr _ number])

DESCRIPTION:
This function gets a CanOpen-over-EtherCAT object from the remote drive or IO device. The Object’s index
and sub-index are used to request a value and that value is either placed in the VR or is displayed in the
Motion Perfect terminal if the VR number is set to -1.

Refer to the remote device’s manual for a list of available objects. If the object value is returned
successfully, the command returns TRUE. (-1) Otherwise, in the case of an error while requesting the value,
the command returns FALSE.

PARAMETERS:

Axis_number: Axis number of the EtherCAT drive.
index: CanOpen Object index
subindex: CanOpen Object sub-index
Type: 1 Boolean

2 Integer 8
3 Integer 16
4 Integer 32
5 Unsigned 8
6 Unsigned 16
7 Unsigned 32
9 Visible String (to terminal only)

vr_number: VR number between 0 and max VR where the result will be stored.
(-1 means the value will be printed to the terminal)

EXAMPLES:

EXAMPLE 1:

Print the value for object 0x6064 sub-index 00, position actual value. This is a 32 bit long word and so has
the CANopen type 4.

>>CO _ READ _ AXIS(3, $6064, 0, 4, -1)

Software Reference Manual

TRIOBaSIC COMMaNdS
CO_WRITE

2-95

5472
>>

EXAMPLE 2:

Get the proportional gain and velocity feedforward gain from the remote drive, and place in VR(200) and
VR(201). Perform a check to make sure the object is supported by the drive.

IF CO _ READ _ AXIS(2, $60FB, 1, 6, 200) = FALSE THEN
 PRINT “Error reading Object $60FB:01”
ELSE
 PRINT “Drive P Gain = “;VR(200)[0]
ENDIF
IF CO _ READ _ AXIS(2, $60FB, 2, 6, 201) = FALSE THEN
 PRINT “Error reading Object $60FB:02”
ELSE
 PRINT “Drive VFF Gain = “;VR(201)[0]
ENDIF

CO_WRITE
TYPE:
System Command

SYNTAX:
CO _ WRITE(slot, address, index, subindex ,type, vr _ number [,value])

DESCRIPTION:
This function sets a CanOpen-over-EtherCAT object in the remote drive or IO device. The Object’s index
and sub-index are used to write a value to that object. The value can come from a VR or is put into the
command directly if the VR number is set to -1.

Refer to the remote device’s manual for a list of available objects. If the object value is set successfully,
the command returns TRUE. (-1) Otherwise, in the case of an error while writing the value, the command
returns FALSE.

PARAMETERS:

slot: Slot number of the EtherCAT module.
address: Node address of the remote device on the network
index: CanOpen Object index
subindex: CanOpen Object sub-index

Trio Motion Technology

TRIOBaSIC COMMaNdS
CO_WRITE_aXIS

2-96

Type: 1 Boolean
2 Integer 8
3 Integer 16
4 Integer 32
5 Unsigned 8
6 Unsigned 16
7 Unsigned 32
9 Visible String (N/A as this is read only)

vr_number: VR number between 0 and max VR where the result will be stored.
(-1 if the next parameter contains the value to be written)

value: Optional data value for direct setting of the object

EXAMPLES:

EXAMPLE 1:

Set the remote drive at EtherCAT address 3 to homing mode.

>>CO _ WRITE(0, 3, $6060, 0, 2, -1, 6)
>>

EXAMPLE 2:

Set the remote drive proportional gain and velocity feed forward gain to the values placed in VR(21) and
VR(22).

VR(21) = 2500
VR(22) = 1000
‘ both objects are unsigned 16 bit (data type 6)
CO _ WRITE(0, 1, $60fb, 1, 6, 21)
CO _ WRITE(0, 1, $60fb, 2, 6, 22)

 M WARNING: ALWAYS REFER TO THE MANUFACTURER’S USER MANUAL BEFORE WRITING TO A CANOPEN OBJECT OVER
ETHERCAT.

CO_WRITE_AXIS
TYPE:
System Command

SYNTAX:
CO _ WRITE _ AXIS(axis _ number, index, subindex, type, vr _ number [,value])

Software Reference Manual

TRIOBaSIC COMMaNdS
CO_WRITE_aXIS

2-97

DESCRIPTION:
This function sets a CanOpen-over-EtherCAT object in the remote drive or IO device. The Object’s index
and sub-index are used to write a value to that object. The value can come from a VR or is put into the
command directly if the VR number is set to -1.

Refer to the remote device’s manual for a list of available objects. If the object value is set successfully,
the command returns TRUE. (-1) Otherwise, in the case of an error while writing the value, the command
returns FALSE.

PARAMETERS:

Axis_number: Axis number of the EtherCAT drive.
index: CanOpen Object index
subindex: CanOpen Object sub-index
Type: 1 Boolean

2 Integer 8
3 Integer 16
4 Integer 32
5 Unsigned 8
6 Unsigned 16
7 Unsigned 32
9 Visible String (to terminal only)

vr_number: VR number between 0 and max VR where the result will be stored.
(-1 if the next parameter contains the value to be written)

value: Optional data value for direct setting of the object

EXAMPLES:

EXAMPLE 1:
Write a value of 1 to a manufacturer specific object on servo drive at MC464 axis 3. CoE object 0x2802 sub-
index 0x00, type 2 (8 bit integer). Get the TRUE/FALSE success indication and print it to the terminal.

>>?CO _ WRITE _ AXIS(3, $2802, 0, 2, -1, 1)
>>-1.0000
>>

EXAMPLE 2:
Write a position controller velocity feedforward gain value to the servo drive at MC464 axis 12. CoE object
0x60FB sub-index 0x02, type 6 (unsigned 16 bit integer).

VR(2010)=1000
‘ write the value from VR(2010)
error _ flag = CO _ WRITE _ AXIS(12, $60fb, 2, 6, 2010)

IF error _ flag = FALSE THEN
 PRINT “Error writing CanOpen Object to Drive”
ENDIF

Trio Motion Technology

TRIOBaSIC COMMaNdS
: Colon

2-98

 M WARNING: ALWAYS REFER TO THE MANUFACTURER’S USER MANUAL BEFORE WRITING TO A CANOPEN OBJECT OVER
ETHERCAT.

: Colon
TYPE:
Special Character

DESCRIPTION:
The colon character is used as a label terminator and as a command separator.

LABEL TERMINATOR

SYNTAX:
label:

DESCRIPTION:
The colon character is used to terminate labels used as destinations for GOTO and GOSUB commands.

� Labels can also be used to aid readability of code.

PARAMETERS:

Label may be character strings of any length but only the first 32 characters are significant. Labels must
be the first item on a line and should have no leading spaces.

EXAMPLE:
Use an ON…GOTO structure to assign a value into VR 10 depending on a local variable ‘attempts’.

ON attempts GOTO label1, label2, label3
GOTO continue

label1:
VR(10)=1
GOTO continue

Label2:
VR(10)=5
GOTO continue

Label3:

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GOTO.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GOSUB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GOTO.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
‘ Comment

2-99

VR(10)=2
GOTO continue

continue:

COMMAND SEPERATOR

SYNTAX:
statement: statement

DESCRIPTION:
The colon is also used to separate TrioBASIC statements on a multi-statement line.

PARAMETERS:
Statement: any valid TrioBASIC statement. The colon separator must not be used after a THEN command in a
multi-line IF..THEN construct.

 M IF A MULTI-STATEMENT LINE CONTAINS A GOTO THE REMAINING STATEMENTS WILL NOT BE EXECUTED. SIMILARLY
WITH GOSUB BECAUSE SUBROUTINE CALLS RETURN TO THE FOLLOWING LINE.

EXAMPLES:

EXAMPLE 1:
Use of GOTO in the line means that any command following it will never be executed. This can be used as a
debugging technique but usually happens due to a programming error.

PRINT “Hello”:GOTO Routine:PRINT “Goodbye”
“Goodbye” will not be printed.

EXAMPLE 2:
Set the speed, a position in the table and execute a move all in one line.

SPEED=100:TABLE(10,123):MOVE(TABLE(10)

‘ Comment
TYPE:
Special Character

SYNTAX:
‘ text

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GOTO.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
COMMSERROR

2-100

DESCRIPTION:
A single ‘ is used to mark the start of a comment. A comment is a piece of text that is not compiled and just
used to give the programmer information. It can be used at the start of a line or after a piece of code.

PARAMETERS:

text Any notes that you wish to add to your program

EXAMPLE:
Using comments at the start of the program and in line to help document a program

‘Motion program version 1.35
MOVE(100) ‘Move to the start position

COMMSERROR
TYPE:
Reserved Keyword

COMMSPOSITION
TYPE:
Slot Parameter

DESCRIPTION:
Returns if the expansion module is on the top or the bottom bus.

VALUE:

-1 built in controller
1 module is on the top bus
0 module is on the bottom bus or no module fitted

COMMSTYPE
TYPE:
Slot Parameter (read only)

Software Reference Manual

TRIOBaSIC COMMaNdS
COMPILE

2-101

DESCRIPTION:
This parameter returns the type of communications daughter board in a controller slot.

VALUE:

Value Communication type
0 Empty slot
32 SERCOS
37 Panasonic module
39 Sync encoder port
40 FlexAxis 4
41 FlexAxis 8
42 Ethercat module
43 FlexAxis 8 SSI
62 Anybus module empty/ unrecognised
63 Anybus RS232
64 Anybus RS422
65 Anybus USB
66 Anybus Ethernet
67 Anybus Bluetooth
68 Anybus Zigbee
69 Anybus wireless LAN
70 Anybus RS485
71 Anybus Profibus
72 Anybus CC-Link
73 Anybus DeviceNet

EXAMPLE:
Check that the correct Anybus module is fitted before starting initialisation.

IF COMMSTYPE SLOT(3) = 71
 GOSUB initialise _ profibus
ELSE
 PRINT#5, “No Profibus compact com module detected”
ENDIF

COMPILE
TYPE:
System Command

Trio Motion Technology

TRIOBaSIC COMMaNdS
COMPILE_aLL

2-102

DESCRIPTION:
Forces compilation of the currently selected program. Program compilation is performed automatically
by the system software prior to program RUN or when another program is SELECTed. This command is not
therefore normally required.

SEE ALSO:
SELECT, COMPILE _ ALL

COMPILE_ALL
TYPE:
System Command

DESCRIPTION:
Forces compilation of all programs. Program compilation is performed automatically by the system software
prior to program RUN or when another program is SELECTed. This command is not therefore normally
required.

SEE ALSO:
SELECT, COMPILE

COMPILE_MODE
TYPE:
Startup Parameter (MC _ CONFIG)

DESCRIPTION:
COMPILE _ MODE controls whether or not all used variables have to be defined within a DIM statement as a
prerequisite before use or not.

The default setting (0) is the traditional compile mode where variables can be used without any need for
declaration. However, by changing this parameter to 1, either within MC _ CONFIG or at any time after
startup, means that all new program compilations will require variables to be declared using DIM.

VALUE:

0 Local variables do not require explicit declaration (default)
1 Local variables require explicit declaration using DIM

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RUN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/COMPILE_ALL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RUN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/COMPILE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DIM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DIM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DIM.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
CONNECT

2-103

EXAMPLES:

EXAMPLE 1:
COMPILE _ MODE = 0 ‘No enforced variable declarations

EXAMPLE 2:
COMPILE _ MODE = 1 ‘Force variable declarations via DIM

SEE ALSO:
DIM, COMPILE and COMPILE _ ALL

CONNECT
TYPE:
Axis Command

SYNTAX:
CONNECT(ratio, driving _ axis)

ALTERNATE FORMAT:
CO(...)

DESCRIPTION:
Links the demand position of the base axis to the measured movements of the driving axes to produce an
electronic gearbox.

The ratio can be changed at any time by issuing another CONNECT command which will automatically update
the ratio at CLUTCH _ RATE without the previous CONNECT being cancelled. The command can be cancelled
with a CANCEL or RAPIDSTOP command

You can prevent CONNECT from being canceled when a hardware or software limit is reached by setting the
bit in AXIS _ MODE. When this bit is set the ratio is temporarily set to zero while the limit is active so the
axis will slow to a stop at the programmed CLUTCH _ RATE.

PARAMETERS:
ratio: This parameter holds the number of edges the base axis is required to move per

increment of the driving axis. The ratio value can be either positive or negative. The
ratio is always specified as an encoder edge ratio.

driving_axis: This parameter specifies the axis to link to.

As CONNECT uses encoder data it is not affected by UNITS, if you need to change the scale of your
encoder feedback you should use ENCODER _ RATIO

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DIM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/COMPILE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/COMPILE_ALL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CLUTCH_RATE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CANCEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RAPIDSTOP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_MODE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CLUTCH_RATE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENCODER_RATIO.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
CONNECT

2-104

� To achieve an exact connection of fractional ratio’s of values such as 1024/3072. The MOVELINK
command can be used with the continuous repeat link option set to ON.

EXAMPLES:

EXAMPLE 1:
In a press feed a roller is required to rotate at a speed one quarter of the measured rate from an encoder
mounted on the incoming conveyor. The roller is wired to the master axis 0. The reference encoder is
connected to axis 1.

BASE(0)
SERVO=ON
CONNECT(0.25,1)

EXAMPLE 2:
A machine has an automatic feed on axis 1 which must move at a set ratio to axis 0. This ratio is selected
using inputs 0-2 to select a particular “gear”, this ratio can be updated every 100msec. Combinations of
inputs will select intermediate gear ratios. For example 1 ON and 2 ON gives a ratio of 6:1.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVELINK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
CONNECT

2-105

BASE(1)
FORWARD AXIS(0)
WHILE IN(3)=ON
 WA(100)
 gear = IN(0,2)
 CONNECT(gear,0)
WEND
RAPIDSTOP ‘cancel the FORWARD and the CONNECT

EXAMPLE 3:
Axis 0 is required to run a continuous forward, axis 1 must connect to this but without the step change in
speed that would be caused by simply calling the CONNECT. CLUTCH _ RATE is used along with an initial and
final connect ratio of zero to get the required motion.

FORWARD AXIS(0)
BASE(1)
CONNECT(0,0) ‘set intitial ratio to zero
CLUTCH _ RATE=0.5 ‘set clutch rate
CONNECT(2,0) ‘apply the required connect ratio
WA(8000)
CONNECT(0,0) ‘apply zero ratio to disconnect
WA(4000) ‘wait for deceleration to complete
CANCEL ‘cancel connect

SEE ALSO:
AXIS _ MODE, CLUTCH _ RATE, ENCODER _ RATIO

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CLUTCH_RATE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_MODE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CLUTCH_RATE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENCODER_RATIO.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
CONNPaTH

2-106

CONNPATH
TYPE:
Axis Command

SYNTAX:
CONNPATH(ratio , driving _ axis)

DESCRIPTION:
Enables you to link to the path of an interpolated movement by linking the demand position of the base axis,
to the interpolated path distance of the driving axis.

The ratio can be changed at any time by issuing another CONNPATH command which will automatically
update the ratio at CLUTCH _ RATE without the previous CONNPATH being cancelled. The command can be
cancelled with a CANCEL or RAPIDSTOP command.

As CONNPATH uses encoder data it is not affected by UNITS, if you need to change the scale of your
encoder feedback you should use ENCODER _ RATIO

PARAMETERS:

ratio: This is the ratio between the interpolated distance moved on the driving axis to the
distance moved on the base axis.

driving_axis: This parameter specifies the axis to link to.

EXAMPLES:

EXAMPLE 1:
A glue laying robot uses a screw feed for the adhesive, this needs to turn a quarter of a revolution for every
unit of distance moved.

BASE(0)
SERVO=ON
CONNPATH (0.25,1)

EXAMPLE 2:
It is required to move 156mm on axis 0 through an interpolated path distance of 100mm on axes 1,2 and
3. This is achieved by using virtual axis 4 as the path distance of the interpolated group and applying a
MOVELINK from axis 0 to it. SPEED is initially set to zero so that the MOVE and MOVELINK start at the same
time.

CONNPATH(1,1)AXIS(4)
a=100
b=100
c=100

BASE(1,2,3)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CLUTCH_RATE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CANCEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RAPIDSTOP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENCODER_RATIO.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVELINK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVELINK.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
CONSTaNT

2-107

SPEED=0
MERGE=ON

MOVE(a,b,c)
WA(1)
MOVELINK(156,REMAIN AXIS(1),0,0,4)AXIS(0)
SPEED=10

SEE ALSO:
CLUTCH _ RATE, ENCODER _ RATIO

CONSTANT
TYPE:
System Command

SYNTAX:
CONSTANT [“name”[, value]]

DESCRIPTION:
Up to 1024 CONSTANTS can be declared in the controller, these are then available to all programs. They
should be declared on startup and for fast startup the program declaring CONSTANTs should also be the ONLY
process running at power-up.

Once a CONSTANT has been assigned it cannot be changed, even if you change the program that
assigns it.

� While developing you may wish to clear or change a CONSTANT. You can clear a single CONSTANT by
using the first parameter alone. All CONSTANTs can be cleared by issuing CONSTANT. You can view all
CONSTANTS using LIST _ GLOBAL.

PARAMETERS:

name: Any user-defined name containing lower case alpha, numerical or underscore (_) characters.
value: The value assigned to the name.

EXAMPLES:

EXAMPLE 1:
Declare 2 CONSTANTs and use them within the program

CONSTANT “nak”,$15
CONSTANT “start _ button”,5

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CLUTCH_RATE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENCODER_RATIO.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LIST_GLOBAL.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
CONTROL

2-108

IF IN(start _ button)=ON THEN OP(led1,ON)
IF key _ char=nak THEN GOSUB no _ ack _ received

EXAMPLE 2:
Use the command line to clear a defined constant

>>CONSTANT “NAK”
>>

EXAMPLE 3:
Use the command line to clear all defined constants

>>CONSTANT
>>

SEE ALSO:
GLOBAL, LIST _ GLOBAL

CONTROL
TYPE:
System Parameter (Read Only)

DESCRIPTION:
The Control parameter returns the ID number of the Motion Coordinator in the system:

VALUE:

Value Controller
400 MCSimulator
403 MC403
405 MC405
464 MC464

When the Motion Coordinator is LOCKED, 1000 is added to the above numbers. For example a locked
MC464 will return 1464.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GLOBAL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LIST_GLOBAL.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
COORdINaTOR_daTa

2-109

EXAMPLES:

EXAMPLE 1:
Checking the control value of a locked controller on the command line:

>>PRINT CONTROL
1464
>>

EXAMPLE 2:
Checking the controller type in a program, if it fails then stop the programs. :

IF CONTROL <> 464 THEN
 PRINT#terminal, “This program was designed to run a MC464”
 HALT
ENDIF

COORDINATOR_DATA
TYPE:
Reserved Keyword

COPY
TYPE:
System Command (command line only)

SYNTAX:
COPY “program” “newprogram”

DESCRIPTION:
Used to make a copy of an existing program in memory under a new name.

PARAMETERS:

program: the name of the program to be copied
newprogram: the name of the copy

EXAMPLE:
Make a backup of a program named motion

>>COPY “MOTION” “MOTION _ BACK”

Trio Motion Technology

TRIOBaSIC COMMaNdS
CORNER_MOdE

2-110

Compiling MOTION
Linking MOTION
Pass=4
OK
>>

CORNER_MODE
TYPE:
Axis Parameter

DESCRIPTION:
Allows the program to control the cornering action.

Automatic corner speed control enables system to reduce the speed depending on DECEL _ ANGLE and
STOP _ ANGLE

The CORNER _ STATE machine allows interaction with a TrioBASIC program and the loading of buffered
moves depending on RAISE _ ANGLE

Automatic radius speed control enables the system to reduce the speed depending on FULL _ SP _ RADIUS.

� You can enable any combination of the speed control bits.

VALUE:
16bit value, each bit represents a different corner mode.

Bit Description Value
0 Reserved 1
1 Automatic corner speed control 2
2 Enable the CORNER_STATE machine 4
3 Automatic radius speed control 8

EXAMPLE:
Enable the corner state machine and automatic corner speed control.

CORNER _ MODE= 2+4

SEE ALSO:
CORNER _ STATE, DECEL _ ANGLE, FULL _ SP _ RADIUS, RAISE _ ANGLE, STOP _ ANGLE

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DECEL_ANGLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STOP_ANGLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CORNER_STATE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RAISE_ANGLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FULL_SP_RADIUS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CORNER_STATE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CORNER_STATE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DECEL_ANGLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FULL_SP_RADIUS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RAISE_ANGLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STOP_ANGLE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
CORNER_STaTE

2-111

CORNER_STATE
TYPE:
Axis Parameter

DESCRIPTION:
Allows a BASIC program to interact with the move loading process.

� This can be used to facilitate tool adjustment such as knife rotation at sharp corners.

This parameter is only active when CORNER _ STATE bit 2 is set. It is also required to use bit 1 of
CORNER _ STATE with STOP _ ANGLE set to less than or equal to RAISE _ ANGLE to stop the motion.

VALUE:

0 Load move and ramp up speed
1 Ready to load move, stopped
3 Load move

EXAMPLE:
When a transition exceeds RAISE _ ANGLE it is required to lift a cutting knife and rotate it to a new
position. The following process is required:

1. System sets CORNER _ STATE to 1 to indicate move ready to be loaded with large angle change.
2. BASIC program raises knife.
3. BASIC program sets CORNER _ STATE to 3.
4. System will load following move but with speed overridden to zero. This allows the direction to be

obtained from TANG _ DIRECTION.
5. BASIC program orients knife possibly using MOVETANG.
6. BASIC program clears CORNER _ STATE to 0.
7. System will ramp up speed to perform the next move.

MOVEABSSP(x,y)
IF CHANGE _ DIR _ LAST>RAISE _ ANGLE THEN
 WAIT UNTIL CORNER _ STATE>0
 ‘Raise Knife
 MOVE(100) AXIS(z)
 CORNER _ STATE=3
 WA(10)
 WAIT UNTIL VP _ SPEED AXIS(2)=0
 ‘Rotate Knife
 MOVETANG(0,x) AXIS(r)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STOP_ANGLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RAISE_ANGLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RAISE_ANGLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TANG_DIRECTION.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVETANG.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
COS

2-112

 ‘Lower Knife
 MOVE(-100) AXIS(z)
 ‘Resume motion
 CORNER _ STATE=0
ENDIF

SEE ALSO:
CORNER _ MODE, RAISE _ ANGLE, STOP _ ANGLE

COS
TYPE:
Mathematical Function

SYNTAX:
value = COS(expression)

DESCRIPTION:
Returns the COSINE of an expression. Input values are in radians.

PARAMETERS:

value: The COSINE of the expression
expression: Any valid TrioBASIC expression.

EXAMPLE:
Print the cosine of zero to the command line with 3 decimal places

>>PRINT COS(0)[3]
1.000

CPU_EXCEPTIONS
TYPE:
Reserved Keyword

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CORNER_MODE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RAISE_ANGLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STOP_ANGLE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
CRC16

2-113

CRC16
TYPE:
Mathematical Command

SYNTAX:
result = CRC16(mode,{parameters})

DESCRIPTION:
Calculates a 16 bit Cyclic Redundancy Check (CRC) of data stored in contiguous Table Memory or VR Memory
locations.

PARAMETERS:

mode: 0 Initialise the polynomial
1 Calculate the CRC

MODE = 0:

SYNTAX:
result = CRC16(0, poly)

DESCRIPTION:
Initialises the command with the Polynomial

PARAMETERS:

result: Always returns -1
poly: Polynomial used as seed for CRC check range 0-65535 (or 0-$FFFF)

MODE = 1:

SYNTAX:
result = CRC16(1, source, start, end, initial)

DESCRIPTION:
Calculates the CRC

file://HYPERION/documents/Manual%207/Source/BASIC%20Commands/VR.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
CRC16

2-114

PARAMETERS:

result: Returns the result of the CRC calculation. Will be 0 if the calculation fails.
source: Defines where the data is loaded

0 Table Memory
1 VR Memory

start: Start location of first byte
end: End Location of last byte
initial: Initial CRC value. Normally $0 - $FFFF

EXAMPLES:

EXAMLPE 1:
Calculate the CRC using Table Memory:

poly = $8005
CRC16(0, poly) ‘Initialise internal CRC table memory

TABLE(0,1,2,3,4,5,6,7,8) *load data into TABLE memory location 0-7
reginit = 0
calc _ crc = CRC16(1,0,0,7,reginit) ‘Source Data=TABLE(0..7)

EXAMPLE 2:
Calculate the CRC using VRs:

‘ generate CRC lookup table
poly=$8005
CRC16(0,poly)

‘ create test data as “hello”
VR(100)=104
VR(101)=101
VR(102)=108
VR(103)=108
VR(104)=111
VR(105)=0
VR(106)=0
PRINT VRSTRING(100)

‘ calculate the crc16
crc=0
crc=CRC16(1,1,100,104,crc)

‘ print the result
PRINT HEX(crc)

file://HYPERION/documents/Manual%207/Source/BASIC%20Commands/VR.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
CREEP

2-115

CREEP
TYPE:
Axis Parameter

DESCRIPTION:
Sets the CREEP speed on the current base axis. The creep speed is used for the slow part of a DATUM
sequence.

VALUE:
Any positive value in user UNITS

EXAMPLE:
Set up the CREEP speeds on 2 axes and then perform a DATUM routine.

BASE(2)
CREEP=10
SPEED=500
DATUM(4)
CREEP AXIS(1)=10
SPEED AXIS(1)=500
DATUM(4) AXIS(1)

SEE ALSO:
DATUM

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DATUM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DATUM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DATUM.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
d_GaIN

2-116

TRIOBaSIC COMMaNdS
d_GaIN

2-117

Software Reference Manual

D_GAIN
TYPE:
Axis Parameter

DESCRIPTION:
Used as part of the closed loop control, adding derivative gain to a system is likely to produce a smoother
response and allow the use of a higher proportional gain than could otherwise be used.

High values may lead to oscillation. For a derivative term Kd and a change in following error de the
contribution to the output Od signal is:

Od = Kd × δe

VALUE:
The derivative gain is a constant which is multiplied by the change in following error. Default value = 0

EXAMPLE:
Setting the gain values as part of a STARTUP program

P _ GAIN=1
I _ GAIN=0
D _ GAIN=0.25
OV _ GAIN=0
…

D_ZONE_MAX
TYPE:
Axis Parameter

DESCRIPTION:
Working in conjunction with D _ ZONE _ MIN, D _ ZONE _ MAX defines a DAC dead band. This clamps the
DAC output to zero when the demand movement is complete and the magnitude of the following error is
less than the D _ ZONE _ MIN value. The servo loop will be reactivated when either the following error rises
above the D _ ZONE _ MAX value, or a fresh movement is started.

� This can be used to prevent oscillations at static positions in Piezo systems.

VALUE:
Above this value the servo loop is reactivated when clamped in the dead band.

D

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/D_ZONE_MIN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/D_ZONE_MIN.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
d_ZONE_MIN

2-118

EXAMPLE:
The DAC output will be clamped at zero when the movement is complete and the following error falls below
3. When a movement is restarted or if the following error rises above a value of 10, the servo loop will be
reactivated

D _ ZONE _ MIN = 3
D _ ZONE _ MAX = 10

SEE ALSO:
D _ ZONE _ MIN

D_ZONE_MIN
TYPE:
Axis Parameter

DESCRIPTION:
Working in conjunction with D _ ZONE _ MAX, D _ ZONE _ MIN defines a DAC dead band. This clamps the
DAC output to zero when the demand movement is complete and the magnitude of the following error is
less than the D _ ZONE _ MIN value. The servo loop will be reactivated when either the following error rises
above the D _ ZONE _ MAX value, or a fresh movement is started.

� This can be used to prevent oscillations at static positions in Piezo systems.

VALUE:
When the axis is IDLE and the magnitude of the following error is less than this value the DAC is clamped to
zero.

EXAMPLE:
The DAC output will be clamped at zero when the movement is complete and the following error falls below
3. When a movement is restarted or if the following error rises above a value of 10, the servo loop will be
reactivated

D _ ZONE _ MIN = 3
D _ ZONE _ MAX = 10

SEE ALSO:
D _ ZONE _ MAX

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/D_ZONE_MIN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/D_ZONE_MAX.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/D_ZONE_MAX.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/IDLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/D_ZONE_MAX.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
daC

2-119

DAC
TYPE:
Axis Parameter

DESCRIPTION:
Writing to this parameter when SERVO = OFF and AXIS _ ENABLE = ON allows the user to force a demand
value for that axis. On an analogue axis this will set a voltage on the output. On a digital axis this will be the
demand value.

� When using a FlexAxis as a stepper or encoder output or anytime with SERVO = OFF the voltage
outputs are available for user control.

The WDOG and AXIS _ ENABLE must be ON for the demand value to be set. When the WDOG or AXIS _
ENABLE is OFF you can write a value to DAC but the actual output (DAC _ OUT) will be at 0.

VALUE:
The demand value for the axis

For a 12 bit DAC on an analogue axis:

DAC Voltage
-2048 10V
2047 -10V

For a 16 bit DAC on an analogue axis:

DAC Voltage
32767 10V
-32768 -10V

For digital axes check the drive specification for suitable values.

EXAMPLE:
To force a square wave of amplitude +/-5V and period of approximately 500ms on axis 0.

WDOG=ON
SERVO AXIS(0)=OFF
square:
 DAC AXIS(0)=1024
 WA(250)
 DAC AXIS(0)=-1024
 WA(250)
GOTO square

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DAC_OUT.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
daC_OuT

2-120

SEE ALSO:
DAC _ OUT, DAC _ SCALE, SERVO

DAC_OUT
TYPE:
Axis Parameter (Read Only)

DESCRIPTION:
DAC _ OUT reads the demand value for the axis.

In an analogue system this will be the value sent to the voltage output (the DAC). If SERVO = ON this is the
output of the closed loop algorithm. If SERVO = OFF it is the value set by the user in DAC

In a digital system it returns the demand value for the axis which could be the actual position, speed or
torque depending on the axis ATYPE.

VALUE:
Demand value for the axis

EXAMPLE:
To check that the controller has set the correct voltage for axis 8 on an analogue system read DAC _ OUT in
the command line.

>>PRINT DAC _ OUT AXIS(8)
288.0000
>>

SEE ALSO:
DAC, DAC _ SCALE, ATYPE

DAC_SCALE
TYPE:
Axis Parameter

DESCRIPTION:
DAC _ SCALE is an integer that is multiplied to the output of the closed loop algorithm. You can use it to
reverse the polarity of the demand value or to scale it so to effectively reduce the resolution of the closed
loop algorithm.

As it is applied to the output of the closed loop algorithm it is not applied to position based axis.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DAC_OUT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DAC_SCALE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SERVO.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SERVO.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SERVO.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DAC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ATYPE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DAC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DAC_SCALE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ATYPE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
daTE$

2-121

VALUE:
Can be a positive or negative integer. The default values are shown in the following table:

MC464 Ethercat 1
MC464 SERCOS 1
MC464 FlexAxis 16
MC464 Panasonic 16
MC464 SLM 16
MC405 1
MC403 1

To obtain the highest possible resolution of your system DAC _ SCALE should be set to 1 or -1.

 M TO AVOID PROBLEMS WITH THE MULTIPLY BY 16, DAC _ SCALE SHOULD BE SET TO 1 FOR AN SLM AXIS

EXAMPLE:

EXAMPLE 1:
The FlexAxis uses a 16bit DAC. To make it compatible with the gain settings used on older 12 bit DACs,
DAC _ SCALE is set to 16.

The max output from closed loop algorithm is 2048 (for a 12bit system)

The max output from a 16bit DAC is 32768 which is 2048 multiplied by 16

EXAMPLE 2:
Set up an axis to work in the reverse direction. For a servo axis, both the DAC _ SCALE and the ENCODER _
RATIO must be set to minus values.

BASE(2) ‘ set axis 2 to work in reverse direction
DAC _ SCALE = -1
ENCODER _ RATIO(-1,1)

SEE ALSO:
DAC, DAC _ OUT, ENCODER _ RATIO

DATE$
TYPE:
String Function

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DAC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DAC_OUT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENCODER_RATIO.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
daTE

2-122

SYNTAX:
DATE$

DESCRIPTION:
DATE$ is used as part of a PRINT statement or a STRING variable to write the current date from the real
time clock. The date is printed in the format DD/MMM/YYYY. The month is displayed in short text form.

The DATE$ is set through the DATE command

PARAMETERS:
None.

EXAMPLES:

EXAMPLE 1:
This will print the date in format for example 20th October 2010 will print the value: 20/Oct/2010

PRINT #5,DATE$

EXAMPLE 2:
Create an error message to print later in the program

DIM string1 AS STRING(30)
string1 = “Error occurred on the “ + DATE$

SEE ALSO:
DATE, DATE$, DAY, PRINT, STRING

DATE
TYPE:
System Function

DESCRIPTION:
Returns or sets the current date held by the real time clock.

SETTING THE DATE:

SYNTAX:
DATE=dd:mm:yy

DESCRIPTION:
Sets the date using the two digit year format or the four digit year format.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PRINT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DIM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DATE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DATE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DATE$.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DAY.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PRINT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DIM.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
daTE

2-123

PARAMETERS:

dd: day in two digit numeric format
mm: Month in two digit numeric format
yy: last two digits of the year using the range 00-99 representing 2000-2099

OR

 the full four digits of the year using the range 2000-2099

Years outside the range 2000-2099 are invalid.

EXAMPLE:
Set the date to the 20th October 2012

>>DATE=20:10:12

or

>>DATE=20:10:2012

READING THE DATE:

SYNTAX:
Value = DATE({mode})

DESCRIPTION:
Read the date value from the real time clock as a number.

PARAMETERS:

mode value
none The number of days since 01/01/2000 (with 01/01/2000 = 0)
0 The day of the current month
1 The month of the current year
2 The current year

EXAMPLES:

EXAMPLE 1:
Print the number of days since 1st January 2000 (with the 1st being day 0)

>>PRINT DATE
4676
>>

Trio Motion Technology

TRIOBaSIC COMMaNdS
daTuM

2-124

EXAMPLE 2:
Set a date then print it out using the US format

>>DATE=05:08:2008
>>PRINT DATE(1);“/”;DATE(0);“/”;DATE(2) ‘Prints the date in US format.
08/05/2008
>>

DATUM
TYPE:
Axis Command

SYNTAX:
DATUM(sequence)

DESCRIPTION:
Performs one of 6 datuming sequences to locate an axis to an absolute position. The creep speed used in the
sequences is set using CREEP. The programmed speed is set with the SPEED command.

DATUM(0) is a special case used for resetting the system after an axis critical error. It leaves the positions
unchanged.

PARAMETER:

Sequence Description
0 DATUM(0) clears the following error exceeded FE _ LIMIT condition for ALL axes by setting

these bits in AXISSTATUS to zero:

BIT 1 Following Error Warning
BIT 2 Remote Drive Comms Error
BIT 3 Remote Drive Error
BIT 8 Following Error Limit Exceeded
BIT 11 Cancelling Move

1 The axis moves at creep speed forward till the Z marker is encountered. The Measured
position is then reset to zero and the Demand position corrected so as to maintain the
following error.

2 The axis moves at creep speed in reverse till the Z marker is encountered. The Measured
position is then reset to zero and the Demand position corrected so as to maintain the
following error.

3 The axis moves at the programmed speed forward until the datum switch is reached. The
axis then moves backwards at creep speed until the datum switch is reset. The Measured
position is then reset to zero and the Demand position corrected so as to maintain the
following error.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CREEP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXISSTATUS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
daTuM

2-125

Sequence Description
4 The axis moves at the programmed speed reverse until the datum switch is reached. The

axis then moves at creep speed forward until the datum switch is reset. The Measured
position is then reset to zero and the Demand position corrected so as to maintain the
following error.

5 The axis moves at programmed speed forward until the datum switch is reached. The axis
then reverses at creep speed until the datum switch is reset. It then continues in reverse
at creep speed looking for the Z marker on the motor. The Measured position where the Z
input was seen is then set to zero and the Demand position corrected so as to maintain the
following error.

6 The axis moves at programmed speed reverse until the datum switch is reached. The axis
then moves forward at creep speed until the datum switch is reset. It then continues
forward at creep speed looking for the Z marker on the motor. The Measured position
where the Z input was seen is then set to zero and the Demand position corrected so as to
maintain the following error.

7 Clear AXISSTATUS error bits for the BASE axis only. Otherwise the action is the same as
DATUM(0).

The datuming input set with the DATUM _ IN which is active low so is set when the input is OFF. This is
similar to the FWD, REV and FHOLD inputs which are designed to be “fail-safe”.

EXAMPLES:

EXAMPLE 1:
A production line is forced to stop if something jams the product belt, this causes a motion error. The
obstacle has to be removed, then a reset switch is pressed to restart the line.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXISSTATUS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DATUM_IN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FWD_IN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REV_IN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FHOLD_IN.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
daTuM

2-126

 FORWARD ‘start production line
 WHILE IN(2)=ON
 IF MOTION _ ERROR=0 THEN
 OP(8,ON) ‘green light on; line is in motion
 ELSE
 OP(8, OFF)
 GOSUB error _ correct
 ENDIF
 WEND
 CANCEL
 STOP

error _ correct:
 REPEAT
 OP(10,ON)
 WA(250)
 OP(10,OFF) ‘flash red light to show crash
 WA(250)
 UNTIL IN(1)=OFF
 DATUM(0) ‘reset axis status errors
 SERVO=ON ‘turn the servo back on
 WDOG=ON ‘turn on the watchdog
 OP(9,ON) ‘sound siren that line will restart
 WA(1000)

Software Reference Manual

TRIOBaSIC COMMaNdS
daTuM

2-127

 OP(9,OFF)
 FORWARD ‘restart motion
RETURN

EXAMPLE 2:
An axis requires its position to be defined by the Z marker. This position should be set to zero and then the
axis should move to this position. Using the datum 1 the zero point is set on the Z mark, but the axis starts
to decelerate at this point so stops after the mark. A move is then used to bring it back to the Z position.

SERVO=ON
WDOG=ON
CREEP=1000 ‘set the search speed
SPEED=5000 ‘set the return speed
DATUM(1) ‘register on Z mark and sets this to datum
WAIT IDLE
MOVEABS (0) ‘moves to datum position

EXAMPLE 3:
A machine must home to its limit switch which is found at the rear of the travel before operation. This can
be achieved through using DATUM(4) which moves in reverse to find the switch.

Trio Motion Technology

TRIOBaSIC COMMaNdS
daTuM

2-128

SERVO=ON
WDOG=ON
REV _ IN=-1 ‘temporarily turn off the limit switch function
DATUM _ IN=5 ‘sets input 5 for registration
SPEED=5000 ‘set speed, for quick location of limit switch
CREEP=500 ‘set creep speed for slow move to find edge of switch
DATUM(4) ‘find “edge” at creep speed and stop
WAIT IDLE
DATUM _ IN=-1
REV _ IN=5 ‘restore input 5 as a limit switch again

EXAMPLE 4:
A similar machine to Example 3 must locate a home switch, which is at the forward end of travel, and then
move backwards to the next Z marker and set this as the datum. This is done using DATUM(5) which moves
forwards at speed to locate the switch, then reverses at creep to the Z marker. A final move is then needed,
if required, as in Example 2 to move to the datum Z marker.

SERVO=ON
WDOG=ON
DATUM _ IN=7 ‘sets input 7 as home switch
SPEED=5000 ‘set speed, for quick location of switch
CREEP=500 ‘set creep speed for slow move to find edge of switch
DATUM(5) ‘start the homing sequence
WAIT IDLE

SEE ALSO:
CREEP, DATUM _ IN

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CREEP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DATUM_IN.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
daTuM_IN

2-129

DATUM_IN
TYPE:
Axis Parameter

ALTERNATE FORMAT:
DAT _ IN

DESCRIPTION:
This parameter holds a digital input channel to be used as a datum input.

The input used for DATUM _ IN is active low.

VALUE:
-1 disable the input as DATUM _ IN (default)
0-63 Input to use as datum input

� Any type of input can be used, built in, Trio CAN I/O, CANopen or virtual.

EXAMPLE:
Set input 28 as the DATUM input for axis 0 then perform a homing routine

DATUM _ IN AXIS(0)=28
DATUM(3)

SEE ALSO:
DATUM

DAY$
TYPE:
String Function

SYNTAX:
DAY$

DESCRIPTION:
Used as part of a PRINT statement or a STRING variable to write the current day as a string.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DATUM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DATUM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PRINT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DIM.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
daY

2-130

The DAY$ is set through the DATE command

EXAMPLES:

EXAMPLE 1:
Print the day as part of a welcome message:

PRINT#5, “Welcome to Trio on “; DAY$

EXAMPLE 2:
Create a header to be used when writing a log to the SD card.

DIM header AS STRING(30)
header = DAY$ + “Start of production”

SEE ALSO:
DATE, DATE$, DAY, PRINT, STRING

DAY
TYPE:
System Function

SYNTAX:
value = DAY

DESCRIPTION:
Returns the current day as a number.

The DAY is set through the DATE command

RETURN VALUE:
0..6, Sunday is 0

EXAMPLE:
Print some text depending on the day

IF DAY=2 THEN
 PRINT#5, “Change filter”
ENDIF

SEE ALSO:
DATE, DAY$

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DATE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DATE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DATE$.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DAY.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PRINT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DIM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DATE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DAY$.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
dECEL

2-131

DECEL
TYPE:
Axis Parameter

DESCRIPTION:
The DECEL axis parameter may be used to set or read back the deceleration rate of each axis fitted.

VALUE:
The deceleration rate in UNITS/sec/sec. Must be a positive value.

EXAMPLE:
Set the deceleration parameter and print it to the user.

DECEL=100’ Set deceleration rate
PRINT “ Decel is “;DECEL;” mm/sec/sec”

SEE ALSO:
ACCEL

DECEL_ANGLE
TYPE:
Axis Parameter

DESCRIPTION:
This parameter is used with CORNER _ MODE, it defines the maximum change in direction of a 2 axis
interpolated move that will be merged at full speed. When the change in direction is greater than this angle
the speed will be proportionally reduced so that:

VP _ SPEED=FORCE _ SPEED * (angle – DECEL _ ANGLE) / (STOP _ ANGLE – DECEL _ ANGLE)

Where angle is the change in direction of the moves.

VALUE:
The angle to start to reduce the speed, in radians.

EXAMPLE:
Decelerate to a slower speed when the transition is between 15 and 45 degrees.

CORNER _ MODE=2
DECEL _ ANGLE = 15 * (PI/180)
STOP _ ANGLE = 45 * (PI/180)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ACCEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CORNER_MODE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VP_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FORCE_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STOP_ANGLE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
dEFPOS

2-132

SEE ALSO:
CORNER _ MODE, STOP _ ANGLE

DEFPOS
TYPE:
Axis Command

SYNTAX:
DEFPOS(pos1 [,pos2[, pos3[, pos4...]]])

ALTERNATE FORMAT:
DP(pos1 [,pos2[, pos3[, pos4...]]])

DESCRIPTION:
Defines the current position(s) as a new absolute value. The value pos# is placed in DPOS, while MPOS is
adjusted to maintain the FE value. This function is completed after the next servo-cycle. DEFPOS may be
used at any time, even whilst a move is in progress, but its normal function is to set the position values of a
group of axes which are stationary.

PARAMETERS:
pos1: Absolute position to set on current base axis in user units.
pos2: Abs. position to set on the next axis in BASE array in user units.
pos3: Abs. position to set on the next axis in BASE array in user units.
...

As many parameters as axes on the system may be specified.

EXAMPLES:

EXAMPLE 1:
After homing 2 axes, it is required to change the DPOS values so that the “home” positions are not zero, but
some defined positions instead.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CORNER_MODE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STOP_ANGLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
dEFPOS

2-133

DATUM(5) AXIS(1) ‘home both axes. At the end of the DATUM
DATUM(4) AXIS(3) ‘procedure, the positions will be 0,0.
WAIT IDLE AXIS(1)
WAIT IDLE AXIS(3)
BASE(1,3) ‘set up the BASE array
DEFPOS(-10,-35) ‘define positions of the axes to be -10 and -35

EXAMPLE 2:
Define the axis position to be 10, then start an absolute move, but make sure the axis has updated the
position before loading the MOVEABS.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVEABS.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
dEFPOS

2-134

DEFPOS(10.0)
WAIT UNTIL OFFPOS=0’ Ensures DEFPOS is complete before next line
MOVEABS(25.03)

EXAMPLE 3:
From the Motion Perfect terminal, quickly set the DPOS values of the first four axes to 0.

>>BASE(0)
>>DEFPOS(0,0,0,0)
>>

SEE ALSO:
OFFPOS

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFFPOS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
dEL

2-135

DEL
TYPE:
System Command (command line only)

SYNTAX:
DEL “program”

ALTERNATE FORMAT:
RM “program”

DESCRIPTION:
Used to delete a program form the controller memory.

 M THIS COMMAND SHOULD NOT BE USED FROM WITHIN MOTION PERFECT.

PARAMETERS:

program: the name of the program to be deleted

EXAMPLE:
Delete an old program

>>DEL “oldprog”
OK
>>

DEMAND_EDGES
TYPE:
Axis Parameter (Read Only)

DESCRIPTION:
Allows the user to read back the current DPOS in encoder edges.

� You can use DEMAND _ EDGES to check that your UNITS or ENCODER _ RATIO values are set correctly.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENCODER_RATIO.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
dEMaNd_SPEEd

2-136

VALUE:
Demand position in encoder edges.

EXAMPLE:
Print the DEMAND _ EDGES in the command line

>>PRINT DEMAND _ EDGES AXIS(4)
523
>>

DEMAND_SPEED
TYPE:
Axis Parameter (Read Only)

DESCRIPTION:
Returns the speed output of the VPU, this is normally used for low level debug of the motion system.

VALUE:
VPU speed output in user UNITS per servo period.

EXAMPLE:
Check the VPU speed output using the command line

>>?DEMAND _ SPEED
5.0000
>>

DEVICENET
TYPE:
System Command

SYNTAX:
DEVICENET(slot, function[,parameters…])

DESCRIPTION:
The command DEVICENET is used to start and stop the DeviceNet slave function which is built into the
Motion Coordinator.

Polled IO data is transferred periodically:

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
dEVICENET

2-137

From PLC to [TABLE(poll_base) -> TABLE(poll_base + poll_in)]

To PLC from [TABLE(poll_base + poll_in + 1) -> TABLE(poll_base + poll_in + poll_out)]

PARAMETERS:

slot: Set -1 for built-in CAN port
function: 0 Start the DeviceNet slave protocol on the given slot.

1 Stop the DeviceNet protocol.
2 Put startup baudrate into Flash EPROM

FUNCTION = 0:

SYNTAX:
DEVICENET(slot, 0, baud, mac _ id, poll _ base, poll _ in, poll _ out)

DESCRIPTION:
Start the DeviceNet protocol using the specified parameters

PARAMETERS:

baud: Set to 125, 250 or 500 to specify the baud rate in kHz.
mac_id: The ID which the Motion Coordinator will use to identify itself on the DeviceNet network.

Range 0..63.
poll_base: The first TABLE location to be transferred as poll data
poll_in: Number of words to be received during poll. Range 0..4
poll_out: Number of words to be sent during poll. Range 0..4

FUNCTION = 1:

SYNTAX:
DEVICENET(slot, 1)

DESCRIPTION:
Stop the DeviceNet protocol from running

FUNCTION = 2:

SYNTAX:
DEVICENET(slot, 2, baud)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
dIM.. aS.. STRING

2-138

DESCRIPTION:
Store the baud rate in flash EPROM for power up.

PARAMETERS:

baud: Set to 125, 250 or 500 to specify the baud rate in kHz.

EXAMPLES:

EXAMPLE 1:
Start the DeviceNet protocol on the built-in CAN port

DEVICENET(-1,0,500,30,0,4,2)

EXAMPLE 2:
Stop the DeviceNet protocol on the CAN board in slot 2;

DEVICENET(2,1)

EXAMPLE 3:
Set the CAN board in slot 0 to have a baud rate of 125k bps on power-up;

DEVICENET(0,2,125)

DIM.. AS.. STRING
TYPE:
Declaration

SYNTAX:
DIM name AS STRING(length)

DESCRIPTION:
Declare a variable as a string so that you can use it in PRINT statements or as part of a logical condition.
The variable can be assigned by any function or parameter that generates a string or manually.

PARAMETERS:
name: Any user-defined name containing lower case alpha, numerical or underscore (_) characters.
length: Maximum number of characters that the variable can hold

The length must be a number. You cannot use local variables, VR etc to set this value.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PRINT.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
dIM.. aS.. STRING

2-139

EXAMPLES:

EXAMPLE 1:
Pre-define a set of error strings to use later:

DIM error1 AS STRING(20)
error1 = “Feed jammed”
DIM error2 AS STRING(20)
error2 = “Cutter jammed”
DIM error3 AS STRING(20)
error3 = “Out of material”

display _ error:
IF error _ number = 1 then
 PRINT error1
ELSEIF error _ number = 2 then
 PRINT error2
ELSE
 PRINT error3
ENDIF

EXAMPLE 2:
Read in characters from a channel and append them to a string variable then finally printing them.

 DIM captured _ text AS STRING(50)
 WHILE char<>13 OR count>50
 TICKS=10000 ‘5 second timeout on character
 WAIT UNTIL KEY#5 OR TICKS<0
 IF TICKS<0 THEN
 count=100 ‘exit loop
 ELSE
 GET#5,char
 captured _ text = captured _ text + CHR(char)
 count=count+1
 ENDIF
 WEND
 PRINT captured _ text

EXAMPLE 3:
Using a string variable decide which motion routine to execute:

 IF g _ value = “G00” THEN ‘ rapid positioning
 SPEED = fast _ speed
 MOVE(x,y,z)
 WAIT IDLE
 SPEED = standard _ speed
 ELSEIF g _ value = “G01” THEN ‘ linear move

Trio Motion Technology

TRIOBaSIC COMMaNdS
dIR

2-140

 MOVE(x,y,z)
 ELSEIF g _ value = “G02” THEN ‘ anticlockwise circular move
 MOVECIRC(x,y,x+i _ value,y+j _ value,0)
 ELSEIF g _ value = “G03” THEN ‘ clockwise circular move
 MOVECIRC(x,y,x+i _ value,y+j _ value,1)
 ELSE
 PRINT “Ignoring unsupported token: “;g _ value
 ENDIF

SEE ALSO:
CHR, HEX, DATE$, DAY$, TIME$

DIR
TYPE:
System Command (command line only)

SYNTAX:
DIR [option]

ALTERNATE FORMAT:
LS [option]

DESCRIPTION:
Prints a list of all programs including their size and RUNTYPE.

PARAMETERS:
Parameter Function
none Directory listing of controller memory
d Directory listing of SD card memory
s Reserved function
x Extended listing of controller memory (used by Motion Perfect).

DISABLE_GROUP
TYPE:
System Command

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CHR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/HEX.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DATE$.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DAY$.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RUNTYPE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
dISaBLE_GROuP

2-141

SYNTAX:
DISABLE _ GROUP(parameter[,parameters…])

DESCRIPTION:
Used to create a group of axes which will be disabled if there is a motion error in one or more of the group.
After the group is created, when an error occurs all the axes in the group will have their AXIS _ ENABLE set
to OFF and SERVO set to OFF.

Multiple groups can be made, although one axis cannot belong to more than one group.

 M ONLY AXES THAT HAVE INDIVIDUAL ENABLES SHOULD BE USED IN A DISABLE GROUP. SUCH AS DIGITAL DRIVES AND
STEPPERS.

DISABLE_GROUP(-1)

SYNTAX:
DISABLE _ GROUP(-1)

DESCRIPTION:
Clears all groups

DISABLE_GROUP(AXIS1…)

SYNTAX:
DISABLE _ GROUP(axis1 [,axis2[, axis3[, axis4.....]]])

DESCRIPTION:
Assigns the listed axis to a group

PARAMETERS:
axis1: Axis number of first axis in group
axis2: Axis number of second axis in group.
axisN: Axis number of Nth axis in group.

As many parameters as axes on the system may be specified.

EXAMPLES:

EXAMPLE 1:
A machine has 2 functionally separate systems, which have their own emergency stop and operator

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_ENABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SERVO.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
dISaBLE_GROuP

2-142

protection guarding. If there is an error on one part of the machine, the other part can safely remain
running while the cause of the error is removed and the axis group re-started. We need to set up 2 separate
axis groupings.

DISABLE _ GROUP(-1) ‘remove any previous axis groupings
DISABLE _ GROUP(0,1,2,6) ‘group axes 0 to 2 and 6
DISABLE _ GROUP(3,4,5,7) ‘group axes 3 to 5 and 7
WDOG=ON ‘turn on the enable relay and the remote drive enable
FOR ax=0 TO 7
 AXIS _ ENABLE AXIS(ax)=ON ‘enable the 8 axes
 SERVO AXIS(ax)=ON ‘start position loop servo for each axis
NEXT ax

EXAMPLE 2:
Two conveyors operated by the same Motion Coordinator are required to run independently so that if one
has a “jam” it will not stop the second conveyor.

DISABLE _ GROUP(0) ‘put axis 0 in its own group
DISABLE _ GROUP(1) ‘put axis 1 in another group
GOSUB group _ enable0
GOSUB group _ enable1
WDOG=ON
FORWARD AXIS(0)
FORWARD AXIS(1)

Software Reference Manual

TRIOBaSIC COMMaNdS
dISaBLE_GROuP

2-143

WHILE TRUE
 IF AXIS _ ENABLE AXIS(0)=0 THEN
 PRINT “motion error axis 0”
 reset _ 0 _ flag=1
 ENDIF
 IF AXIS _ ENABLE AXIS(1)=0 THEN
 PRINT “motion error axis 1”
 reset _ 1 _ flag=1
 ENDIF
 IF reset _ 0 _ flag=1 AND IN(0)=ON THEN
 GOSUB group _ enable0
 FORWARD AXIS(0)
 reset _ 0 _ flag=0
 ENDIF
 IF reset _ 1 _ flag=1 AND IN(1)=ON THEN
 GOSUB group _ enable1
 FORWARD AXIS(1)
 reset _ 1 _ flag=0
 ENDIF
WEND

group _ enable0:
 BASE(0)
 DATUM(7) ‘ clear motion error on axis 0
 WA(10)
 AXIS _ ENABLE=ON
 SERVO=ON
RETURN
group _ enable1:
 BASE(1)
 DATUM(7) ‘ clear motion error on axis 0
 WA(10)
 AXIS _ ENABLE=ON
 SERVO=ON
RETURN

EXAMPLE 3:
One group of axes in a machine requires resetting, without affecting the remaining axes, if a motion error
occurs. This should be done manually by clearing the cause of the error, pressing a button to clear the
controllers’ error flags and re-enabling the motion.

 DISABLE _ GROUP(-1) ‘remove any previous axis groupings
 DISABLE _ GROUP(0,1,2) ‘group axes 0 to 2
 GOSUB group _ enable ‘enable the axes and clear errors
 WDOG=ON
 SPEED=1000

Trio Motion Technology

TRIOBaSIC COMMaNdS
dISPLaY

2-144

 FORWARD

 WHILE IN(2)=ON ‘check axis 0, but all axes in the group
 ‘will disable together
 IF AXIS _ ENABLE =0 THEN
 PRINT “Motion error in group 0”
 PRINT “Press input 0 to reset”
 IF IN(0)=0 THEN ‘checks if reset button is pressed
 GOSUB group _ enable ‘clear errors and enable axis
 FORWARD ‘restarts the motion
 ENDIF
 ENDIF
 WEND
 STOP ‘stop program running into sub routine

group _ enable: ‘Clear group errors and enable axes
 DATUM(0) ‘clear any motion errors
 WA(10)
 FOR axis _ no=0 TO 2
 AXIS _ ENABLE AXIS(axis _ no)=ON ‘enable axes
 SERVO AXIS(axis _ no)=ON ‘start position loop servo
 NEXT axis _ no
 RETURN

SEE ALSO:
AXIS _ ENABLE, SERVO

DISPLAY
TYPE:
System Parameter

DESCRIPTION:
Determines which group of the I/O channels are to be displayed on the LCD.

VALUE:
Bits
16 - 31

Bits
0 - 15

Description

0 Inputs 0-15 (default value)

1 Inputs 16-31

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_ENABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SERVO.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
dISTRIBuTOR_KEY

2-145

Bits
16 - 31

Bits
0 - 15

Description

2 Outputs 0-15 (0-7 unused on existing
controllers)

3 Outputs 16-31

1 User control of the LCD segments *

888 Reserved value

* MC405 only. When bit 16 is set, user control of the 3x7 segment characters is enabled. By default this is
disabled.

EXAMPLE 1:
Show outputs 16-31

>>DISPLAY=3
>>

EXAMPLE 2:
Enable user control of 3x7 segments

>>DISPLAY.16 = 1
>>LCDSTR=”123”

SEE ALSO:
LCDSTR

DISTRIBUTOR_KEY
TYPE:
Reserved Keyword

/ Divide
TYPE:
Mathematical operator

SYNTAX
<expression1> / <expression2>

Trio Motion Technology

TRIOBaSIC COMMaNdS
dLINK

2-146

DESCRIPTION:
Divides expression1 by expression2

PARAMETERS:

Expression1: Any valid TrioBASIC expression
Expression2: Any valid TrioBASIC expression

EXAMPLE:
Calculate a value for ‘a’ by dividing 10 by the sum of 2.1 and 9. The result is that a=0.9009

a=10/(2.1+9)

DLINK
TYPE:
System Command

SYNTAX:
DLINK(function,…)

DESCRIPTION:
This is a specialised command, to allow access to the SLM™ digital drive interface. The axis parameters
have to be initialised by the DLINK function 2 command before the interface can be used for controlling an
external drive.

 M THE CURRENT SLM SOFTWARE DICTATES THAT THE DRIVE MUST BE POWERED UP AFTER POWER IS APPLIED TO THE
MOTION COORDINATOR/ SLM.

PARAMETERS:

Function: Specifies the required function.
0 Reserved function

1 Reserved function

2 Check for presence SLM module

3 Check for presence of SLM servo drive

4 Assign a Motion Coordinator axis to a SLM channel

5 Read an SLM parameter

Software Reference Manual

TRIOBaSIC COMMaNdS
dLINK

2-147

Function: Specifies the required function.
6 Write an SLM parameter

7 Write an SLM command

8 Read a drive parameter

9 Returns slot and communication channel associated with an axis

10 Read an EEPROM parameter

FUNCTION = 2:

SYNTAX:
value = DLINK(2, slot, com)

DESCRIPTION:
Check for presence SLM module on rear of motor.

PARAMETERS:

value: Returns 1 if the SLM is answering, otherwise it returns 0.
slot: The communications slot where the module is connected
com: The communication channel where the axis is connected in the module

EXAMPLE
Check for a SLM module on slot 0, communication channel 0

>>? DLINK(2,0,0)
1.0000
>>

FUNCTION = 3:

SYNTAX:
value = DLINK(3, slot, com)

DESCRIPTION:
Check for presence of SLM servo drive, such as MultiAx.

PARAMETERS:

value: Returns 1 if the drive is answering, otherwise it returns 0.
slot: The communications slot where the module is connected

Trio Motion Technology

TRIOBaSIC COMMaNdS
dLINK

2-148

com: The communication channel where the axis is connected in the module

EXAMPLE:
Check for a SLM drive on slot 0, communication channel 0.

>>? DLINK(3,0,0)
0.0000
>>

FUNCTION = 4:

SYNTAX:
value = DLINK(4, slot, com, axis)

DESCRIPTION:
Assign a Motion Coordinator axis to a SLM channel.

value: Returns TRUE if successful otherwise returns FALSE
slot: The communications slot where the module is connected
com: The communication channel where the axis is connected in the module
axis: The axis to be associated with this drive. If this axis is already assigned then it will fail. The

ATYPE of this axis will be set to 11.

EXAMPLE:
Assign axis 0 to the drive connected to slot 0 and communication channel 0

>>DLINK(4,0,0,0)

FUNCTION = 5:

SYNTAX:
value = DLINK(5, axis, parameter)

DESCRIPTION:
Read an SLM parameter

PARAMETERS:

value: The value returned from SLM, returns -1 if the command fails
axis: The axis number associated with the drive
parameter: The number of the SLM parameter to be read. This is normally in the range 0…127. See the

drive documentation for further information.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ATYPE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
dLINK

2-149

EXAMPLE:
Print the value of the SLM parameter 5 from axis 0.

>>PRINT DLINK(5,0,1)
463.0000
>>

FUNCTION = 6:

SYNTAX:
value = DLINK(6, axis, parameter, value)

DESCRIPTION:
Write an SLM parameter

PARAMETERS:

value: Returns TRUE if successful otherwise returns FALSE
axis: The axis number associated with the drive
parameter: The number of the SLM parameter to be read. This is normally in the range 0…127. See the

drive documentation for further information
value: The value to write to the parameter

EXAMPLE:
Set SLM parameter 0 to the value 0 on axis 0.

>>DLINK(6,0,0,0)
>>

FUNCTION = 7:

SYNTAX:
value = DLINK(7, axis, command)

DESCRIPTION:
Write an SLM command.

PARAMETERS:

value: Returns TRUE if successful otherwise returns FALSE
axis: The axis number associated with the drive Function 7
command: The command number. (See drive documentation)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
dLINK

2-150

EXAMPLE:
Write SLM command 250 to axis 0

>>PRINT DLINK(7,0,250)
1.0000
>>

FUNCTION = 8:

SYNTAX:
value = DLINK(8, axis, parameter)

DESCRIPTION:
Read a drive parameter

PARAMETERS:

value: The value returned from the drive, returns -1 if the command fails
axis: The axis number associated with the drive
parameter: The number of the drive parameter to be read. This is normally in the range 0…127. See

the drive documentation for further information.

EXAMPLE:
Read drive parameter 53248 for axis 0

>>PRINT DLINK(8,0,53248)
20504.0000
>>

FUNCTION = 9:

SYNTAX:
value = DLINK(9, axis)

DESCRIPTION:
Return slot and communication channel associated with an axis

PARAMETERS:

value: 10 x slot number + communication channel, returns -1 if the command fails
axis: The axis number associated with the drive.

Software Reference Manual

TRIOBaSIC COMMaNdS
$ dollar

2-151

EXAMPLE:
Read axis 2 SLM information

>>PRINT DLINK(9,2)
>>11.0000

This example is for slot 1, communication channel 1

FUNCTION = 10:

SYNTAX:
value = DLINK(10, axis, parameter)

DESCRIPTION:
Read an EEPROM parameter

PARAMETERS:

value: The value from the EEPROM value, returns -1 if the command fails
axis: The axis number associated with the drive.
parameter: EEPROM parameter number. (See drive documentation)

EXAMPLE:
Return the EEPROM parameter 29, the Flux Angle from axis 0

>>PRINT DLINK(10,0,29)
>>62128.0000

$ Dollar
TYPE:
Special Character

SYNTAX
$number

DESCRIPTION:
The $ symbol is used to specify that the following signed 53bit number is in hexadecimal format.

Trio Motion Technology

TRIOBaSIC COMMaNdS
dPOS

2-152

EXAMPLES:

EXAMPLE 1:
Store the hexadecimal value of 38F3B into VR 10 and –A58 into VR 11

VR(10)=$38F3B
VR(11)=-$A58

EXAMPLE 2:
Turn on outputs 11,12,15,16

OP($CC00)

DPOS
TYPE:
Axis Parameter (Read Only)

DESCRIPTION:
The demand position DPOS is the demanded axis position generated by the motion commands.

DPOS is set to MPOS when SERVO or WDOG are OFF

DPOS can be adjusted without any motion by using DEFPOS or OFFPOS.

A step change in DPOS can be written using ENDMOVE

VALUE:
Demand position in user units. Default 0 on power up.

EXAMPLE:
Return the demand position for axis 10 in user units

>>? DPOS AXIS(10)
5432
>>

SEE ALSO:
DEFPOS, ENDMOVE, OFFPOS, AXIS _ DPOS

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SERVO.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/WDOG.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DEFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENDMOVE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DEFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENDMOVE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_DPOS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
dRIVE_CONTROLWORd

2-153

DRIVE_CONTROLWORD
TYPE:
Axis Parameter

DESCRIPTION:
Sets the Control Word which is sent cyclically to a remote drive connected by a fieldbus. For example in
CANopen over EtherCAT (CoE) the DRIVE _ CONTROLWORD would set the value in object $6040 sub-index
$00.

VALUE:
Example for a CANopen over EtherCAT (CoE) remote drive. See specific drive manuals for further details.

Bit Description
0 Switch on
1 Enable voltage
2 Quick stop
3 Enable operation
4 Homing operation start
5 Operation mode specific
6 Operation mode specific
7 Fault reset
8 Halt

EXAMPLE:
Write to the CoE control word sent cyclically to the drive connected as axis 6 on an EtherCAT network.

BASE(6)
DRIVE _ CW _ MODE=1 ‘ take manual control of the Control Word
DRIVE _ CONTROLWORD = $2F ‘ set the bits to enable the drive

DRIVE_CW_MODE
TYPE:
Axis Parameter

DESCRIPTION:
The operation of the control word sent cyclically to a remote drive is, by default, controlled by the
firmware. For example the control word will usually be under the control of the WDOG and AXIS _ ENABLE
parameters so that the drive can be enabled and disabled by software. Optionally, if DRIVE _ CW _ MODE is
set to 1, the control word may be set by a user program.

Trio Motion Technology

TRIOBaSIC COMMaNdS
dRIVE_CW_MOdE

2-154

VALUE:
The mode of operation for the drive control word.

0 System sets the value of the control word, depending on state of WDOG and AXIS _ ENABLE.
1 User program takes control of the control word via DRIVE _ CONTROLWORD.

EXAMPLE:

EXAMPLE1
Take over the CoE control word sent cyclically to the drive connected as axis 0 on an EtherCAT network.
Then toggle the reset bit.

BASE(0)
DRIVE _ CW _ MODE=1 ‘ take manual control of the Control Word
DRIVE _ CONTROLWORD = $06 ‘ disable the drive
WA(10)
DRIVE _ CONTROLWORD = $86 ‘ reset the drive
WA(10)
DRIVE _ CONTROLWORD = $06

EXAMPLE2
Take over the CoE control word sent cyclically to the drive connected as axis 2 on an EtherCAT network.
Then make a sequence to start homing.

 BASE(2)
 SERVO=OFF
 DRIVE _ CW _ MODE=1 ‘ set the control word to be user mode
 DRIVE _ CONTROLWORD=$06 ‘ disable the drive
 ‘ Set the drive to DS402 homing mode
 CO _ WRITE _ AXIS(ax,$6060,$00,2,-1,6)
 ‘ wait for the homing mode to be accepted
 VR(100)=0
 REPEAT
 CO _ READ _ AXIS(ax,$6061,$00,2,100)
 UNTIL VR(100)=6

‘ set the homing method (1 for +ve direction, 2 for -ve)
 fwd=1
 rev=2
 CO _ WRITE _ AXIS(ax,$6098,$00,2,-1,fwd)

 DRIVE _ CONTROLWORD=$1f ‘start homing
 WA(20)

 ‘ wait for Homing Done flag (bit 12)
 REPEAT

Software Reference Manual

TRIOBaSIC COMMaNdS
dRIVE_FE

2-155

 WA(1)
 UNTIL DRIVE _ STATUS.12=1
 WA(20)
 DEFPOS(ENCODER) ‘ set the axis position to drive’s value
 SERVO=ON
 WDOG=ON
 ‘ Set the drive to position mode
 CO _ WRITE _ AXIS(ax,$6060,$00,2,-1,8)
 ‘ Set control word to normal enabled state
 DRIVE _ CONTROLWORD=$2f
 DRIVE _ CW _ MODE=0 ‘ set the control word back to wdog mode

DRIVE_FE
TYPE:
Axis Parameter

DESCRIPTION:
Returns the value of following error calculated by a remote drive in position mode. For this value to be
active, the cyclic data transfer from the drive must be first configured to return the drive actual position
error value. For a drive connected by CanOpen over EtherCAT (CoE) the value will be configured as part of
the Process Data Object. (PDO)

VALUE:
The drive position error returned in drive units.

EXAMPLE:

EXAMPLE1
Display the drive’s position error to Motion Perfect terminal 5.

PRINT #5,”Drive Position Error = “;DRIVE _ FE AXIS(3)

EXAMPLE2
Wait for the drive’s position error to go below a pre-defined threshold value.

BASE(2)
WAIT UNTIL ABS(DRIVE _ FE) < 300

Trio Motion Technology

TRIOBaSIC COMMaNdS
dRIVE_STaTuS

2-156

DRIVE_STATUS
TYPE:
Axis Parameter

DESCRIPTION:
Returns the Status Word received cyclically from a remote drive connected by a fieldbus. For example in
CANopen over EtherCAT (CoE) the DRIVE _ STATUS would have the value from object $6041 sub-index $00.

VALUE:
Example for a CANopen over EtherCAT (CoE) remote drive. See specific drive manuals for further details.

Bit Description
0 Ready to switch on
1 Switched on
2 Operation enabled
3 Fault
4 Voltage enabled
5 quick stop
6 switch on disabled
7 warning

EXAMPLE:
Read the CoE status from the drive connect as axis 4 on an EtherCAT network.

PRINT #5,HEX(DRIVE _ STATUS AXIS(4))

DRIVE_TORQUE
TYPE:
Axis Parameter

DESCRIPTION:
Returns the actual torque value calculated by a remote drive. For this value to be active, the cyclic
data transfer from the drive must be first configured to return the drive actual torque value. For a drive
connected by CanOpen over EtherCAT (CoE) the value will be configured as part of the Process Data Object.
(PDO)

VALUE:
The drive torque returned in drive units.

Software Reference Manual

TRIOBaSIC COMMaNdS
duMP

2-157

EXAMPLE:

EXAMPLE1
Display the drive’s torque to Motion Perfect terminal 5.

PRINT #5,”Drive torque value = “;DRIVE _ TORQUE AXIS(2)

EXAMPLE2
Wait for the drive’s torque value to go below a pre-defined level.

BASE(16)
WAIT UNTIL DRIVE _ TORQUE < 3000

DUMP
TYPE:
Reserved Keyword

Trio Motion Technology

TRIOBaSIC COMMaNdS
EdPROG

2-158

TRIOBaSIC COMMaNdS
EdPROG

2-159

Software Reference Manual

EDPROG
TYPE:
System Command

SYNTAX:
EDPROG [parameters,] function

ALTERNATE FORMAT:
& function[, parameters]

DESCRIPTION:
This is a special command that may be used to manipulate the SELECTed programs on the controller.

It is not normally used except by Motion Perfect.

FUNCTIONS:

1 I Insert string
2 S Search for string
3 D Delete line
4 L Print lines
5 N Print number of lines
6 A Print label addresses
7 C Prints the name of the currently selected program
8 R Replace line
9 K Print checksum
10 Z Print checksum of specified program
11 X Print object code checksum
12 Q Checks if the controller directory is corrupt
13 V Print variable list
14 M Commit changes

FUNCTION = A:

SYNTAX:
EDPROG 6, to _ line, from _ line

E

file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\SELECT.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
EdPROG

2-160

ALTERNATE SYNTAX:
& from _ line, to _ line A

DESCRIPTION:
Prints all label names in the region defined in the SELECTed program.

PARAMETERS:

from_line: The first line of the SELECTed program to search
to_line: The last line of the SELECTed program to search

FUNCTION = C:

SYNTAX:
EDPROG C

ALTERNATE SYNTAX:
& C

DESCRIPTION:
Prints the name of the currently SELECTed program.

FUNCTION = D:

SYNTAX:
EDPROG 3, line _ no

ALTERNATE SYNTAX:
& line _ no D

DESCRIPTION:
Deletes the specified line

PARAMETER:
line_no: Any valid line number form the SELECTed program

file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\SELECT.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\SELECT.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\SELECT.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\SELECT.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\SELECT.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
EdPROG

2-161

FUNCTION = I:

SYNTAX:
EDPROG string, 1, line _ no

ALTERNATE SYNTAX:
& line _ no I,string

DESCRIPTION:
Insert the text string in the currently selected program at the specified line.

You should NOT enclose the string in quotes unless they need to be inserted into the program.

PARAMETERS:
line_no: The line to insert the string
string: The text string to insert into the SELECTed program

FUNCTION = K:

SYNTAX:
EDPROG 10

ALTERNATE SYNTAX:
& K

DESCRIPTION:
Print the checksum of the system software

FUNCTION = L:

SYNTAX:
EDPROG 4, end, start

ALTERNATE SYNTAX:
& start, end L

DESCRIPTION:
Print the lines of the currently selected program between start and end

file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\SELECT.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
EdPROG

2-162

PARAMETERS:

start: The first line to print from the SELECTed program
end: The last line to print from the SELECTed program

FUNCTION = M:

SYNTAX:
EDPROG 14

ALTERNATE SYNTAX:
& M

DESCRIPTION:
Saves all program changes to flash.

FUNCTION N:

SYNTAX:
EDPROG 5

ALTERNATE SYNTAX:
& N

DESCRIPTION:
Print the number of lines in the currently SELECTed program

FUNCTION = Q:

SYNTAX:
EDPROG 12

ALTERNATE SYNTAX:
& Q

DESCRIPTION:
Returns the state of the controllers program memory.

file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\SELECT.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\SELECT.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\SELECT.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
EdPROG

2-163

RETURN VALUE:

0 Controller memory OK
1 Controller memory corrupted

FUNCTION = R:

SYNTAX:
EDPROG string, 8, line

ALTERNATE SYNTAX:
& line R, string

DESCRIPTION:
Replace the line <line> in the currently SELECTed program with the text <string>.

You should NOT enclose the string in quotes unless they need to be inserted into the program.

PARAMETERS:

line_no: The line to replace
string: The text string to replace the line in the SELECTed program

FUNCTION = S:

SYNTAX:
EDPROG string, 2, to _ line, from _ line

ALTERNATE SYNTAX:
& from _ line, to _ line S string

DESCRIPTION:
Prints the line number of the first occurrence of the string in the region defined in the SELECTed program.

PARAMETERS:
from_line: The first line of the SELECTed program to search
to_line: The last line of the SELECTed program to search
string The string to search for

file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\SELECT.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\SELECT.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\SELECT.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\SELECT.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\SELECT.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
EdPROG

2-164

FUNCTION = V:

SYNTAX:
EDPROG 13

ALTERNATE SYNTAX:
& V

DESCRIPTION:
Print all variables defined in the SELECTed program.

FUNCTION = X:

SYNTAX:
EDPROG 11

ALTERNATE SYNTAX:
& X

DESCRIPTION:
Print the 16bit CRC checksum of the SELECTed program.

FUNCTION = Z:

SYNTAX:
EDPROG progname, 10

ALTERNATE SYNTAX:
& Z, progname

DESCRIPTION:
Print the CRC checksum of the specified program.

RETURN VALUE:
Returns the checksum using standard CCITT 16 bit generator polynomial.

SEE ALSO:
SELECT

file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\SELECT.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\SELECT.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\SELECT.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
EdPROG1

2-165

EDPROG1
TYPE:
System Command

SYNTAX:
EDPROG1 prog _ name,[parameters,] function

ALTERNATE FORMAT:
! prog _ name, prog _ name, function[, parameters]

DESCRIPTION:
This is a special command that may be used to manipulate the SELECTed programs on the controller.

It is not normally used except by Motion Perfect.

FUNCTIONS:

1 I Insert string

2 S Search for string

3 D Delete line

4 L Print lines

5 N Print number of lines

6 A Print label addresses

7 C Prints the name of the currently selected program

8 R Replace line

9 K Print checksum

10 Z Print checksum of specified program

11 X Print object code checksum

12 Q Checks if the controller directory is corrupt

13 V Print variable list

14 M Commit changes

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
EdPROG1

2-166

FUNCTION = A:

SYNTAX:
EDPROG16, to _ line, from _ line

ALTERNATE SYNTAX:
! prog _ name, from _ line, to _ line A

DESCRIPTION:
Prints all label names in the region defined in the SELECTed program.

PARAMETERS:

from_line: The first line of the SELECTed program to search
to_line: The last line of the SELECTed program to search

FUNCTION = C:

SYNTAX:
EDPROG1C

ALTERNATE SYNTAX:
! prog _ name, C

DESCRIPTION:
Prints the name of the currently SELECTed program.

FUNCTION = D:

SYNTAX:
EDPROG1 prog _ name, 3, line _ no

ALTERNATE SYNTAX:
! prog _ name, line _ no D

DESCRIPTION:
Deletes the specified line

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
EdPROG1

2-167

PARAMETER:

line_no: Any valid line number form the SELECTed program

FUNCTION = I:

SYNTAX:
EDPROG1 prog _ name, string, 1, line _ no

ALTERNATE SYNTAX:
! prog _ name, line _ no I,string

DESCRIPTION:
Insert the text string in the currently selected program at the specified line.

You should NOT enclose the string in quotes unless they need to be inserted into the program.

PARAMETERS:

line_no: The line to insert the string
string: The text string to insert into the SELECTed program

FUNCTION = K:

SYNTAX:
EDPROG1 prog _ name, 10

ALTERNATE SYNTAX:
! prog _ name, K

DESCRIPTION:
Print the checksum of the system software

FUNCTION = L:

SYNTAX:
EDPROG1 prog _ name, 4, end, start

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
EdPROG1

2-168

ALTERNATE SYNTAX:
! prog _ name, start, end L

DESCRIPTION:
Print the lines of the currently selected program between start and end

PARAMETERS:

start: The first line to print from the SELECTed program
end: The last line to print from the SELECTed program

FUNCTION = M:

SYNTAX:
EDPROG1 prog _ name, 14

ALTERNATE SYNTAX:
! prog _ name, M

DESCRIPTION:
Saves all program changes to flash.

FUNCTION N:

SYNTAX:
EDPROG1 prog _ name, 5

ALTERNATE SYNTAX:
! prog _ name, N

DESCRIPTION:
Print the number of lines in the currently SELECTed program

FUNCTION = Q:

SYNTAX:
EDPROG1 prog _ name, 12

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
EdPROG1

2-169

ALTERNATE SYNTAX:
! prog _ name, Q

DESCRIPTION:
Returns the state of the controllers program memory.

RETURN VALUE:

0 Controller memory OK
1 Controller memory corrupted

FUNCTION = R:

SYNTAX:
EDPROG1 prog _ name, string, 8, line

ALTERNATE SYNTAX:
! prog _ name, line R, string

DESCRIPTION:
Replace the line <line> in the currently SELECTed program with the text <string>.

You should NOT enclose the string in quotes unless they need to be inserted into the program.

PARAMETERS:

line_no: The line to replace
string: The text string to replace the line in the SELECTed program

FUNCTION = S:

SYNTAX:
EDPROG1 prog _ name, string, 2, to _ line, from _ line

ALTERNATE SYNTAX:
! prog _ name, from _ line, to _ line S string

DESCRIPTION:
Prints the line number of the first occurrence of the string in the region defined in the SELECTed program.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
EdPROG1

2-170

PARAMETERS:

from_line: The first line of the SELECTed program to search
to_line: The last line of the SELECTed program to search
string The string to search for

FUNCTION = V:

SYNTAX:
EDPROG1 prog _ name, 13

ALTERNATE SYNTAX:
! prog _ name, V

DESCRIPTION:
Print all variables defined in the SELECTed program.

FUNCTION = X:

SYNTAX:
EDPROG1 prog _ name, 11

ALTERNATE SYNTAX:
! prog _ name, X

DESCRIPTION:
Print the 16bit CRC checksum of the SELECTed program.

FUNCTION = Z:

SYNTAX:
EDPROG1 prog _ name, progname, 10

ALTERNATE SYNTAX:
! prog _ name, Z, progname

DESCRIPTION:
Print the CRC checksum of the specified program.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
ENCOdER

2-171

RETURN VALUE:
Returns the checksum using standard CCITT 16 bit generator polynomial.

SEE ALSO:
SELECT

ENCODER
TYPE:
Axis Parameter (Read Only)

DESCRIPTION:
The ENCODER axis parameter holds a raw copy of the positional feedback device.

The MPOS axis measured position is calculated from the ENCODER value automatically allowing for overflows
and offsets.

VALUE:

Feedback device Value
Incremental encoder: The value latched in the encoder hardware register
Absolute Encoder: The positional value using the number of bits set in ENCODER_BITS
Digital Axis: Raw position feedback from the drive

SEE ALSO:
ENCODER _ BITS, MPOS

ENCODER_BITS
TYPE:
Axis Parameter

DESCRIPTION:
This parameter is only used with an absolute encoder axis. It is used to set the number of data bits to be
clocked out of the encoder by the axis hardware. There are 2 types of absolute encoder supported by this
parameter; SSI and EnDat.

If the number of ENCODER _ BITS is to be changed, the parameter must first be set to zero before
entering the new value.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENCODER_BITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENCODER_BITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
ENCOdER_CONTROL

2-172

VALUE:

Encoder type Value Function
All: 0 No data is clocked out of the encoder (default)
SSI: Bit 0-5 are the number of bits to be clocked out of the encoder. Range 0-32

Bit 6 set for Binary, clear for Gray code (default)
EnDat: Bits 0..7 of the parameter are the total number of encoder bits and bits 8..14 are the

number of multi-turn bits

EXAMPLES:

EXAMPLE 1:
Set up 2 axes of SSI absolute encoder

ENCODER _ BITS AXIS(3) = 12
ENCODER _ BITS AXIS(7) = 21

EXAMPLE 2:
Re-initialise MPOS using absolute value from encoder

SERVO=OFF
ENCODER _ BITS = 0
ENCODER _ BITS = databits

EXAMPLE 3:
A 25 bit EnDat encoder has 12 multi-turn and 13 bits/turn resolution. (Total number of bits is 25)

ENCODER _ BITS = 25 + (256 * 12)

ENCODER_CONTROL
TYPE:
Axis Parameter

DESCRIPTION:
Endat encoders can be set to either cyclically return their position, or they can be set to a parameter read/
write mode.

Using the ENCODER _ READ or ENCODER _ WRITE functions will set the parameter to 1 automatically.

VALUE:

0 position return mode (default value)
1 sets parameter read/write mode

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENCODER_READ.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENCODER_WRITE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
ENCOdER_FILTER

2-173

EXAMPLE:
Reset ENCODER _ CONTROL after an ENCODER _ READ so that the position is returned.

value = ENCODER _ READ($A700)
ENCODER _ CONTROL = 0

SEE ALSO:
ENCODER _ READ, ENCODER _ WRITE

ENCODER_FILTER
TYPE:
Axis Parameter

DESCRIPTION:
This parameter allows filtering to be applied to an encoder feedback to reduce the impact of jitter. The
smaller the value the larger the time constant and so the less impact jitter will have on the system.

� This parameter can be used to reduce jitter on a master axis which is linked to another axis.

VALUE:
Filter parameter range 0.001 to 1 (default 1).

EXAMPLE:
Apply a filter to a line encoder so that the connected axes are not affected by any jitter:

BASE(0)
ENCODER _ FILTER= 0.95
BASE(1)
CONNECT(1,0)

ENCODER_ID
TYPE:
Axis Parameter

DESCRIPTION:
This parameter returns the Encoder Identification (ENID) parameter from a Tamagawa absolute encoder.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENCODER_READ.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENCODER_READ.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENCODER_WRITE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
ENCOdER_RaTIO

2-174

VALUE:
Only encoders returning 17 are currently supported

EXAMPLE:
Initialise a Tamagawa absolute encoder and check it is working by looking at ENCODER _ ID.

ATYPE = 46
IF ENCODER _ ID<>17 THEN
 PRINT#term, “Incorrect ENID”
ENDIF

ENCODER_RATIO
TYPE:
Axis Command

SYNTAX:
ENCODER _ RATIO(mpos _ count, input _ count)

DESCRIPTION:
This command allows the incoming encoder count to be scaled by a non integer ratio:

MPOS = (mpos_count / input_count) x encoder_edges_input

 M WHEN USING THE SERVO LOOP YOU WILL NEED TO ADJUST THE GAINS TO MAINTAIN PERFORMANCE AND STABILITY.

Unlike the UNITS parameter, which only affects the scaling seen by the user programs, ENCODER _ RATIO
affects all motion commands.

ENCODER _ RATIO does not replace UNITS. Only use ENCODER _ RATIO where absolutely necessary.
PP _ STEP and ENCODER _ RATIO cannot be used at the same time on the same axis.

PARAMETERS:
mpos_count: An integer number which defines the numerator
input_count: An integer number which defines the denominator

Large ratios should be avoided as they will lead to either loss of resolution or much reduced
smoothness in the motion. The actual physical encoder count is the basic resolution of the axis
and use of this command may reduce the ability of the Motion Coordinator to accurately achieve all
positions.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PP_STEP.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
ENCOdER_RaTIO

2-175

EXAMPLES:

EXAMPLE 1:
A rotary table has a servo motor connected directly to its centre of rotation. An encoder is mounted to the
rear of the servo motor and returns a value of 8192 counts per rev. The application requires the table to be
calibrated in degrees so that each degree is an integer number of counts.

As 8192 cannot be exactly divided into 360 ENCODER _ RATIO is used to adjust the encoder feedback.

The highest value that is less than 8192 yet divides into 360 should be chosen. This is 7200 (7200 / 20 = 360).
This reduces the resolution from 0.044 to 0.055 degrees, but enables you to program easily in degrees.

ENCODER _ RATIO(7200,8192)
UNITS = 20 ‘ axis calibrated in degrees

EXAMPLE 2:
An X-Y system has 2 different gearboxes on its vertical and horizontal axes. The software needs to use
interpolated moves, including MOVECIRC and MUST therefore have UNITS on the 2 axes set the same. Axis
3 (X) is 409 counts per mm and axis 4 (Y) has 560 counts per mm. So as to use the maximum resolution
available, set both axes to be 560 counts per mm with the ENCODER _ RATIO command.

ENCODER _ RATIO(560,409) AXIS(3) ‘axis 3 is now 560 counts/mm
UNITS AXIS(3) = 56 ‘X axis calibrated in mm x 10
UNTIS AXIS(4) = 56 ‘Y axis calibrated in mm x 10
MOVECIRC(200,100,100,0,1) ‘move axes in a semicircle

EXAMPLE 3:
Set up an axis to work in the reverse direction. For a servo axis, both the ENCODER _ RATIO and the DAC _
SCALE must be set to minus values.

BASE(5) ‘ set axis 5 to work in reverse direction
DAC _ SCALE = -1
ENCODER _ RATIO(-1,1)

EXAMPLE 4:
Set up a digital position control axis, for example EtherCAT Position, to work in the reverse direction. For an
axis where the servo-drive closes the position loop, both the ENCODER _ RATIO and the STEP _ RATIO must
be set to minus values.

BASE(30) ‘ set axis 30 to work in reverse direction
ENCODER _ RATIO(-1,1)
STEP _ RATIO(-1,1)

SEE ALSO:
STEP _ RATIO, DAC _ SCALE

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVECIRC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STEP_RATIO.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DAC_SCALE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
ENCOdER_REad

2-176

ENCODER_READ
TYPE:
Axis Function

SYNTAX:
value = ENCODER _ READ (address)

DESCRIPTION:
Read an internal register from an EnDat absolute encoder.

PARAMETERS:

value: Value returned from the specified register. Returns -1 if the encoder has not been initialised
address: The address of the EnDat encoder register to be read

EXAMPLE:
Initialise and check an EnDat encoder

ENCODER _ BITS=25+256*12
ATYPE=47
IF ENCODER _ READ($A700)=-1 then
 PRINT “Failed to initialise EnDat Encoder
ENDIF
ENCODER _ CONTROL=0

SEE ALSO:
ENCODER _ CONTROL, ENCODER _ WRITE

ENCODER_STATUS
TYPE:
Axis Parameter

DESCRIPTION:
This axis parameter returns both the status field SF and the ALMC encoder error field from a Tamagawa
absolute encoder.

VALUE:
Bits 0..7 SF field
Bits 8..15 ALMC field

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENCODER_CONTROL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENCODER_WRITE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
ENCOdER_TuRNS

2-177

Value is 0 if the encoder has not been initialised

EXAMPLE:
Print the SF field and ALMC field in hex

PRINT “SF field = 0x”; HEX (ENCODER _ STATUS AND $FF)
PRINT “ALMC field = 0x”; HEX ((ENCODER _ STATUS AND $FF00)/$FF)

ENCODER_TURNS
TYPE:
Axis Parameter

DESCRIPTION:
Returns the number of multi-turn counts from EnDat or Tamagawa absolute encoders.

The multi-turn data is not automatically applied to the axis MPOS after initialisation of a Tamagawa
absolute encoder. The application programmer must apply this from BASIC using OFFPOS or DEFPOS as
required.

VALUE:
The number of multi-turn counts from the encoder.

EXAMPLE:
Initialise a Tamagawa encoder and apply the number of turns to MPOS. The encoder returns 17bits for the
position and 16bits for the number of turns.

ATYPE=46
OFFPOS= ENCODER _ TURNS*2^17
WAIT UNTIL OFFPOS = 0

ENCODER_WRITE
TYPE:
Axis Function

SYNTAX:
Value = ENCODER _ WRITE (address, data)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DEFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
ENd_dIR_LaST

2-178

DESCRIPTION:
Write an internal register to an Absolute Encoder on an EnDat absolute encoder.

PARAMETERS:

value: Returns TRUE if the write was successful and FALSE if it fails
address: The address of the EnDat encoder register to be written to
data: Value to be written to the specified register.

EXAMPLE:
Write a value to the EnDat encoder and check it has been written, then set the encoder back to position
mode

IF NOT ENCODER _ WRITE (endat _ address, setvalue) THEN
 PRINT “Fail to write to encoder”
ENDIF
ENCODER _ CONTROL=0

SEE ALSO:
ENCODER _ CONTROL, ENCODER _ READ

END_DIR_LAST
TYPE:
Axis Parameter

DESCRIPTION:
Returns the direction of the end of the last loaded interpolated motion command. You can use the
parameter to set an initial direction before loading a SP motion command. END _ DIR _ LAST will be the
same as START _ DIR _ LAST except in the case of circular moves.

� Write to END _ DIR _ LAST when initialising a system or after a sequence of moves which are not SP
commands.

This parameter is only available when using SP motion commands such as MOVESP, MOVEABSSP etc.

VALUE:
End direction, in radians between -PI and PI. Value is always positive.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENCODER_CONTROL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENCODER_READ.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/START_DIR_LAST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVESP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVEABSSP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PI.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PI.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
ENdMOVE

2-179

EXAMPLES:

EXAMPLE1:
Return the end direction of a move.

>>MOVESP(10000,-10000)
>>PRINT END _ DIR _ LAST
2.3562
>>

EXAMPLE 2:
Write to the end direction to set the direction of the MOVE before calculating the change.

MOVE(10000,-10000)
END _ DIR _ LAST = 2.3562
MOVESP(10000,1324)
VR(10)=CHANGE _ DIR _ LAST

SEE ALSO:
CHANGE _ DIR _ LAST, START _ DIR _ LAST

ENDMOVE
TYPE:
Axis Parameter

DESCRIPTION:
This parameter holds the absolute position of the end of the current move in user units. It is normally only
read back although may be written to if required provided that SERVO=ON and no move is in progress.

 M WRITING TO DPOS WILL MAKE A STEP CHANGES. THIS CAN EASILY LEAD TO “FOLLOWING ERROR EXCEEDS LIMIT”
ERRORS UNLESS THE STEPS ARE SMALL OR THE FE _ LIMIT IS HIGH.

� As it is an absolute value ENDMOVE is adjusted by OFFPOS/DEFPOS. The individual moves in the buffer
are incremental and are not adjusted by OFFPOS.

VALUE:
The absolute position of the end of the current move in user UNITS.

EXAMPLE:
Check the value of ENDMOVE to confirm you calculated move is correct.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CHANGE_DIR_LAST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/START_DIR_LAST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SERVO.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DEFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
ENdMOVE_BuFFER

2-180

MOVE(distance*pitch)
IF ENDMOVE>200 THEN
 CANCEL
 PRINT#5, “Calculated distance to large”
ENDIF

ENDMOVE_BUFFER
TYPE:
Axis Parameter (Read only)

DESCRIPTION:
This holds the absolute position of end of the buffered sequence of moves.

� As it is an absolute value ENDMOVE _ BUFFER is adjusted by OFFPOS/DEFPOS. The individual moves in
the buffer are incremental are not adjusted by OFFPOS.

VALUE:
Returns the length of all remaining moves for an axis.

EXAMPLE:
Add some moves to the buffer, then check the value of ENDMOVE _ BUFFER

>>MOVE(100)
>>MOVE(150)
>>MOVE(25)
>>PRINT ENDMOVE _ BUFFER
275.000
>>

ENDMOVE_SPEED
TYPE:
Axis Parameter

DESCRIPTION:
This parameter sets the end speed for a motion command that support the advanced speed control
(commands ending in SP). The VP _ SPEED will decelerate until ENDMOVE _ SPEED is reached at the end of
the profile.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DEFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VP_SPEED.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
EPROM

2-181

The lowest value of ENDMOVE _ SPEED, FORCE _ SPEED or STARTMOVE _ SPEED will take priority.

ENDMOVE _ SPEED is loaded into the buffer at the same time as the move so you can set different speeds for
subsequent moves. If there is no further motion commands in the buffer the current move will decelerate to
a stop.

VALUE:
The speed at which the SP motion command will end, in user UNITS. (default 0)

EXAMPLES:

EXAMPLE 1:
In this example the controller will start ramping down the speed (at the specified rate of DECEL) so at the
end of the MOVESP(20) the VP _ SPEED=10. The next move continues with a FORCE _ SPEED of 10. The final
ENDMOVE _ SPEED is overwritten to zero as there are no more buffered moves.

FORCE _ SPEED=15
ENDMOVE _ SPEED=10
MOVESP(20)
FORCE _ SPEED=10
ENDMOVE _ SPEED=5
MOVESP(5)

EXAMPLE 2:
A machine can merge interpolated moves however it must slow down to 50% of the speed for the transition.

FORCE _ SPEED=1000
ENDMOVE _ SPEED=500 ‘50% of FORCE _ SPEED
MOVE(100,10)
MOVE(70,-10)
MOVE(120,15)

EPROM
TYPE:
Reserved Keyword

EPROM_STATUS
TYPE:
Reserved Keyword

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FORCE_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STARTMOVE_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DECEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVESP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VP_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FORCE_SPEED.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
= Equals

2-182

= Equals
TYPE:
Mathematical operator

(Comparison or assignment operator).

COMPARISON OPERATOR:

SYNTAX:
<expression1> = <expression2>

DESCRIPTION:
Returns TRUE if expression1 is equal to expression2, otherwise returns FALSE.

PARAMETERS:

Expression1: Any valid TrioBASIC expression
Expression2: Any valid TrioBASIC expression

EXAMPLE:
IF IN(7)=ON THEN GOTO label

If input 7 is ON then program execution will continue at line starting “label:”

ASSIGNMENT OPERATOR:

SYNTAX:
Value = expression

DESCRIPTION:
Assigns a value from the result of the expression.

PARAMETERS:

value: the variable in which to store the value
expression: any valid TrioBASIC expression

EXAMPLE:
Set the sum of 10 and 9 into local variable ‘result’

result = 10 + 9

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
ERROR_aXIS

2-183

ERROR_AXIS
TYPE:
System Parameter (Read Only)

DESCRIPTION:
Returns the number of the axis that caused the MOTION _ ERROR.

ERROR _ AXIS should only be read when MOTION _ ERROR<>0

VALUE:
Number of the axis that caused the MOTION _ ERROR

This default value is 0 and is reset to 0 after DATUM(0)

EXAMPLE:
If there is a motion error print error information.

IF MOTION _ ERROR THEN
 PRINT#5, “Axis to cause error = “; ERROR _ AXIS
 PRINT#5, “AXISSTATUS of ERROR _ AXIS = “; AXISSTATUS AXIS(ERROR _ AXIS)
ENDIF

SEE ALSO:
AXISSTATUS, MOTION _ ERROR, FE _ LATCH

ERROR_LINE
TYPE:
Process Parameter (Read Only)

DESCRIPTION:
Stores the number of the line which caused the last TrioBASIC error. This value is only valid when the
BASICERROR is TRUE.

This parameter is held independently for each process.

VALUE:
The line number on the specified process that caused the error

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOTION_ERROR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOTION_ERROR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOTION_ERROR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DATUM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXISSTATUS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOTION_ERROR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE_LATCH.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASICERROR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
ERRORMaSK

2-184

EXAMPLE:
Display the ERROR _ LINE as part of a sub routine called by ‘ON BASICERROR GOTO’

error _ routine:
 VR(100) = RUN _ ERROR
 PRINT “The error “;RUN _ ERROR[0];
 PRINT “ occurred in line “;ERROR _ LINE[0]
STOP

SEE ALSO:
BASICERROR, RUN _ ERROR

ERRORMASK
TYPE:
Axis Parameter

DESCRIPTION:
The value held in this parameter is bitwise ANDed with the AXISSTATUS parameter by every axis on every
servo cycle to determine if a runtime error should switch off the enable (WDOG) relay. If the result of the
AND operation is not zero the enable relay is switched off.

� After a critical error has tripped the enable relay, the Motion Coordinator must either be reset, or a
DATUM(0) command must be executed to reset the error flags.

VALUE:
The mask to be ANDed with the AXISSTATUS

For the MC464, the default value is 268 which will trap critical errors. This is AXISSTATUS bits 2, 3 and
8 which are digital drive communication errors and exceeding the following error limit.

EXAMPLE:
Configure the ERRORMASK so that the WDOG is turned off when there are communication failures (4), remote
drive errors (8), the following error exceeds the limit (256) or the limit switches have been hit(16 + 32).

ERRORMASK= 4+8+16+32+256

SEE ALSO:
AXISSTATUS, DATUM(0)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ERROR_LINE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASICERROR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RUN_ERROR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AND.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXISSTATUS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/WDOG.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AND.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DATUM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AND.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXISSTATUS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXISSTATUS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ERRORMASK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/WDOG.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXISSTATUS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DATUM.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
ETHERCaT

2-185

ETHERCAT
TYPE:
System Command

SYNTAX:
ETHERCAT(function, slot [,parameters…])

DESCRIPTION:
The command ETHERCAT is used to perform advanced operations on the EtherCAT network. In normal use
the EtherCAT network will start automatically without the need for any commands in a startup program.
Some ETHERCAT command functions may be useful when debugging and setting up an EtherCAT system, so a
small sub-set is described here.

The ETHERCAT command returns TRUE(-1) if successful and FALSE (0) if the command execution was
in error. Functions which return a value must either put the value in a VR or print it to the current
output terminal.

PARAMETERS:

function: Function to be performed
$00 Start EtherCAT network
$01 Stop EtherCAT network
$21 Set EtherCAT State
$22 Get EtherCAT State
$64 Send reset sequence to a drive
$87 Display network configuration

slot: Set to the P876 EtherCAT module slot number

FUNCTION = $00:

SYNTAX:
ETHERCAT(0, slot, [,MAC _ retries])

DESCRIPTION:
Initialise EtherCAT network, and put it onto operational mode.

Trio Motion Technology

TRIOBaSIC COMMaNdS
ETHERCaT

2-186

PARAMETERS:

MAC_retries: Sets the number of times the master attempts to restart the Ethernet auto-negotiation.
Default = 2.

EXAMPLE:
Check for the EtherCAT state and if not in Operational State, restart the EtherCAT and set an output to
indicate that a re-start is in progress.

‘--Init EtherCAT if needed.
slt=0
ecs _ vr=30 ‘use VR 30 for returned value
chk = ETHERCAT($06,slt,ecs _ vr) ‘test state

IF chk<>TRUE OR VR(ecs _ vr)<>3 THEN
 OP(9,ON)
 WA(15000) ‘wait 15sec for drive to power up
 ETHERCAT(0,slt) ‘init EtherCAT
ENDIF

FUNCTION = $01:

SYNTAX:
ETHERNET(1, slot)

DESCRIPTION:
Closedown the EtherCAT network.

PARAMETERS:
None.

EXAMPLE:
Stop the EtherCAT protocol from the terminal and then re-start it.

>>ETHERCAT(1, 0)
>>ETHERCAT(1, 0)
>>

FUNCTION = $21:

SYNTAX:
ETHERCAT($21, slot, state, display)

Software Reference Manual

TRIOBaSIC COMMaNdS
ETHERCaT

2-187

DESCRIPTION:
This function controls the EtherCAT State Machine. (ESM) It requests the master change to given EtherCAT
‘state’, and hence changes all slaves to the same state. When a change to a higher state is made, the
EtherCAT network will progress to the new state through the in-between states to allow correct starting of
the network.

PARAMETERS:
state: EtherCAT state request

-1 Reserved
0 Initial (EtherCAT ESC value 0x01)
1 Pre-Operational (0x02)
2 Safe-Operational (0x04)
3 Operational (0x08)

display: 1: Function writes state change information to the standard output stream. (Default)

0: Do not write out state change information.

EXAMPLE:
Change the EtherCAT to Safe-Operational and suppress the information that would be printed to the
terminal.

ETHERCAT($21, 0, 2, 0)

FUNCTION = $22;

SYNTAX:
ETHERCAT($22, slot, vr _ number)

DESCRIPTION:
Gets the present state of the EtherCAT running on the defined slot. The value returned shows the EtherCAT
state as follows:

•	 0 – Initial

•	 1 – Pre-oprational

•	 2 – Safe-Operational

•	 3 - Operational

PARAMETERS:

vr_number: The VR number where the returned value will be put.

(-1 forces the value to be printed on the terminal)

Trio Motion Technology

TRIOBaSIC COMMaNdS
ETHERCaT

2-188

EXAMPLE:
In the terminal, request the EtherCAT state value.

>>ETHERCAT($22, 0, -1)
3

>>

FUNCTION = $64:

SYNTAX:
ETHERCAT($64, axis _ number[, mode[, timeout]])

DESCRIPTION:
Reset a slave error. This function runs the error reset sequence on the drive control word. DRIVE _
CONTROLWORD bit 8 is toggled high then low. This will instruct the drive to reset any errors in the drive
where the cause of the error has been removed.

 M THE RESPONSE TO A RESET SEQUENCE WILL DEPEND ON THE DRIVE AND HOW CLOSELY IT FOLLOWS THE COE DS402
SPECIFICATION.

PARAMETERS:

axis_number: The axis number of the drive to be reset.
mode: 0 The ‘Fault Reset’ (bit 7) of DS402 control word is set high and then set low again

after a hard coded timeout. (default)
1 Bit 7 is set high until the ‘Fault Flag’ (bit 3) of the status word goes low, or a

timeout occurs.
timeout: Optional timeout in msec used during mode 1 operation. Default is 100 msec. Range is 1 to

10000 msec.

EXAMPLE:

EXAMPLE 1
Send control word reset sequence to drive at axis 8.

ETHERCAT($64, 8)

EXAMPLE 2
Send control word reset sequence to drive at axis 2. Use Mode 1 to force the reset bit to remain high until
the status it 3 goes low or force the reset bit low again after 60 msec, even if the status bit is still high.

ETHERCAT($64, 2, 1, 60)

Software Reference Manual

TRIOBaSIC COMMaNdS
ETHERNET

2-189

FUNCTION = $87;

SYNTAX:
ETHERCAT($87, slot)

DESCRIPTION:
Displays the network configuration to the command line terminal in Motion Perfect.

PARAMETERS:

slot: The slot number where the EtherCAT module is located

EXAMPLE:
In the terminal, request the EtherCAT network configuration.

>>ethercat($87,0)
EtherCAT Configuration (0):
 EK1100 : 0 : 0 : 2000
 EL2008 : 1 : 0 : 1000 (0:0/16:8)
 EL2008 : 2 : 0 : 1001 (0:0/24:8)
 EL2008 : 3 : 0 : 1002 (0:0/32:8)
 EL2008 : 4 : 0 : 1003 (0:0/40:8)
 EL2008 : 5 : 0 : 1004 (0:0/48:8)
 EK1110 : 6 : 0 : 2001
 RS2 : 7 : 0 : 1 (0)
 SGDV : 8 : 0 : 2 (1)
>>

ETHERNET
TYPE:
System Command

SYNTAX:
ETHERNET(rw, slot, function [,parameters…])

DESCRIPTION:
The command ETHERNET is used to configure the operation of the Ethernet port.

Many of the ETHERNET functions are command line only; these are stored in flash EPROM and are then
used on power up.

Trio Motion Technology

TRIOBaSIC COMMaNdS
ETHERNET

2-190

PARAMETERS:

rw: Specifies the required action.
0 Read
1 Write

slot: Set to -1 for the built in Ethernet port
function: Function to be performed

0 IP Address
1 Reserved function
2 Subnet Mask
3 MAC address
4 Default Port Number
5 Token Port Number
6 PRP firmware version (read only)
7 Modbus TCP mode
8 Default Gateway
9 Data configuration
10 Modbus TCP port number
11 ARP cache
12 Reserved function
13 Reserved function
14 Configure endpoints for Modbus TCP or Ethernet IP

FUNCTION = 0:

SYNTAX:
ETHERNET(rw, slot, 0 [,byte1, byte2, byte3, byte4])

DESCRIPTION:
Prints or writes the Ethernet IP address. This is command line only.

You must power cycle the controller or perform EX(1) to apply the new IP address.

PARAMETERS:
byte1: The first byte of the IP address
byte2: The second byte of the IP address
byte3: The third byte of the IP address
byte4: The fourth byte of the IP address

The default address is 192.168.0.250

Software Reference Manual

TRIOBaSIC COMMaNdS
ETHERNET

2-191

EXAMPLE:
Read the current IP address and then set a new IP address into the controller and perform an EX(1) to
activate the address

 M PERFORMING AN EX(1) AS IN THIS EXAMPLE WILL CLOSE THE COMMUNICATIONS AND YOU WILL ONLY BE ABLE TO
COMMUNICATE AGAIN USING THE NEW IP ADDRESS.

>>ETHERNET(0, -1, 0)
192.168.0.250
>>ETHERNET(1, -1, 0, 192, 168, 0, 201)
>>EX(1)
>>

FUNCTION = 2;

SYNTAX:
ETHERNET(rw, slot, 2 [,byte1, byte2, byte3, byte4])

DESCRIPTION:
Prints or writes the Subnet Mask. This is command line only.

You must power cycle the controller or perform EX(1) to apply the new IP address.

PARAMETERS:
byte1: The first byte of the Subnet Mask
byte2: The second byte of the Subnet Mask
byte3: The third byte of the Subnet Mask
byte4: The fourth byte of the Subnet Mask

The default Subnet Mask is 255.255.255.0

EXAMPLE:
Read the subnet mask and write a new value

>>ETHERNET(0, -1, 0)
255.255.255.0
>>ETHERNET(1, -1, 2, 255, 255, 128, 0)
>>

Trio Motion Technology

TRIOBaSIC COMMaNdS
ETHERNET

2-192

FUNCTION = 3:

SYNTAX:
ETHERNET(0, slot, 3)

DESCRIPTION:
Prints the MAC address. This is command line only.

This function is read only.

PARAMETERS:
The MAC address is unique to your controller.

EXAMPLE:
Read the MAC address of a controller

>>ETHERNET(0, -1, 3)
00:06:70:00:00:FA
>>

FUNCTION = 4:

SYNTAX:
ETHERNET(rw, slot, 4 [, port])

DESCRIPTION:
Prints or writes the default port number. This is command line only.

 M THE DEFAULT VALUE IS USED BY MOTION PERFECT AND PCMOTION AND SHOULD NOT BE CHANGED UNLESS
ABSOLUTELY NECESSARY.

PARAMETERS:

port: The port used for the main command line in the controller. (default 23)

FUNCTION = 5:

SYNTAX:
ETHERNET(rw, slot, 5 [, port])

Software Reference Manual

TRIOBaSIC COMMaNdS
ETHERNET

2-193

DESCRIPTION:
Prints or writes the default port number for token channel which is used by the PCMotion ActiveX control.
This is command line only.

 M THE DEFAULT VALUE IS USED BY THE PCMOTION ACTIVEX CONTROL AND SHOULD NOT BE CHANGED UNLESS
ABSOLUTELY NECESSARY.

PARAMETERS:

port: The port used for the token channel in the controller. (default 3240)

FUNCTION = 6;

SYNTAX:
Ethernet(0,slot,6)

DESCRIPTION:
Reads the communications processor s firmware version. This is command line only.

This function is read only

PARAMETERS:
Returns the flash application version and the bootloader version.

EXAMPLE:
Read the communications processor firmware with application version 61 and boot loader version 22.

>>ETHERNET(0, -1, 6)
61;22
>>

FUNCTION = 7:

SYNTAX:
Ethernet(rw, slot, 7 [,mode])

DESCRIPTION:
Sets the Modbus TCP data type. This value is stored in RAM and so must be initialised every time the
controller powers up. This can be done in a TrioBASIC program for example STARTUP

Trio Motion Technology

TRIOBaSIC COMMaNdS
ETHERNET

2-194

This must be configured before the Modbus master opens the port.

PARAMETERS:

mode: 0 16bit integer (default value)
1 32bit single precision floating point
2 32bit long word integers

EXAMPLE:
Initialise the Modbus TCP port for floating point data.

ETHERNET(1,-1,7,1)

FUNCTION = 8:

SYNTAX:
ETHERNET(rw, slot, 8 [,byte1, byte2, byte3, byte4])

DESCRIPTION:
Prints or writes the Default Gateway. This is command line only.

You must power cycle the controller or perform EX(1) to apply the new Default Gateway.

PARAMETERS:

byte1: The first byte of the Default Gateway
byte2: The second byte of the Default Gateway
byte3: The third byte of the Default Gateway
byte4: The fourth byte of the Default Gateway

EXAMPLE:
Print then change the value of the default gateway.

>>ETHERNET(0, -1, 8)
192.168.0.225
>> ETHERNET(0,-1, 8, 192, 168, 0, 150)
>>

FUNCTION = 9:

SYNTAX:
Ethernet(rw, slot, 9 [,mode])

Software Reference Manual

TRIOBaSIC COMMaNdS
ETHERNET

2-195

DESCRIPTION:
Sets the Modbus TCP data source. This value is stored in RAM and so must be initialised every time the
controller powers up. This can be done in a TrioBASIC program for example STARTUP

This must be configured before the Modbus master opens the port.

PARAMETERS:

mode: 0 VR (default value)
1 Table

EXAMPLE:
Initialise the Modbus TCP port for table data.

ETHERNET(2, -1, 9, 1)

FUNCTION = 10:

SYNTAX:
ETHERNET(rw, slot, 10 [, port])

DESCRIPTION:
Prints or writes the default port number for token channel which is used by Modbus TCP. This is command
line only.

 M THE DEFAULT VALUE IS USED BY MODBUS AND SHOULD NOT BE CHANGED UNLESS ABSOLUTELY NECESSARY.

PARAMETERS:

port: The port used for the token channel in the controller. (default 502)

FUNCTION = 11:

SYNTAX:
Ethernet(0, slot, 11)

DESCRIPTION:
Reads the ARP cache. This is command line only.

This function is read only

Trio Motion Technology

TRIOBaSIC COMMaNdS
ETHERNET

2-196

FUNCTION = 14:

SYNTAX:
ETHERNET(1, slot, 14, endpoint _ id, parameter _ index, parameter _ value)

DESCRIPTION:
This function allows the user to configure Ethernet IP and Modbus at a low level. The default values allow
a master to connect without any configuration on the Controller side. These settings are stored in RAM and
so must be initialised every time the controller powers up. This can be done in a TrioBASIC program for
example STARTUP.

PARAMETERS:

endpoint_id: This allows you to specify which end point you are reading or writing
0 Modbus TCP
1 Ethernet IP Assembly Object, Instance 100 (input)
2 Ethernet IP Assembly Object, Instance 101 (output)

parameter_index: This parameter selects which of the endpoint variables you are reading or writing
0 Address
1 Data location
2 Data format
3 Length
4 Class
5 Instance
6 Operation Mode

parameter_value: Dependent on Parameter index, see table below

PARAMETER VALUES:

parameter_index parameter_value
0 The start position of the data location.
1 The location of the data on the controller.

0 Register (reserved use)
1 IO input
2 IO output
3 VR (default value)
4 Table
5 Digital IO Input
6 Digital IO Output
7 Analogue IO Input
8 Analogue IO Input

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
ETHERNET

2-197

2 The precision of the data.
0 Integer 16 bit (default value)
1 Integer 32 bit
2 Floating point 32 bit
3 Floating point 64 bit

3 The number of the data locations returned.
4 The class. This function is read only.

4 Ethernet IP
68 Modbus

5 The instance of the endpoint. This function is read only.
0 Modbus
100 Ethernet IP input
101 Ethernet IP output

6 The Operation mode. Read/write.
0 Modbus TCP uses normal addressing
1 Modbus TCP uses “address halving”

EXAMPLES:

EXAMPLE 1:
Configure Modbus using Function 14 to use Table and floating point 64bit

ETHERNET(1, -1, 14, 0, 1, 4)
ETHERNET(1, -1, 14, 0, 2, 3)

EXAMPLE 2:
Configure Ethernet IP for 50 TABLE inputs starting at 200 and 50 table outputs starting at 300 all at 32bit
float

‘Inputs
ETHERNET(1, -1, 14, 1,0,200)
ETHERNET(1, -1, 14, 1, 1, 4)
ETHERNET(1, -1, 14, 1, 2, 2)
ETHERNET(1, -1, 14, 1, 3, 50)
‘Outputs
ETHERNET(1, -1, 14, 2,0,300)
ETHERNET(1, -1, 14, 2, 1, 4)
ETHERNET(1, -1, 14, 2, 2, 2)
ETHERNET(1, -1, 14, 2, 3, 50)

EXAMPLE 3:
Configure Modbus TCP floating point TABLE access, using address halving to match the addressing scheme
used in the master.

ETHERNET(1, -1, 14, 0,2,2)

Trio Motion Technology

TRIOBaSIC COMMaNdS
EX

2-198

ETHERNET(1, -1, 14, 0, 1, 4)
ETHERNET(1, -1, 14, 0, 6, 1)

EX
TYPE:
System Command

SYNTAX:
EX(processor)

DESCRIPTION:
Software reset. Resets the controller as if it were being powered up.

� When performing an EX on the command line you will see the controller start up information that
provides details of your controller configuration.

On EX the following actions occur:

•	 The global numbered (VR) variables remain in memory.

•	 The base axis array is reset to 0,1,2... on all processes

•	 Axis errors are cleared

•	 Watchdog is set OFF

•	 Programs may be run depending on POWER_UP and RUNTYPE settings

•	 ALL axis parameters are reset.

EX may be included in a program. This can be useful following a run time error. Care must be taken to
ensure it is safe to restart the program.

When running Motion Perfect executing an EX command is not allowed. The same effect as an EX
can be obtained by using “Reset the controller...” under the “Controller” menu in Motion Perfect. To
simply re-start the programs, use the AUTORUN command.

PARAMETERS:
0 or None: Software resets the controller and maintains communications.
1: Software resets the controller and communications.

 M WHEN YOU USE EX(1) YOU WILL HAVE TO REMAKE THE ETHERNET CONNECTION

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/POWER_UP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RUNTYPE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AUTORUN.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
EXECuTE

2-199

EXECUTE
TYPE:
System Command

DESCRIPTION:
Used to implement the remote command execution via the Trio PCMotion ActiveX. For more details see the
section on using the PCMotion

EXP
TYPE:
Mathematical Function

SYNTAX:
EXP(expression)

DESCRIPTION:
Returns the exponential value of the expression.

PARAMETERS:

expression: Any valid TrioBASIC expression

EXAMPLE:
Print the expontential value of 1

>>PRINT EXP(1)
2.7183
>>

Trio Motion Technology

TRIOBaSIC COMMaNdS
FaLSE

2-200

TRIOBaSIC COMMaNdS
FaLSE

2-201

Software Reference Manual

FFALSE
TYPE:
Constant

DESCRIPTION:
The constant FALSE takes the numerical value of 0.

EXAMPLE:
test:
Use FALSE as part of a logical check
 res = IN(0) OR IN(2)
 IF res = FALSE THEN
 PRINT “Inputs are off”
 ENDIF

FAST_JOG
TYPE:
Axis Parameter

DESCRIPTION:
This parameter holds the input number to be used as the fast jog input. If the FAST _ JOG is active then the
jog inputs use the axis SPEED for the jog functions, otherwise the JOGSPEED will be used.

The input used for FAST _ JOG is active low.

VALUE:

-1 disable the input as FAST _ JOG (default)
0-63 Input to use as datum input

� Any type of input can be used, built in, Trio CAN I/O, CANopen or virtual.

EXAMPLE:
Configure input 12 and 13 as jog inputs

FWD _ JOG = 12
FAST _ JOG = 13

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/JOGSPEED.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
FaSTdEC

2-202

JOGSPEED = 200

SEE ALSO:
FWD _ JOG, JOGSPEED, REV _ JOG

FASTDEC
TYPE:
Axis Parameter

DESCRIPTION:
The FASTDEC axis parameter may be used to set or read back the fast deceleration rate of each axis
fitted. Fast deceleration is used when a CANCEL is issued, for example; from the user, a program, or from a
software or hardware limit. If the motion finishes normally or FASTDEC = 0 then the DECEL value is used.

VALUE:
The deceleration rate in UNITS/sec/sec. Must be a positive value.

EXAMPLE:
DECEL=100 ‘set normal deceleration rate
FASTDEC=1000 ‘set fast deceleration rate
MOVEABS(10000) ‘start a move
WAIT UNTIL MPOS= 5000 ‘wait until the move is half finished
CANCEL ‘stop move at fast deceleration rate

SEE ALSO:
DECEL

FE
TYPE:
Axis Parameter (Read Only)

DESCRIPTION:
This parameter returns the position error, which is equal to the demand position (DPOS) - measured position
(MPOS).

VALUE:
The following error returned in user UNITS.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FWD_JOG.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/JOGSPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REV_JOG.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CANCEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DECEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DECEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
FE_LaTCH

2-203

EXAMPLE:
Wait for the position error to be below a value for 5 servo periods then pulse an output.

MOVEABS(200)
WAIT IDLE
FOR x=0 to 4
 WAIT UNTIL FE<5
NEXT x
OP(5,ON)
WA(2)
OP(5,OFF)

SEE ALSO:
FE _ LATCH, FE _ LIMIT, FE _ RANGE

FE_LATCH
TYPE:
Axis Parameter (Read Only)

DESCRIPTION:
Contains the FE value which caused the axis to put the controller into MOTION _ ERROR. This value is only
set when the FE exceeds the FE _ LIMIT and the SERVO = OFF.

VALUE:
Returns the FE value that caused a MOTION _ ERROR

FE _ LATCH is reset to 0 when the axis SERVO = ON.

EXAMPLE:
Read the LE _ LATCH when there is a MOTION _ ERROR

IF MOTION _ ERROR THEN
 VR(10) = FE _ LATCH AXIS (ERROR _ AXIS)
ENDIF

SEE ALSO:
FE, FE _ LIMIT

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE_LATCH.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE_RANGE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOTION_ERROR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SERVO.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOTION_ERROR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SERVO.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOTION_ERROR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE_LIMIT.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
FE_LIMIT

2-204

FE_LIMIT
TYPE:
Axis Parameter

ALTERNATE FORMAT:
FELIMIT

DESCRIPTION:
This is the maximum allowable following error. When exceeded the controller will generate an AXISSTATUS
error, by default this will also generate a MOTION _ ERROR. The MOTION _ ERROR will disable the WDOG relay
thus stopping further motor operation.

� This limit may be used to guard against fault conditions such as mechanical lock-up, loss of encoder
feedback, etc.

VALUE:
The maximum allowable following error in user units. The default value is 2000 encoder edges.

EXAMPLE:
Initialise the axis as part of a STARTUP routine

FOR x = 0 to 4
 BASE(x)
 UNITS = 100
 FE _ LIMIT = 10
 SPEED = 100
 ACCEL=1000
 DECEL=ACCEL
NEXT x

SEE ALSO:
FE, FE _ LATCH

FE_LIMIT_MODE
TYPE:
Axis Parameter

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXISSTATUS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOTION_ERROR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOTION_ERROR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/WDOG.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE_LATCH.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
FE_RaNGE

2-205

DESCRIPTION:
This parameter determines if an AXISSTATUS error is produced immediately when the FE exceeds the FE _
LIMIT or if it exceeds for 2 consecutive servo periods. This means that if FE _ LIMIT is exceeded for one
servo period only, it will be ignored.

 M THIS WILL INCREASE THE TIME TO DISABLE YOUR DRIVES IN AN ERROR. YOU SHOULD ONLY CHANGE FROM THE
DEFAULT VALUES UNDER ADVICE FROM TRIO OR YOUR DISTRIBUTOR.

VALUE:

0 AXISSTATUS error generated immediately (default)
1 AXISSTATUS error generated when FE _ LIMIT is exceeded for 2 consecutive servo periods.

 SEE ALSO:
FE, FE _ LIMIT

FE_RANGE
TYPE:
Axis Parameter

DESCRIPTION:
Following error report range. When the FE exceeds this value the axis has bit 1 in the AXISSTATUS axis
parameter set.

VALUE:
The value in user UNITS above which bit 1 is set in AXISSTATUS

EXAMPLE:
Using FE _ RANGE to slow a machine down when the FE is too large.

‘initialise the axis
FE _ RANGE = 10
FE _ LIMIT = 15
SPEED=100
…
‘loop to check if FE _ RANGE has been exceeded
WHILE NOT IDLE
VR(10) = AXISSTATUS
IF READBIT(1, 10) THEN

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXISSTATUS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXISSTATUS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXISSTATUS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXISSTATUS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXISSTATUS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
FEaTuRE_ENaBLE

2-206

 ‘slow down by 1%
 SPEED = SPEED * 0.99
ENDIF
WEND
SPEED = 100

SEE ALSO:
FE, FE _ LIMIT

FEATURE_ENABLE
TYPE:
System Command

SYNTAX:
FEATURE _ ENABLE([feature _ number [, “password”]])

DESCRIPTION:
Motion Coordinators have the ability to unlock additional features by entering a “Feature Enable Code”.
This function is used to enable protected features, such as additional remote axes on digital dive networks
or other programming languages. This can only be run on the command line.

It is recommended to use Motion Perfect to enter and store the feature enable codes.

The password parameter is optional, if it is omitted then the command will prompt you to enter it.

� You can purchase additional feature codes from the Trio Website or through your distributor, you will
need the SERIAL _ NUMBER of the controller.

 M IF YOU ENTER THE WRONG PASSWORD 3 TIMES THE CONTROLLER WILL ENTER AN ATTACK STATE WHERE IT STOPS
COMMUNICATING. YOU CAN RESUME NORMAL OPERATION BY POWER CYCLING THE CONTROLLER.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE_LIMIT.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
FEaTuRE_ENaBLE

2-207

PARAMETERS:
feature_number: None Prints the security code and currently enabled features.

0 1 remote axis
1 2 remote axes
2 4 remote axes
3 8 remote axes
4 16 remote axes
5 32 remote axes
6-11 Reserved use
12 1 remote axis
13 2 remote axes
14 4 remote axes
15 8 remote axes
16 16 remote axes
17 32 remote axes
18-20 Reserved use
21 IEC runtime
22-31 Axis upgrade
24-31 Reserved use

password: The password for the required feature code

When entering a feature a password is requested

When entering a password always enter the characters in upper case. Take care to check that 0 (zero)
is not confused with O and 1 (one) is not confused with I.

EXAMPLES:

EXAMPLE 1:
Check the enabled features on a controller

>>FEATURE _ ENABLE
Security code=17980000000028
Enabled features: 0 1

Features 0 and 1 are enabled so an additional 3 axes on top of the built in axes included with the
module.

EXAMPLE 2:
Enable an additional 4 axes (feature 2). For this controller and this feature, the password is 5P0APT.

>>FEATURE _ ENABLE(2)
Feature 2 Password=5P0APT
>>

Trio Motion Technology

TRIOBaSIC COMMaNdS
FHOLd_IN

2-208

>>FEATURE _ ENABLE
Security code=17980000000028
Enabled features: 0 1 2

SEE ALSO:
SERIAL _ NUMBER

FHOLD_IN
TYPE:
Axis Parameter

ALTERNATE FORMAT:
FH _ IN

DESCRIPTION:
This parameter holds the input number to be used as a feedhold input.

When the feedhold input is active motion on the specified axis has its speed overridden to the feedhold
speed (FHSPEED) without canceling the move in progress. The change in speed uses ACCEL and DECEL. When
the input is reset any move in progress when the input was set will go back to the programmed speed.

� Set FHSPEED to zero to pause the motion on that axis

Moves which are not speed controlled e.g. CONNECT, CAMBOX, MOVELINK are not affected.

The input used for FHOLD _ IN is active low.

VALUE:
-1 disable the input as feedhold (default)
0-63 Input to use as feedhold

� Any type of input can be used, built in, Trio CAN I/O, CANopen or virtual.

EXAMPLE:
Configure inputs 21 as feedhold inputs for axis 2. The default FHSPEED = 0 so the motion can be paused
using the feedhold input.

SEE ALSO:
FHSPEED

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SERIAL_NUMBER.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FHSPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ACCEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DECEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CONNECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CAMBOX.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVELINK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FHSPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FHSPEED.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
FHSPEEd

2-209

FHSPEED
TYPE:
Axis Parameter

DESCRIPTION:
When the feedhold input is active motion is ramped down to FHSPEED.

VALUE:
The speed in user units to use when the FHOLD _ IN is active (default 0)

EXAMPLE:
Set FHSPEED to a value so that a slower speed is selected wen the FHOLD _ IN is active

BASE(3)
SPEED=1000
FHSPEED=SPEED*0.1

SEE ALSO:
FHOLD _ IN

FILE
TYPE:
System Command

SYNTAX:
value = FILE “function” [parameters]

DESCRIPTION:
This command enables the user to manage the data on the SD Card.

� When the command prints to the selected channel, this channel can be selected using OUTDEVICE

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FHOLD_IN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FHOLD_IN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FHOLD_IN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OUTDEVICE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
FILE

2-210

PARAMETERS:

function: CD Change directory
DEL Delete file
DETECT Check for SD Card
DIR Print the current directory contents
FIND _ FIRST Finds the first entry in the directory structure of the specified

file type
FIND _ NEXT Finds the next entry in the directory structure of the specified

file type
FIND _ PREV Finds the previous entry in the directory structure of the

specified file type
LOAD _ PROGRAM Loads the specified program to the controllers memory
LOAD _ PROJECT Loads the specified project into the controllers memory
LOAD _ SYSTEM Loads the specified firmware into the controller
RD Remove (delete) a directory
MD Make (create) a directory
PWD Prints the path of the directory
SAVE _ PROGRAM Saves the specified program to the SD Card
SAVE _ PROJECT Saves all programs from the controller to the SD Card.
TYPE Prints the selected file

parameters: dependent on the function
value: returns TRUE if the function was successful otherwise returns FALSE

FUNCTION = CD:

SYNTAX:
value = FILE “CD” “directory”

DESCRIPTION:
Change to the given directory. There is one active directory on the controller all SD Card commands are
relative to this directory.

PARAMETERS:

directory: string The name of the child directory to move to
\\ Move to the root directory
.. Move up one level to the parent directory

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
FILE

2-211

EXAMPLES:

EXAMPLE 1
Use the command line to change to a new directory

>>file “CD” “new _ directory”
OK \NEW _ DIRECTORY
>>

EXAMPLE 2
Use the command line to change to a new directory 3 levels below

>>file “CD” “ project1\\project2\\project3”
OK \PROJECT1\PROJECT2\PROJECT3
>>

EXAMPLE 3
Use the command line to move to the root directory

>>file “CD” “\\”
OK \
>>

FUNCTION = DEL:

SYNTAX:
value = FILE “DEL” “file”

DESCRIPTION:
Delete the given file inside the current directory.

PARAMETERS:

file: The name of the file to be deleted, you must include the file extension

EXAMPLE:
Delete a BASIC program from the SD Card using the command line.

>>FILE “DEL” “STARTUP.bas”
OK
>>

Trio Motion Technology

TRIOBaSIC COMMaNdS
FILE

2-212

FUNCTION = DETECT:

SYNTAX:
value = FILE “DETECT”

DESCRIPTION:
Checks if a SD Card is present in the slot

RETURN VALUE:
TRUE if an SD Card is detected correctly, otherwise FALSE.

EXAMPLE:
Check if an SD card is present before saving the table data.

IF FILE “DETECT” THEN
 STICK _ WRITE(1501, 1000, 2000, 0)
ENDIF

FUNCTION = DIR:

SYNTAX:
value = FILE “DIR”

DESCRIPTION:
Print the contents of the current directory to the current output channel.

EXAMPLE:
Print the contents of the SD card on the command line.

>>FILE “DIR”
 Volume is NO NAME
 Volume Serial Number is 00C8-B79F
 Directory of \
07/Aug/2009 15:50 1169978 MC60CC~1.OUT MC464 _ 20055 _ _ BOOT _ 013.out
20/Nov/2009 15:25 <DIR> MC464 _ ~1 MC464 _ Panasonic _ Home
16/Feb/2009 13:16 1619 TRIOINIT.BAS TRIOINIT.BAS
20/Nov/2009 15:21 <DIR> SHOW1 Show1
07/Jan/2000 04:54 <DIR> NEW _ DI~1 NEW _ DIRECTORY
>>

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
FILE

2-213

FUNCTION = FIND_FIRST:

SYNTAX:
value = FILE “FIND _ FIRST”, type, vr

DESCRIPTION:
Initialises the internal FIND structures and locates the first directory entry of the given type. The found
directory entries name is stored in a VRSTRING

PARAMETERS:
value: TRUE if a directory entry is found otherwise FALSE
type: 1 FILE

2 DIRECTORY
vr: The start position in VR memory where the VRSTRING is stored

If there is an error initialising the internal FIND structures then the function returns FALSE.

FUNCTION = FIND_NEXT:

SYNTAX:
value = FILE “FIND _ NEXT”, vr

DESCRIPTION:
Finds the next directory entry of the type given in the corresponding FIND _ FIRST command.

PARAMETERS:
value: TRUE if a directory entry is found otherwise FALSE
vr: The start position in VR memory where the VRSTRING is stored

If there is an error initialising the internal FIND structures then the function returns FALSE.

FUNCTION = FIND_PREV:

SYNTAX:
value = FILE “FIND _ PREV”, vr

DESCRIPTION:
Finds the previous directory entry of the type given in the corresponding FIND _ FIRST command.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VRSTRING.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VRSTRING.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VRSTRING.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
FILE

2-214

PARAMETERS:
value: TRUE if a directory entry is found otherwise FALSE
vr: The start position in VR memory where the VRSTRING is stored

If there is an error initialising the internal FIND structures then the function returns FALSE.

FUNCTION = LOAD_PROGRAM:

SYNTAX:
value = FILE “LOAD _ PROGRAM” “file”

DESCRIPTION:
Load the given program into the Motion Coordinator. Only .BAS files are handled at present.

PARAMETERS:

file: The name of the file that you wish to load.

FUNCTION = LOAD_PROJECT:

SYNTAX:
value = FILE “LOAD _ PROJECT” “name”

DESCRIPTION:
Read the given Motion Perfect project file and load all the programs into the Motion Coordinator, once
loaded any RUNTYPEs are automatically set.

PARAMETERS:

name: The name of the project that you wish to load.

FUNCTION = LOAD_SYSTEM:

SYNTAX:
value = FILE “LOAD _ SYSTEM” “name”

DESCRIPTION:
Loads system firmware onto the controller.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VRSTRING.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RUNTYPE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
FILE

2-215

PARAMETERS:
name: The name of the firmware file that you wish to load.

 M LOADING INCORRECT FIRMWARE CAN PREVENT YOUR CONTROLLER FROM OPERATING

FUNCTION = RD:

SYNTAX:
value = FILE “RD” “name”

DESCRIPTION:
Delete the given directory inside the current directory.

PARAMETERS:

name: The name of the directory that you wish to delete.

FUNCTION = MD:

SYNTAX:
value = FILE “MD” “name”

DESCRIPTION:
Create the given directory inside the current directory.

PARAMETERS:

name: The name of the directory that you wish to create.

EXAMPLE:
Using the command line create a new directory.

>>FILE “MD” “new _ directory”
OK
>>

Trio Motion Technology

TRIOBaSIC COMMaNdS
FILE

2-216

FUNCTION = PWD:

SYNTAX:
value = FILE “PWD”

DESCRIPTION:
Prints the path of the current directory to the current output channel.

FUNCTION = SAVE_PROGRAM:

SYNTAX:
value = FILE “SAVE _ PROGRAM” “name”

DESCRIPTION:
Save the given program to the corresponding file on the SD Card inside the current directory. Only .BAS files
are handled at the moment.

PARAMETERS:

name: The name of the file that you wish to save to the SD Card.

FUNCTION = SAVE_PROJECT:

SYNTAX:
value = FILE “SAVE _ PROJECT” “name”

DESCRIPTION:
Create a Motion Perfect project with the given name inside the current directory. This implies creating the
directory and the corresponding project and program files within this directory.

PARAMETERS:

name: The name of the project that you are creating on the SD Card

FUNCTION = TYPE:

SYNTAX:
value = FILE “TYPE” “name”

DESCRIPTION:
Read the contents of the file inside the current directory and print it to the current output channel.

Software Reference Manual

TRIOBaSIC COMMaNdS
FLaG

2-217

PARAMETERS:

name: The name of the file that you wish to print

SEE ALSO
OUTDEVICE, STICK _ READ, STICK _ WRITE, STICK _ READVR, STICK _ WRITEVR

FLAG
TYPE:
Logical and Bitwise Command

SYNTAX:
value = FLAG(flag _ no [,state])

DESCRIPTION:
The FLAG command is used to set and read a bank of 24 flag bits.

The FLAG command is provided to aid compatibility with earlier controllers and is not recommended
for new programs.

PARAMETERS:

value: With one parameter it returns the state of the flag
With 2 parameters it returns -1

flag_no: The flag number is a value from 0..31.
state: The state to set the given flag to. ON or OFF.

EXAMPLE:
Toggle a flag depending on a VR value

IF FLAG(21) and VR(100)=123 THEN
 FLAG(21,OFF)
ELSE IF NOT FLAG(21) and VR(100)<>123 THEN
 FLAG(21,ON)
ENDIF

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OUTDEVICE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STICK_READ.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STICK_WRITE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STICK_READVR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STICK_WRITEVR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
FLaGS

2-218

FLAGS
TYPE:
Logical and Bitwise Command

SYNTAX:
value = FLAGS([state])

DESCRIPTION:
Read or Set the 32bit FLAGS as a block.

The FLAGS command is provided to aid compatibility with earlier controllers and is not recommended
for new programs.

PARAMETERS:

value: no parameters = returns the status of all flag bits
with parameter = returns -1

state: The decimal equivalent of the bit pattern to set the flags to

EXAMPLES:

EXAMPLE 1:
Set Flags 1,4 and 7 ON, all others OFF

Bit # 7 6 5 4 3 2 1 0
Value 128 64 32 16 8 4 2 1

FLAGS(146)’ 2 + 16 + 128

EXAMPLE 2:
Test if FLAG 3 is set.

IF (FLAGS and 8) <>0 then GOSUB somewhere

FLASH_DUMP
TYPE:
Reserved Keyword

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
FLaSHTaBLE

2-219

FLASHTABLE
TYPE:
System Function

SYNTAX:
FLASHTABLE(function,flashpage,tablepage)

DESCRIPTION:
Copies user data in RAM to and from the permanent FLASH memory.

PARAMETERS:

function: Specifies the required action.
1 Write a page of TABLE data into flash EPROM.
2 Read a page of flash memory into TABLE data.

flashpage: The index number (0 ... 31) of a 16000 values page of Flash EPROM where the table data is
to be stored to or retrieved from.

tablepage: The index number (0 ... INT(TSIZE/16000)) of the page in table memory where the data is
to be copied from or restored to.

EXAMPLE:
Save the TABLE page 2 data in locations TABLE(32000) -TABLE(47999) to FLASH memory page 5.

FLASHTABLE(1,5,2)

SEE ALSO:
FLASHVR

FLASHVR
TYPE:
System Function

SYNTAX:
FLASHVR(function)

DESCRIPTION:
Copies user VR or TABLE data in RAM to and from the permanent FLASH memory.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/INT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TSIZE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FLASHVR.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
FLEXLINK

2-220

PARAMETERS:
function: Specifies the required action.

-1 Stores the entire TABLE to the Flash EPROM and use it to replace the RAM table
data on power-up.

-2 Stop using the EPROM copy of table during power-up.
-100 Force all changed VR’s to be committed to Flash EPROM (non battery backed

controllers only)

 M AFTER USING FUNCTION -1, ANY CHANGED TABLE DATA WILL BE OVERWRITTEN ON THE NEXT POWER UP OR RESET.

EXAMPLE:
Save the entire TABLE data to FLASH memory.

FLASHVR(-1)

SEE ALSO:
FLASHTABLE

FLEXLINK
TYPE:
Axis Command
Syntax:
FLEXLINK(base _ dist, excite _ dist, link _ dist, base _ in, base _ out, excite _ acc,
excite _ dec, link _ axis, options, start _ pos)

DESCRIPTION
The FLEXLINK command is used to generate movement of an axis according to a defined profile. The
motion is linked to the measured motion of another axis. The profile is made up of 2 parts, the base move
and the excitation move both of which are specified in the parameters. The base move is a constant speed
movement. The excitation movement uses sinusoidal profile and is applied on top of the base movement.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FLASHTABLE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
FLEXLINK

2-221

� This command allows you to simplify a CAMBOX type movement through not having to use any table
data.

PARAMETERS:
base_dist: The distance the axis should move at a constant speed
excite_dist: The distance the axis should perform the profiled move
link_dist: The distance the link axis should move while the FLEXLINK profile executes
base_in: The percentage of the base move that completes before the excitation move starts
base_out: The percentage of the base move that completes after the excitation move completes.
excite_acc: The percentage of the excitation move used for acceleration
excite_dec: The percentage of the excitation move used for deceleration.
link_axis: The axis to link to.
link_options: Bit value options to customize how your FLEXLINK operates

Bit 0 1 link commences exactly when registration event MARK occurs on link axis
Bit 1 2 link commences at an absolute position on link axis (see link_pos for start

position)
Bit 2 4 FLEXLINK repeats automatically and bi-directionally when this bit is

set. (This mode can be cleared by setting bit 1 of the REP _ OPTION axis
parameter)

Bit 5 32 Link is only active during a positive move on the link axis
Bit 8 256 link commences exactly when registration event MARKB occurs on link axis
Bit 9 512 link commences exactly when registration event R _ MARK occurs on link

axis. (see link_pos for channel number)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CAMBOX.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MARK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_OPTION.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MARKB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/R_MARK.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
FOR..TO.. STEP .. NEXT

2-222

link_pos: link_option bit 1 - the absolute position on the link axis in user UNITS where the CAMBOX
is to be start.

link_option bit 9 – the registration channel to start the movement on

The link_dist is in the user units of the link axis and should always be specified as a positive distance.

The link options for start (bits 1, 2, 8 and 9) may be combined with the link options for repeat (bits 4
and 8) and direction.

start_pos cannot be at or within one servo period’s worth of movement of the REP _ DIST position.

EXAMPLES:

EXAMPLE 1:
Suppose you want a smooth curve for 40% of a cycle and to remain stationary for the remainder:

FLEXLINK(0,10000,20000,60,0,50,50,1)
In this example the move length is 10000 and this is linked to 20000 distance on the link axis (1). The axis is
stationary for 60% of the cycle and the move is 50% accel/50% decel.

EXAMPLE 2:
Suppose you want a 1:1 background link but to advance 500 using a smooth curve between 80% and 95% of a
cycle:

FLEXLINK(10000,500,10000,80,5,50,50,1)
In this example the base move length is 10000 and this is linked to 10000 distance on the link axis (1). The
excite distance is 500 and this starts after 80% of the cycle, with 5% at the end also clear of excitation. The
“excite” move is 50% accel/50% decel.

FOR..TO.. STEP .. NEXT
TYPE:
Program Structure

SYNTAX:
FOR variable = start TO end [STEP increment]
 commands
NEXT variable

DESCRIPTION:
A FOR program structure is used to execute a block of code a number of times.

On entering this loop the variable is initialised to the value of start and the block of commands is then
executed. Upon reaching the NEXT command the variable defined is incremented by the specified STEP.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
FOR..TO.. STEP .. NEXT

2-223

If the value of the variable is less than or equal to the end parameter then the block of commands is
repeatedly executed. Once the variable is greater than the end value the program drops out of the FOR..
NEXT LOOP.

FOR..NEXT loops can be nested up to 8 deep in each program.

PARAMETERS:
commands: Trio BASIC statements that you wish to execute
variable: A valid Trio BASIC variable. Either a global VR variable, or a local variable may be used.
start: The initial value for the variable
end: The final value for the variable
increment: The value that the variable is incremented by , this may be positive or negative

The STEP increment is optional, if this is omitted then the FOR NEXT will increment by 1

� The variable can be adjusted or used within the structure.

EXAMPLES:

EXAMPLE 1:
Turn ON outputs 10 to 18, using the variable to change the output.

FOR op _ num=10 TO 18
 OP(op _ num,ON)
NEXT op _ num

EXAMPLE 2:
Index an axis from 5 to -5 using a negative STEP.

FOR dist=5 TO -5 STEP -0.25
 MOVEABS(dist)
 WAIT IDLE
 GOSUB pick _ up
NEXT dist

EXAMPLE 3:
Using a FOR structure to move through a set of x,y positions. If there is a MOTION _ ERROR then the
variables are set to a large values so the loop no longer repeats

FOR x=1 TO 8
 FOR y=1 TO 6
 MOVEABS(x*100,y*100)
 WAIT IDLE
 GOSUB operation

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOTION_ERROR.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
FORCE_SPEEd

2-224

 IF MOTIONERROR THEN
 x=10
 y = 10
 ENDIF
 NEXT y
NEXT x

FORCE_SPEED
TYPE:
Axis Parameter

DESCRIPTION:
This parameter sets the main speed for a motion command that supports the advanced speed control
(commands ending in SP). The VP _ SPEED will accelerate or decelerate so that the profile is completed at
FORCE _ SPEED

The lowest value of SPEED, ENDMOVE _ SPEED, FORCE _ SPEED or STARTMOVE _ SPEED will take
priority.

FORCE _ SPEED is loaded into the buffer at the same time as the move so you can set different speeds for
subsequent moves.

VALUE:
The speed at which the SP motion command will execute, in user UNITS. (default 0)

EXAMPLES:

EXAMPLE 1:
In this example the controller will ramp the speed down to a speed of 10 at the end of the MOVE. Then for
the duration of the MOVESP(20) the speed will be 10, after which it will ramp back to a speed of 15.

SPEED = 15
MOVE(100)
FORCE _ SPEED = 10
MOVESP(20)
MOVE(100)

EXAMPLE 2:
Use FORCE _ SPEED to slow the profile speed down during a corner move

FORCE _ SPEED=100
MOVESP(100,0)
FORCE _ SPEED=50

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VP_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENDMOVE_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FORCE_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STARTMOVE_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVESP.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
FORWaRd

2-225

MOVECIRC(100,100,100,0,1)
FORCE _ SPEED=100
MOVESP(0,100)

SEE ALSO:
ENDMOVE _ SPEED, STARTMOVE _ SPEED

FORWARD
TYPE:
Axis Command

SYNTAX:
FORWARD

ALTERNATE FORMAT:
FO

DESCRIPTION:
Sets continuous forward movement. The axis accelerates at the programmed ACCEL rate and continues
moving at the SPEED value until either a CANCEL or RAPIDSTOP command are encountered. It then
decelerates to a stop at the programmed DECEL rate.

If the axis reaches either the forward limit switch or forward soft limit, the FORWARD will be cancelled
and the axis will decelerate to a stop.

EXAMPLES:

EXAMPLE 1:
Run an axis forwards. When an input signal is detected on input 12, bring the axis to a stop.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENDMOVE_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STARTMOVE_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ACCEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CANCEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RAPIDSTOP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DECEL.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
FORWaRd

2-226

FORWARD
‘wait for stop signal
WAIT UNTIL IN(12)=ON
CANCEL
WAIT IDLE

EXAMPLE 2:
Move an axis forwards until it hits the end limit switch, then move it in the reverse direction for 25 cm.

BASE(3)
FWD _ IN=7 ‘limit switch connected to input 7
FORWARD
WAIT IDLE ‘wait for motion to stop on the switch

Software Reference Manual

TRIOBaSIC COMMaNdS
FPGa_PROGRaM

2-227

MOVE(-25.0)
WAIT IDLE

EXAMPLE 3:
A machine that applies lids to cartons uses a simulated line shaft. This example sets up a virtual axis
running forward, this is to simulate the line shaft. Axis 0 is then CONNECTed to this to run the conveyor.
Axis 1 controls a vacuum roller that feeds the lids on to the cartons using the MOVELINK control.

BASE(4)
ATYPE=0 ‘Set axis 4 to virtual axis
REP _ OPTION=1
SERVO=ON
FORWARD ‘starts line shaft
BASE(0)
CONNECT(-1,4) ‘Connects base 0 to virtual axis in reverse
WHILE IN(2)=ON
 BASE(1)
 ‘Links axis 1 to the shaft in reverse direction
 MOVELINK(-4000,2000,0,0,4,2,1000)
 WAIT IDLE
WEND
RAPIDSTOP

SEE ALSO:
REVERSE

FPGA_PROGRAM
TYPE:
System Function

SYNTAX:
value = FPGA _ PROGRAM(program)

DESCRIPTION:
This function allows you to select between the different FPGA programs that are available on controllers
that support FPGA re-programming.

Rather than using this command we recommend using the tool in Motion Perfect to select the FPGA
variant.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CONNECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVELINK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REVERSE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
FPGa_VERSION

2-228

PARAMETERS:

variant: -1 Displays FPGA images stored in local controller flash memory
>=0 The program number to load, see table below or check FPGA _ PROGRAM(-1) to see

available options.
value: TRUE FPGA programmed successfully

MC403:

FPGA _ PROGRAM FEATURES NOTES
0 Servo, Stepper, HW _ PSWITCH, SSI Default program
1 Servo, Stepper, HW _ PSWITCH,

Tamagawa
2 Servo, Stepper, HW _ PSWITCH, EnDAT HW _ PSWITCH only available on first 2

axes

MC405:

FPGA _ PROGRAM FEATURES NOTES
0 Servo, Stepper, HW _ PSWITCH, SSI, Tamagawa Default program
1 Servo, Stepper, HW _ PSWITCH, SSI, EnDAT
2 Reserved

EXAMPLE:
Check the available FPGA programs then load program 1 so that an EnDAT encoder can be used. Do not
forget to power cycle.

>>FPGA _ PROGRAM(-1)
0 : (00C) Servo,Stepper,PSwitch,SSI,Tamagawa
1 : (00C) Servo,Stepper,PSwitch,SSI,EnDAT
>>FPGA _ PROGRAM(1)
>>

SEE ALSO:
FPGA _ VERSION

FPGA_VERSION
TYPE:
Slot Parameter

DESCRIPTION:
Using the SLOT modifier on the MC464 enables checking of the FPGA version number in the main controller

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FPGA_VERSION.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SLOT.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
FPu_EXCEPTIONS

2-229

and any of the expansion modules.

On controllers that support FPGA re-programming, the version number is split to display the main version
number and program loaded.

VALUE:
On the MC464 it displays the FPGA version of the specified SLOT

On controllers that support FPGA variants the FPGA returns the following:

Bit Description Function
0 – 7 FPGA version number Unique version number for this FPGA program
8 - 14 FPGA program The currently installed FPGA _ PROGRAM

Bits 8-14 return a number that is one higher than the one you use in FPGA _ PROGRAM

EXAMPLE:
Check the currently installed FPGA program and its version number on the command line. The result shows
that FPGA program 1 is installed and the version is 0C.

>>PRINT HEX(FPGA _ VERSION)
10C
>>

SEE ALSO:
FPGA _ PROGRAM, SLOT

FPU_EXCEPTIONS
TYPE:
Reserved Keyword

FRAC
TYPE:
Mathematical Function

SYNTAX:
value = FRAC(expression)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SLOT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FPGA_PROGRAM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FPGA_PROGRAM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FPGA_PROGRAM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SLOT.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
FRaME

2-230

DESCRIPTION:
Returns the fractional part of the expression.

PARAMETERS:

value: The fractional part of the expression
expression: Any valid TrioBASIC expression

EXAMPLE:
Print the fractional part of 1.234 on the command line

>>PRINT FRAC(1.234)
0.2340
>>

FRAME
TYPE:
Axis Parameter

DESCRIPTION:
A FRAME is a transformation which enables the user to program in one coordinate system when the machine
or robot does not have a direct or one-to-one mechanical connection to this coordinate system.

The FRAME command selects which transformation to use on axes in a FRAME _ GROUP. Applying a FRAME to
an axis in a FRAME _ GROUP will apply that frame to all the axes in the group. To make this compatible with
older firmware, if no FRAME _ GROUP s have been configured then a default group is generated using the
lowest axes, regardless of what axis the FRAME parameter was issued on.

Most transformations require configuration data to specify the lengths of mechanical links or operating
modes. This is stored in the table with offsets detailed below in the parameters list. These table positions
are offset by the ‘table_offset’ parameter in FRAME _ GROUP. For a default FRAME _ GROUP table_offset is
0.

The kinematic runtime feature enable code is required to run FRAME 14 and higher

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
FRaME

2-231

SYSTEM WITH FRAME=0

SYSTEM WITH FRAME<>0

AXIS SCALING
When a FRAME is enabled UNITS applies the scaling to the world coordinate system and AXIS _ UNITS
applies scaling to the axis coordinate system.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_UNITS.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
FRaME

2-232

 M WHEN FRAME IS ENABLED MPOS IS SCALED BY AXIS _ UNITS, WHEN FRAME IS DISABLED MPOS IS SCALED BY
UNITS.

POSITION AND FOLLOWING ERRORS
When a FRAME is active MPOS is the motor position and DPOS is in the world coordinate system. AXIS _
DPOS can be read to find the demand position in the motor coordinate system.

The following error is calculated between MPOS and AXIS _ DPOS and so is the following error of the motor.

� When using multiple frames or if you wish to group your axis you can use DISABLE _ GROUP so that a
MOTION _ ERROR on one axis does not affect all.

HARDWARE AND SOFTWARE LIMITS
As FS _ LIMIT and RS _ LIMIT use DPOS they are both active in the world coordinate system. VOLUME _
LIMIT also uses DPOS so is also in the world coordinate system. FWD _ IN and REV _ IN, AXIS _ FS _ LIMIT
and AXIS _ RS _ LIMIT use AXIS _ DPOS as so act on the forward and reverse limit of the motor.

When moving off FWD _ IN and AXIS _ FS _ LIMIT the motor must move in a reverse direction. Due
to the FRAME transformation this may not be a reverse movement in the world coordinate system.
When moving off a REV _ IN and AXIS _ RS _ LIMIT the motor must move in a forward direction.
Due to the FRAME transformation this may not be a forward movement in the world coordinate
system.

POWER ON SEQUENCE AND HOMING
Some FRAME transformations require the machine to be homed and/ or moved to a position before the
FRAME is enabled. This can be done using the DATUM function. If you home position is not the zero position
of the FRAME then you can use DEFPOS/ OFFPOS to set the correct offset before enabling the FRAME.

When a FRAME is enabled DPOS is adjusted to the world coordinates which are calculated from the current
AXIS _ DPOS.

 M YOU SHOULD NOT PERFORM A DATUM HOMING ROUTINE WHEN THE FRAME IS ENABLED AS THIS WILL CHANGE THE
DPOS WHICH MAY RESULT IN UNDESIRABLE MOTION. IF YOU NEED TO PERFORM HOMING WHEN THE FRAME IS
ENABLED YOU CAN MOVE TO A REGISTRATION POSITION AND THEN USE USER _ FRAME TO APPLY THE OFFSET.

OFFSETTING POSITIONS
When a FRAME is enabled OFFPOS and OFFPOS must not be used as they will change the DPOS which may
result in undesirable motion. You can use USER _ FRAME to define a different origin to program from.

VALUE:

0 No transform
1 2 axis SCARA robot

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DISABLE_GROUP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOTION_ERROR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VOLUME_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VOLUME_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FWD_IN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REV_IN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_FS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_RS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FWD_IN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_FS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REV_IN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_RS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DATUM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DEFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DATUM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
FRaME

2-233

2 XY single belt
6 Polar to Cartesian transformation
10 Cartesian to polar transformation
13 Dual arm robot transformation
14 3 arm delta robot.
15 4 axis SCARA

FRAME=1, 2 AXIS SCARA

DESCRIPTION:
Frame=1 allows the user to program in X, Y, Cartesian coordinates for a 2 axis SCARA arm like the example
below. The frame allows for 2 configurations of a SCARA depending if the second axis motor is in the joint
or at the base. The difference is that in angle t2 is referenced from link 1, or t2 is referenced from the base.
A linkage or belt is typically used to keep t2 referenced to the base.

Second motor is carried on the end of Link 1, t2 is relative to link 1

Trio Motion Technology

TRIOBaSIC COMMaNdS
FRaME

2-234

Second motor in base with link arm to move upper part, t2 is relative to the base

Once the frame is enabled DPOS is measured in Micrometres, UNITS can then be set to a convenient scale.

HOMING
Is it required that the 2 motors’ absolute positions are homed relative to the “straight up” position before
the FRAME is enabled. In other words, the zero angle on each axis is with the arms in line and vertical. Of
course it is not necessary for the motors to actually go to this position as you can offset the position using
DEFPOS or OFFPOS.

JOINT CONFIGURATION
The joint configuration is determined by the position of the SCARA arm when you enable FRAME = 1

The joint is defined as Right Handed if:

(t2<t1) –both motors in base

(t2<0) –motors in the joint

Otherwise the robot is Left handed

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DEFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFFPOS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
FRaME

2-235

PARAMETERS:

Table data 0 Length of arm 1 in micrometres
1 Length of arm 2 in micrometres
2 Edges per radian for joint 1
3 Edges per radian for joint 2
4 Internal value. Set to 0 to force frame re-calculation
5 Axis configuration:

0 – Both motors fixed in base
1 – Motors at the joint

6 Joint configuration (read only):
0 – Left handed SCARA
1 – Right handed SCARA

7 used internally
8 used internally

EXAMPLES:

EXAMPLE 1:
Set up the SCARA arm which is configured with the motors in the joints. Both motors return 16000 counts
per revolution. The robot can be homed to switches which are at -80 degrees and +150degrees for the two
joints. After setting FRAME=1 the tip of the second arm will be set with X, Y as (0,42426). This effectively
makes the (0,0) XY position to be the bottom joint of the lower arm.

All the normal move types can then be run within the FRAME=1 setting until it is reset by setting FRAME=0.
As the FRAME 1 makes the resolution of axes 0 and 1 micrometres, the UNITS can be set so you can program
in mm.

FRAME=0

‘Enter Configuration Parameters:
TABLE(0, 300000) ‘ Length of arm 1 in mm * 1000
TABLE(1, 445000) ‘ Length of arm 2 in mm * 1000
TABLE(2, 16000/(2*PI)) ‘ edges per radian for joint 1
TABLE(3, 16000/(2*PI)) ‘ edges per radian for joint 2
TABLE(4, 0) ‘ Internal value. Set to 0 to force frame re-calculation
TABLE(5, 1) ‘ set to 1 for second joint fixed to arm 1

‘Home the robot to its mechanical limit switches
DATUM(3) AXIS(0) ‘ find home switch for lower part of arm
WAIT IDLE
DATUM(3) AXIS(1) ‘ find upper arm home position
WAIT IDLE

‘The mechanical layout may make it impossible to home at (0,0)
‘Define the home position values as their true angle (in edges)
DEFPOS(-3555,6667) ‘ say home position is -80 deg and +150 deg
WAIT UNTIL OFFPOS=0

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
FRaME

2-236

‘Move both arms to start position PI/4 radians (45 degrees)
MOVEABS(-TABLE(2)*0.7854,TABLE(3)*0.7854*2)
WAIT IDLE

FRAME=1

UNITS AXIS(0)=1000
UNITS AXIS(1)=1000

EXAMPLE 2:
Set up the table for SCARA arm which is configured with both motors in the base. Once the table is
configured the rest of the initialisation is the same as the above example.

‘ Enter Configuration Parameters:
TABLE(0,400000) ‘ Link 1 in mm * 1000
TABLE(1,250000) ‘ Link 2 in mm * 1000
TABLE(2, 4096*5/(2*PI)) ‘ t1 in edges per radian
TABLE(3, 4096*3/(2*PI)) ‘ t2 in edges per radian
TABLE(4,0) ‘ Internal value. Set to 0 to force frame re-calculation
TABLE(5,0) ‘ set to 0 for second joint fixed to base

FRAME=2, XY SINGLE BELT

DESCRIPTION:
Switching to FRAME=2 will allow X-Y motion using a single-belt configuration. In this mode, an interpolated
move of MOVE(0,100) produces motion on both motor 1 and motor 2 to raise the load vertically, based on
the transformed position. Note that the two motors are located on the X-axis. The mass of the Y-axis can
be minimized in this configuration. The equations for the transformed position of the X and Y axes are as
follows:

 Xtransformed = (MPOS AXIS(0)+ MPOS AXIS(1))*0.5

 Ytransformed = (MPOS AXIS(0)- MPOS AXIS(1))*0.5

The transformed X-Y coordinates are derived from the measured encoder position (MPOS) of AXIS(0) and
AXIS(1). This conversion is automatically accomplished by the Motion Coordinator when FRAME=2.

Once the frame is enabled DPOS is measured in encoder counts, UNITS can be set to enable a more
convenient scale.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
FRaME

2-237

EXAMPLE:
 ATYPE=0 ‘disable built in axes for MC464

 FRAME=0

 ‘Define a start position
 DEFPOS(150,50)
 FRAME=2

FRAME=6, POLAR TO CARTESIAN TRANSFORMATION

DESCRIPTION:
This transformation allows the user to program in polar (radius, angle) coordinates and the actual axis to
move in a Cartesian (X, Y) coordinate system.

The first axis in the frame group is the Radius, the second is the angle. .

Trio Motion Technology

TRIOBaSIC COMMaNdS
FRaME

2-238

Once the frame is enabled the raw position data (UNITS=1) is measured in encoder counts for the radius axis
and radians*scale for the angle, UNITS can then be set to a convenient scale. The origin for the robot is the
zero position for the Cartesian system. The zero angle position is along Axis 0.

PARAMETERS:

Table data 0 Scale (counts per radian) for the rotary axis

EXAMPLES:

EXAMPLE 1:
A gantry robot has 2 axis configured in an X, Y configuration. For ease of programming the user would like
to program in Polar coordinates. Both axes return 4000 counts per revolution. The AXIS _ UNITS are set so
that the axis coordinate system is in mm, the UNITS are set so that the World coordinate system is in mm
and degrees.

 scale = 1000000
 UNITS AXIS(0) = 4000 ‘To program in mm
 AXIS _ UNITS AXIS(0) = 4000
 UNITS AXIS(1) = scale*2*PI/360 ‘to program in degrees
 AXIS _ UNITS AXIS(1) = 4000
 TABLE(0, scale) ‘Set resolution for the angle axis
 FRAME = 6

EXAMPLE 2:
Using the robot configured in example 1 move the tool to 150mm along the X axis, then move the tool in a
circle around the Polar coordinate system origin.

 MOVEABS(150,0)
 MOVE(0,360)

FRAME=10, CARTESIAN TO POLAR TRANSFORMATION

DESCRIPTION:
This FRAME transformation allows the user to program in Cartesian (X,Y) coordinates on a system that moves
in a Polar (radius, angle) coordinate system. This is typically used on cylindrical robots where you need to
program the arm extension (radius) and angle. The vertical Z axis can be simply added to make a 3 degree
of freedom system.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
FRaME

2-239

Once the frame is enabled the raw position data (UNITS=1) is scaled the same for the X and Y axes, the
resolution is set from the radius axis. UNITS can then be set to a convenient scale. The origin is the centre
of the Polar system. .

� The first axis in the group controls the radius axis and the second controls the rotary axis.

HOMING
Before enabling FRAME=10 the axes must be homed so that they are at a known position. When the FRAME is
enabled the X and Y positions are calculated from the current Polar position.

Take care when executing moves that go close to the origin. Moves that travel through the origin will
require infinite speed and acceleration. This is usually not possible to achieve and the axes will trip
out due to excessive following error.

PARAMETERS:

Table data 0 Encoder edges/radian
1 Number of revolutions, set by firmware
2 Previous servo cycle’s angle, set by firmware

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
FRaME

2-240

EXAMPLE:
A cylindrical robot has 3 axis which extend the arm (radius), rotate the arm (angle) and move the up and
down (Z). The radius and Z axes have 4000 counts per mm, this is used for the scale of the Cartesian axes in
the FRAME. The rotate axis has 4000 counts per revolution, this should be divided by 2*PI to give the counts
per revolution which is set in the table. The UNITS are set so that the Cartesian system can be programmed
in mm, the AXIS _ UNITS is set so that the axis are programmed in mm or degrees. Once the polar system
has been homed the following code can be executed so that any further motion is programmed in Cartesian
coordinates.

UNITS AXIS(0) = 4000 ‘To use in mm
AXIS _ UNITS AXIS(0) = 4000 ‘To use in mm
edges _ per _ radian = 4000/(2*PI) ‘Edges per radian for the rotary axis
UNITS AXIS(1) = 4000’To use in mm
AXIS _ UNITS AXIS(1) = 4000 / 360 ‘To use in mm
TABLE(0,edges _ per _ radian)
UNITS AXIS(2) = 4000 ‘To use in mm
FRAME = 10

FRAME=13, DUAL ARM PARALLEL ROBOT

DESCRIPTION:
Frame 13 enables the transformation for a 2 arm parallel robot as shown. It is then possible to program in X
Y Cartesian coordinates.

� A vertical offset for the tool can be defined within the FRAME table data. If the lower link is not
directly connected as per the image but is separated, this is compensated for by increasing the centre
distance of the top link by the same amount.

Software Reference Manual

TRIOBaSIC COMMaNdS
FRaME

2-241

Once the frame is enabled the raw position data (UNITS=1) is measured in Micrometres, UNITS can then be
set to a convenient scale.

HOMING
The 2 arm delta robot should be homed so that the two link 1’s are horizontal as shown below. You do not
need to enable the frame in this position, just ensure that it has been defined.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
FRaME

2-242

PARAMETERS:

Table data 0 Link length 1 in microns
1 Link length 2 in microns
2 Encoder edges/radian axis 0
3 Encoder edges/radian axis 1
4 Horizontal offset axes from x datum
5 Set Vertical datum with arms straight out
6 calculated values
7 calculated values
8 calculated values
12 first axis frame calculated value

EXAMPLE
The following is a typical startup program for FRAME 13.

FRAME=0
WA(10)
‘--
TABLE(0,220000)’Arm
TABLE(1,600000)’Forearm
TABLE(2,(2048*4*70)/2/PI)’pulse/radian

Software Reference Manual

TRIOBaSIC COMMaNdS
FRaME

2-243

TABLE(3,(2048*4*70)/2/PI)’pulse/radian
TABLE(4,15000)’X-offset
TABLE(5,450000)’Y-offset = 450 mm below axis 0 centre
‘--

‘ set home position for arms at +/-90 degrees
DATUM(4) AXIS(0) ‘find home switch for left arm
DATUM(3) AXIS(1) ‘find home switch for right arm
WAIT IDLE AXIS(0)
WAIT IDLE AXIS(1)
home _ 0 = -TABLE(2)*PI/2
home _ 1 = TABLE(3)*PI/2
BASE(0,1)
DEFPOS(home _ 0,home _ 1)

WA(10)
FRAME=13

FRAME=14, DELTA ROBOT

DESCRIPTION:
FRAME=14 enables the transformation for a 3 arm ‘delta’ or ‘parallel’ robot. It transforms 3 axes from the
mechanical configuration to Cartesian coordinates using the right hand rule.

FRAME=14 requires the kinematic runtime FEC

Trio Motion Technology

TRIOBaSIC COMMaNdS
FRaME

2-244

Once the frame is enabled the raw position data (UNITS=1) is measured in Micrometres, UNITS can then
be set to a convenient scale. The origin for the robot is the centre of the top plate with the X direction
following the first axis. This can be adjusted using the rotation parameter.

HOMING
Before enabling FRAME=14 the position must be defined so that when the upper arms are horizontal the axis
position is 0. You do not need to enable the frame in this position, just ensure that it has been defined.

PARAMETERS:

Table data 0 Top radius to joint in Micrometres (R1)
1 Wrist radius to joint in Micrometres (R2)
2 Upper arm length in Micrometres (L1)
3 Lower arm length in Micrometres (L2)
4 Edges per radian
5 Angle of rotation in radians (Rotation)

EXAMPLE
Start-up sequence for a 3 arm delta robot using the default FRAME _ GROUP. Homing is completed using a
sensor that detects when the upper arms are level.

‘ Define Link Lengths for 3 arm delta:

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
FRaME

2-245

 TABLE(0,200000)’ Top radius to joint
 TABLE(1,50000)’ Wrist radius to joint
 TABLE(2,320000)’ Upper arm length
 TABLE(3,850000)’ Lower arm length

‘ Define encoder edges/radian
 ‘18bit encoder and 31:1 ratio gearbox
 resolution = 262144 * 31 / (2 * PI)
 TABLE(4,resolution)

‘ Define rotation of robot relative to global frame
 rotation = 30 ‘degrees
 TABLE(5, (rotation*2*PI)/360)

‘ Configure axis
 FOR axis _ number=0 TO 2
 BASE(axis _ number)
 ‘World coordinate system to operate in mm
 UNITS=1000
 SERVO=ON
 NEXT axis _ number

 WDOG=ON
 BASE(0)

‘ Home and initialise frame
 ‘Arms MUST be horizontal in home position
 ‘ before frame is initialised.
 FOR axis _ number=0 TO 2
 DATUM(4)
 WAIT IDLE
 NEXT axis _ number

 ‘Enable Frame
 FRAME=14

FRAME=15, 4 AXIS SCARA

DESCRIPTION:
FRAME=15 enables the transformation for a 4 axis SCARA robot. This allows you to define the end position
of the wrist in X.Y.Z and wrist angle (relative to the Y axis). The frame allows for 2 configurations of a
SCARA depending if the second axis motor is in the joint or at the base. The difference is that the angle t2
is referenced from link 1, or the angle t2 is referenced from the base. A linkage or belt is typically used to
keep t2 referenced to the base.

Trio Motion Technology

TRIOBaSIC COMMaNdS
FRaME

2-246

Some mechanical configurations have parasitic motion from the Z axis to the wrist angle. This can be
included in the ‘ratio’ parameter. This is the ratio of encoder edges on the vertical to the change in wrist
angle in encoder edges. Set this value to 0 if there is no parasitic motion.

FRAME=15 requires the kinematic runtime FEC

Software Reference Manual

TRIOBaSIC COMMaNdS
FRaME

2-247

Once the frame is enabled DPOS on the X and Y axis are measured in Micrometres. UNITS should be set on
the Z axis so that this matches. The wrist axis still works in encoder edges. You can of course set UNITS for
all axis to any suitable scale.

HOMING
Is it required that the X, Y and wrist absolute positions are homed relative to the “straight up” position
before the FRAME is enabled. In other words, the zero angle on each axis is with the arms in line and
vertical along the Y axis with Z=0. Of course it is not necessary for the motors to actually go to this position

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
FRaME_GROuP

2-248

as you can offset the position using DEFPOS or OFFPOS.

JOINT CONFIGURATION
The joint configuration is determined by the position of the SCARA arm when you enable FRAME = 1

The joint is defined as Right Handed if:

(t2<t1) –both motors in base

(t2<0) –motors in the joint

Otherwise the robot is Left handed

PARAMETERS:

The table data values 0-8 are identical to FRAME 1, SCARA. This means you can easily switch between
the 2 and 4 axis SCARA.

Table data 0 link1
1 link2
2 Encoder edges/radian axis 0
3 Encoder edges/radian axis 1
4 Internal value. Set to 0 to force frame re-calculation
5 Axis configuration

0 – Both motors fixed in base
1 – Motors at the joint

6 Joint configuration (read only)
0 – Left handed SCARA
1 – Right handed SCARA

7 used internally
8 used internally
9 Encoder edges/radian axis 3
10 link3
11 Ratio of encoder edges moves on axis 2/ edge axis3
12 Encoder edges/mm axis 2

FRAME_GROUP
TYPE:
System Command

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DEFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFFPOS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
FRaME_GROuP

2-249

SYNTAX:
FRAME _ GROUP(group, [table_offset, [axis0, axis1 …axisn]])

DESCRIPTION:
FRAME _ GROUP is used to define the group of axes and the table offset which are used in a FRAME or
USER _ FRAME transformation. There are 8 groups available meaning that you can run a maximum of 8
FRAMEs on the controller.

FRAME _ GROUP requires the kinematic runtime FEC

 M ALTHOUGH 8 FRAMES CAN BE INITIALISED ON A CONTROLLER IT MAY NOT BE POSSIBLE TO PROCESS ALL 8 AT A GIVEN
SERVO _ PERIOD. THE NUMBER THAT CAN BE RUN DEPENDS ON MANY FACTORS INCLUDING, WHICH FRAME IS
SELECTED, DRIVE CONNECTION METHOD, IF USER _ FRAME AND TOOL _ OFFSET ARE ENABLED AND ADDITIONAL
FACTORY COMMUNICATIONS.

The number of axes in the group must match the number of axes used by the FRAME. The axes must also be
ascending order though they do not have to be contiguous. If a group is deleted FRAME and USER _ FRAME
are set to 0 for those axes.

� To maintain backward compatibility if the FRAME command is used on an axis that is not in a group, or
no groups are configured then a default group is created using the lowest axes and table_offset=0. In
this situation if FRAME _ GROUP(0) is already configured it is overwritten.

PARAMETERS:

group: The group number, 0-7. When used as the only parameter FRAME _ GROUP prints the
FRAME _ GROUP, the active USER _ FRAME and TOOL _ OFFSET information to the
currently selected output channel (default channel 0)

table_offset: -1 = Delete group data
0+ = The start position in the table to store the FRAME configuration.

axis0: The first axis in the group
axis1: The second axis in the group
axisn: The last axis in the group

EXAMPLE:
Configure a FRAME _ GROUP for axes 1,2 and 5 using table offset 100.

 ‘Initialise the FRAME _ GROUP
 FRAME _ GROUP(0,100, 1,2,5)

 ‘Configure the axes, FRAME table data and home the robot
 GOSUB configure _ frame

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SERVO_PERIOD.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TOOL_OFFSET.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
FRaME_TRaNS

2-250

 ‘PRINT the FRAME _ GROUP information to the command line
 FRAME _ GROUP(0)

 ‘Enable the frame
 FRAME AXIS(1)=14

FRAME_TRANS
TYPE:
Mathematical Function

SYNTAX:
FRAME _ TRANS(frame, table_in, table_out, direction [,table_offset])

DESCRIPTION:
This function enables you to perform both the forward and inverse transformation calculations of a FRAME.
One particular use is to check following errors in user units or to calculate positions outside of the FRAME
working area.

FRAME _ TRANS requires the kinematic runtime FEC to use a FRAME 14 and higher.

� The FRAME calculations are performed on raw position data. When using a FRAME typically the raw
position data for DPOS is micrometres and the raw position data for MPOS is encoder counts but this
can vary depending on which FRAME you select.

PARAMETERS:
frame: The FRAME number to run
table_in The start position in the TABLE of the input positions
table_out The start position in the TABLE of the generated positions
direction 1 = AXIS _ DPOS to DPOS (Forward Kinematics)

0 = DPOS to AXIS _ DPOS (Inverse Kinematics)
table_offset The first position in the table where the frame configuration is found (default 0)

Software Reference Manual

TRIOBaSIC COMMaNdS
FRaME_TRaNS

2-251

EXAMPLES:

EXAMPLE 1:
Using MPOS calculate the Cartesian values so you can compare them to DPOS. This can be used to check the
following error in the world coordinate system. The frame configuration is stored in the table starting at
position 100.

‘Load positions into the table
FOR x=0 TO 3
BASE(x)
TABLE(1000+x,MPOS AXIS(x)*UNITS AXIS(x))
NEXT x
‘Calculate forward transform to see MPOS is Cartesian coordinates
FRAME _ TRANS(15, 1000,2000,1,100)

TABLE(3000, TABLE(2000)/ UNITS AXIS(0))
TABLE(3001, TABLE(2001)/ UNITS AXIS(1))
TABLE(3002, TABLE(2002)/ UNITS AXIS(2))
PRINT “DPOS IN ENCODER COUNTS”,TABLE(2000),TABLE(2001),TABLE(2002)
PRINT “DPOS IN MM”,TABLE(3000),TABLE(3001),TABLE(3002)
PRINT “FE in world x = “, TABLE(3000) – DPOS AXIS(0)
PRINT “FE in world y = “, TABLE(3001) – DPOS AXIS(1)
PRINT “FE in world z = “, TABLE(3002) – DPOS AXIS(2)

EXAMPLE 2:
Use the inverse kinematics to confirm that a demand position will result in an axis position that the motors
can achieve.

 ‘Load positions into the table
 TABLE(5000,100*UNITS AXIS(0),200*UNITS AXIS(1),400*UNITS AXIS(2))

 ‘Calculate reverse transform to see
 FRAME _ TRANS(14, 5000,6000,0)

 ‘Divide the result by the AXIS _ UNITS to get
 ‘the MPOS in degrees
 TABLE(7000, TABLE(6000)/ AXIS _ UNITS)
 TABLE(7001, TABLE(6001)/ AXIS _ UNITS)

Trio Motion Technology

TRIOBaSIC COMMaNdS
FREE

2-252

 TABLE(7002, TABLE(6002)/ AXIS _ UNITS)

 PRINT “MPOS RAW ENCODER COUNTS”, TABLE(6000),TABLE(6001),TABLE(6002)
 PRINT “MPOS degrees”, TABLE(7000),TABLE(7001),TABLE(7002)

 WEND

FREE
TYPE:
System Parameter (Read Only)

DESCRIPTION:
Returns the amount of program memory available for user programs.

Each line takes a minimum of 4 characters (bytes) in memory. This is for the length of this line, the
length of the previous line, number of spaces at the beginning of the line and a single command token.
Additional commands need one byte per token, most other data is held as ASCII.

The Motion Coordinator compiles programs before they are run, this means that a little under twice
the memory is required to be able to run a program.

VALUE:
The amount of available user memory in bytes.

EXAMPLE:
Check the available memory on the command line

>>PRINT FREE
47104.0000
>>

SEE ALSO:
DIR

FS_LIMIT
TYPE:
Axis Parameter

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DIR.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
FuLL_SP_RadIuS

2-253

ALTERNATE FORMAT:
FSLIMIT

DESCRIPTION:
An end of travel limit may be set up in software thus allowing the program control of the working envelope
of the machine. This parameter holds the absolute position of the forward travel limit in user units.

Bit 9 of the AXISSTATUS register is set when the axis position is greater than the FS _ LIMIT.

When DPOS reaches FS _ LIMIT the controller will cancel the move, so the axis will decelerate at
DECEL or FASTDEC.

� FS _ LIMIT is disabled when it has a value greater than REP _ DIST.

VALUE:
The absolute position of the software forward travel limit in user UNITS. (default = 200000000000)

EXAMPLES:

EXAMPLE 1:
Datum axis 1, then define a forward limit from this point.

BASE(1)
DATUM(3)
WAIT IDLE
FS _ LIMIT=200

EXAMPLE 2:
Disable the FS _ LIMIT by setting it greater than REP _ DIST.

FS _ LIMIT = REPDIST+10

SEE ALSO:
RS _ LIMIT, FWD _ IN, REV _ IN

FULL_SP_RADIUS
TYPE:
Controller Parameter

DESCRIPTION:
This parameter is used with CORNER _ MODE, it defines the minimum radius that will be executed at full
speed. When a radius is smaller than FULL _ SP _ RADIUS the speed will be proportionally reduces so that:

VP _ SPEED = FORCE _ SPEED * radius/FULL _ SP _ RADIUS

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXISSTATUS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DECEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FASTDEC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_DIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_DIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FWD_IN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REV_IN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CORNER_MODE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VP_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FORCE_SPEED.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
FWd_IN

2-254

Where radius is the radius of the corner that is executing.

VALUE:
The full speed radius in user UNITS (default = 0).

EXAMPLE:
In the following program, when the first MOVECIRCSP is reached the speed remains at 10 because the radius
(8) is greater than that set in FULL _ SP _ RADIUS. For the second MOVECIRCSP the speed is reduced by
50% to a value of 5, because the radius is 50% of that stored in FULL _ SP _ RADIUS.

CORNER _ MODE=8
MERGE=ON
SPEED=10
FULL _ SP _ RADIUS=6
DEFPOS(0,0)

MOVESP(10,10)
MOVESP(10,5)
MOVESP(5,5)
MOVECIRCSP(8,8,0,8,1)
MOVECIRCSP(3,3,0,3,1)
MOVESP(5,5)
MOVESP(10,5)

SEE ALSO:
CORNER _ MODE

FWD_IN
TYPE:
Axis Parameter

DESCRIPTION:
This parameter holds the input number to be used as a forward limit input.

When the forward limit input is active any motion on that axis is CANCELed

When FWD _ IN is active AXISSTATUS bit 4 is set.

The input used for FWD _ IN is active low.

VALUE:
-1 Disable the input as FWD _ IN (default)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVECIRCSP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVECIRCSP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CORNER_MODE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CANCEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXISSTATUS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
FWd_JOG

2-255

0-63 Input to use as forward input switch

� Any type of input can be used, built in, Trio CAN I/O, CANopen or virtual.

EXAMPLE:
Initialise input 19 for the forward limit switch

FWD _ IN AXIS(9)=19

SEE ALSO:
REV _ IN, FS _ LIMIT, RS _ LIMIT

FWD_JOG
TYPE:
Axis Parameter

DESCRIPTION:
This parameter holds the input number to be used as a jog forward input.

When the FWD _ JOG input is active the axis moves forward at JOGSPEED.

The input used for FWD _ IN is active low.

It is advisable to use INVERT _ IN on the input for FWD _ JOG so that 0V at the input disables the jog.

FWD _ JOG overrides REV _ JOG if both are active

VALUE:

-1 Disable the input as FWD _ JOG (default)
0-63 Input to use as datum input

EXAMPLE:
Initialise the FWD _ JOG so that it is active high on input 7

INVERT _ IN(7,ON)
FWD _ JOG=7

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REV_IN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/JOGSPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FWD_IN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/INVERT_IN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REV_JOG.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
GET

2-256

TRIOBaSIC COMMaNdS
GET

2-257

Software Reference Manual

GGET
TYPE:
System Command

SYNTAX:
GET [#channel,] variable

DESCRIPTION:
Waits for the arrival of a single character on the serial. The ASCII value of the character is assigned to the
variable specified. The user program will wait until a character is available.

� Poll KEY to check to if a character has been received before performing a GET.

PARAMETERS:
#channel: See # for the full channel list (default 0 if omitted)
variable: The variable to store the received character, this may be local variable, VR or TABLE

 M PERFORMING A GET OR GET#0 WILL SUSPEND THE COMMAND LINE UNTIL A CHARACTER IS SENT ON THAT CHANNEL.

EXAMPLES:

EXAMPLE 1:
Ask a user to enter ‘y’ for yes or ‘n’ for no on channel 5

start:
 PRINT#5, “Press ‘y’ for YES or ‘n’ for NO.”
 GET#5, char
 IF char = 121 THEN
 PRINT#5, “YES selected”
 ELSEIF char = 110 THEN
 PRINT#5, “NO selected”
 ELSE
 PRINT#5, “BAD selection”
 GOTO start
 ENDIF

EXAMPLE 2:
Clear the serial buffer then request the user to enter a name

WHILE KEY#2

file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\KEY.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\VR.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\TABLE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
GLOBaL

2-258

 GET#2, dump
WEND

PRINT#2, “ENTER NAME”
WAIT UNTIL KEY#2
count=0
WHILE char<> $D ‘carrage return
 GET#2, char
 VR(count)=char
 count=count+1
WEND

SEE ALSO:
LINPUT, PRINT, KEY

GLOBAL
TYPE:
System Command

SYNTAX:
GLOBAL “name”, vr _ number

DESCRIPTION:
Up to 1024 GLOBALs can be declared in the controller, these are available to all programs. GLOBAL declares
the name as a reference to one of the global VR variables. The name can then be used both within the
program containing the GLOBAL definition and all other programs in the Motion Coordinator project.

They should be declared on startup and for fast startup the program declaring GLOBALs should also be the
ONLY process running at power-up.

Once a GLOBAL has been assigned it cannot be changed, even if you change the program that assigns
it.

� While developing you may wish to clear or change a GLOBAL. You can clear a single GLOBAL by using
the first parameter alone. All GLOBALs can be cleared by issuing GLOBAL. You can view all GLOBALS
using LIST _ GLOBAL.

PARAMETERS:

name: Any user-defined name containing lower case alpha, numerical or underscore (_)
characters.

vr_number: The number of the VR to be associated with name.

file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\LINPUT.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\PRINT.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\KEY.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LIST_GLOBAL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
GOSuB..RETuRN

2-259

EXAMPLE:
Initialise two GLOBALs and use then to adjust machine parameters.

GLOBAL “screw _ pitch”,12
GLOBAL “ratio1”,534

ratio1 = 3.56
screw _ pitch = 23.0
PRINT screw _ pitch, ratio1

SEE ALSO:
CONSTANT, LIST _ GLOBAL

GOSUB..RETURN
TYPE:
Program Structure

SYNTAX:
GOSUB label
…
label:
 commands
RETURN

DESCRIPTION:
Stores the position of the line after the GOSUB command and then branches to the label specified. Upon
reaching the RETURN statement, control is returned to the stored line.

GOSUB..RETRUN loops can be nested up to 8 deep in each program.

PARAMETERS:
commands: TrioBASIC statements that you wish to execute
label: A valid label that occurs in the program.

If the label does not exist an error message will be displayed at run time and the program execution
halted.

You must not execute a RETURN without a GOSUB as a runtime error will be displayed and your
program will stop.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CONSTANT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LIST_GLOBAL.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
GOTO

2-260

EXAMPLES:

EXAMPLE 1:
 WHILE machine _ active
 GOSUB routine1
 GOSUB routine2
 WEND
 STOP ‘prevents running into subroutines when machine stopped.

routine1:
 PRINT “Measured Position=”;MPOS;CHR(13);
 RETURN

routine2:
 PRINT “Demand Position=”;DPOS;CHR(13);
 RETURN

EXAMPLE 2:
Calculating values in a subroutine.

y=1
z=4
GOSUB calc
PRINT “New value = “, x
STOP

calc:
 x=y+z/2
RETURN

SEE ALSO:
GOTO

GOTO
TYPE:
Program Structure

SYNTAX:
GOTO label
…
label:

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GOTO.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
>= Greater Than or Equal

2-261

DESCRIPTION:
Identifies the next line of the program to be executed.

PARAMETERS:
label: A valid label that occurs in the program.

If the label does not exist an error message will be displayed at run time and the program execution
halted.

EXAMPLE:
Use a GOTO to repeat a section of your program after a bad input

start:
PRINT#5, “Press ‘y’ for YES and ‘n’ for NO.”
GET#5, char
IF char = 121 THEN
 PRINT#5, “YES selected”
ELSEIF char = 110 THEN
 PRINT#5, “NO selected”
ELSE
 PRINT#5, “BAD selection”
 GOTO start
ENDIF

SEE ALSO:
GOSUB

>= Greater Than or Equal
TYPE:
Comparison Operator

SYNTAX
<expression1> >= <expression2>

DESCRIPTION:
Returns TRUE if expression1 is greater than or equal to expression2, otherwise returns FALSE.

PARAMETERS:

Expression1: Any valid TrioBASIC expression

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GOSUB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
> Greater Than

2-262

Expression2: Any valid TrioBASIC expression

EXAMPLE:
If variable target holds a value greater than or equal to 120 then move to the absolute position of 0.

IF target>=120 THEN MOVEABS(0)

> Greater Than
TYPE:
Comparison Operator

SYNTAX:
<expression1> > <expression2>

DESCRIPTION:
Returns TRUE if expression1 is greater than expression2, otherwise returns FALSE.

PARAMETERS:

Expression1: Any valid TrioBASIC expression
Expression2: Any valid TrioBASIC expression

EXAMPLES:

EXAMPLE 1:
The program will wait until the measured position is greater than 200

WAIT UNTIL MPOS>200

EXAMPLE 2:
Set the value of TRUE into VR 0 as 1 is greater than 0

VR(0)=1>0

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx

TRIOBaSIC COMMaNdS
HaLT

2-263

Software Reference Manual

HHALT
TYPE:
System Command.

DESCRIPTION:
Halts execution of all running programs. You can use HALT in a program.

 M HALT DOES NOT STOP ANY MOTION. CURRENTLY EXECUTING, OR BUFFERED MOVES WILL CONTINUE UNLESS THEY
ARE TERMINATED WITH A CANCEL OR RAPIDSTOP COMMAND.

EXAMPLE:
Use the command line to stop two running programs:

>>HALT%[Process 20:Line 2] (31) - Program is stopped
%[Process 21:Line 1] (31) - Program is stopped
>>

SEE ALSO:
CANCEL, RAPIDSTOP, STOP

HEX
TYPE:
String Function

SYNTAX:
value = HEX(number)

DESCRIPTION:
HEX returns the hexadecimal value for the decimal number supplied as a STRING which can be assigned to a
STRING variable or be PRINTed.

PARAMETERS:

number: A decimal value
value: A hexadecimal STRING of the number

file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\CANCEL.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\RAPIDSTOP.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\CANCEL.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\RAPIDSTOP.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\STOP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DIM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DIM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PRINT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DIM.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
HLM_COMMaNd

2-264

EXAMPLES:

EXAMPLE 1:
Print AXISSTATUS as a hexadecimal value on the command line

>>PRINT HEX(AXISSTATUS)
10
>>

EXAMPLE 2:
Append a hexadecimal number to a STRING variable

DIM value AS STRING
value = value + HEX(number)

SEE ALSO:
PRINT, STRING

HLM_COMMAND
TYPE:
Remote Command

SYNTAX:
HLM _ COMMAND(command, port[, node[, mc _ area/mode[, mc _ offset]]])

DESCRIPTION:
The HLM _ COMMAND command performs a specific Host Link command operation to one or to all Host Link
Slaves on the selected port. Program execution will be paused until the response string has been received
or the timeout time has elapsed. The timeout time is specified by using the HLM _ TIMEOUT parameter. The
status of the transfer can be monitored with the HLM _ STATUS parameter.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DIM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PRINT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DIM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/HLM_TIMEOUT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/HLM_STATUS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
HLM_COMMaNd

2-265

PARAMETERS:
command: The the Host Link operation to perform:

HLM _ MREAD 0 This performs the Host Link PC MODEL READ (MM) command to
read the CPU Unit model code. The result is written to the MC
Unit variable specified by mc_area and mc_offset.

HLM _ TEST 1 This performs the Host Link TEST (TS) command to check
correct communication by sending string “MCxxx TEST
STRING” and checking the echoed string. Check the HLM _
STATUS parameter for the result.

HLM _ ABORT 2 This performs the Host Link ABORT (XZ) command to abort
the Host Link command that is currently being processed. The
ABORT command does not receive a response.

HLM _ INIT 3 This performs the Host Link INITIALIZE (**) command to
initialize the transmission control procedure of all Slave Units.

HLM _ STWR 4 This performs the Host Link STATUS WRITE (SC) command to
change the operating mode of the CPU Unit.

port: The specified serial port. (See specific controller specification for numbers)
node: (for HLM _ MREAD, HLM _ TEST, HLM _ ABORT and HLM _ STWR):

The Slave node number to send the Host Link command to. Range: [0, 31].
mode: (for HLM _ STWR)

The specified CPU Unit operating mode.
0 PROGRAM mode
2 MONITOR mode
3 RUN mode

mc_area: (for HLM _ MREAD)
The MC Unit’s memory selection to write the received data to.
MC _ TABLE 8 Table variable array
MC _ VR 9 Global (VR) variable array

mc_offset: (for HLM _ MREAD)
The address of the specified MC Unit memory area to read from.

When using HLM _ COMMAND, be sure to set-up the Host Link Master protocol by using the SETCOM
command.

The Host Link Master commands are required to be executed from one program task only to avoid any
multi-task timing problems.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SETCOM.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
HLM_REad

2-266

EXAMPLES:

EXAMPLE 1:
The following command will read the CPU Unit model code of the Host Link Slave with node address 12
connected to the RS-232C port. The result is written to VR(233).

HLM _ COMMAND(HLM _ MREAD,1,12,MC _ VR,233)
If the connected Slave is a C200HX PC, then VR(233) will contain value 12 (hex) after successfull execution.

EXAMPLE 2:
The following command will check the Host Link communication with the Host Link Slave (node 23)
connected to the RS-422A port.

HLM _ COMMAND(HLM _ TEST,2,23)
PRINT HLM _ STATUS PORT(2)

If the HLM _ STATUS parameter contains value zero, the communication is functional.

EXAMPLE 3:
The following two commands will perform the Host Link INITIALIZE and ABORT operations on the RS-422A
port 2. The Slave has node number 4.

HLM _ COMMAND(HLM _ INIT,2)
HLM _ COMMAND(HLM _ ABORT,2,4)

EXAMPLE 4:
When data has to be written to a PC using Host Link, the CPU Unit can not be in RUN mode. The HLM _
COMMAND command can be used to set it to MONITOR mode. The slave has node address 0 and is connected
to the RS-232C port.

HLM _ COMMAND(HLM _ STWR,2,0,2)

HLM_READ
TYPE:
Remote Command

SYNTAX:
HLM _ READ(port,node,pc _ area,pc _ offset,length,mc _ area,mc _ offset)

DESCRIPTION:
The HLM _ READ command reads data from a Host Link Slave by sending a Host Link command string
containing the specified node of the Slave to the serial port. The received response data will be written
to either VR or Table variables. Each word of data will be transferred to one variable. The maximum data
length is 30 words (single frame transfer). Program execution will be paused until the response string has
been received or the timeout time has elapsed. The timeout time is specified by using the HLM _ TIMEOUT
parameter. The status of the transfer can be monitored with the HLM _ STATUS parameter.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/HLM_STATUS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/HLM_TIMEOUT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/HLM_STATUS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
HLM_STaTuS

2-267

PARAMETERS:
port: The specified serial port. (See specific controller specification for numbers)
node: The Slave node number to send the Host Link command to. Range: [0, 31].
pc_area: The PC memory selection for the Host Link command.

pc_area data area Hostlink command
PLC _ DM 0 DM RD
PLC _ IR 1 CIO/IR RR
PLC _ LR 2 LR RL
PLC _ HR 3 HR RH
PLC _ AR 4 AR RJ
PLC _ EM 6 EM RE

pc_offset: The address of the specified PC memory area to read from. Range: [0, 9999].
length: The number of words of data to be transfered. Range: [1, 30].
mc_area: The MC Unit’s memory selection to write the received data to.

MC _ TABLE 8 Table variable array
MC _ VR 9 Global (VR) variable array

mc_offset: The address of the specified MC Unit memory area to write to.

When using the HLM _ READ, be sure to set-up the Host Link Master protocol by using the SETCOM
command.

The Host Link Master commands are required to be executed from one program task only to avoid any
multi-task timing problems.

HLM_STATUS
TYPE:
Port Parameter

DESCRIPTION:
Returns the status of the Host Link serial communications.

HLM_TIMEOUT
TYPE:
System Parameter

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SETCOM.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
HLM_WRITE

2-268

DESCRIPTION:
Sets the timeout value for Hostlink communications.

VALUE:
Timeout in msec, default 500msec

EXAMPLE:
Set the Hostlink timeout to 600msec.

HLM _ TIMEOUT = 600

HLM_WRITE
TYPE:
Remote Command

SYNTAX:
HLM _ WRITE(port,node,pc _ area,pc _ offset,length,mc _ area,mc _ offset)

DESCRIPTION:
The HLM _ WRITE command writes data from the MC Unit to a Host Link Slave by sending a Host Link
command string containing the specified node of the Slave to the serial port. The received response data
will be written from either VR or Table variables. Each variable will define on word of data which will be
transferred. The maximum data length is 29 words (single frame transfer). Program execution will be paused
until the response string has been received or the timeout time has elapsed. The timeout time is specified
by using the HLM _ TIMEOUT parameter. The status of the transfer can be monitored with the HLM _ STATUS
parameter.

PARAMETERS:
port: The specified serial port. (See specific controller specification for numbers)
node: The Slave node number to send the Host Link command to. Range: [0, 31].
pc_area: The PC memory selection for the Host Link command.

pc_area data area Hostlink command
PLC _ DM 0 DM RD
PLC _ IR 1 CIO/IR RR
PLC _ LR 2 LR RL
PLC _ HR 3 HR RH
PLC _ AR 4 AR RJ
PLC _ EM 6 EM RE
PLC _ REFRESH 7

pc_offset: The address of the specified PC memory area to write to. Range: [0, 9999].

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/HLM_TIMEOUT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/HLM_STATUS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
HLS_MOdEL

2-269

length: The number of words of data to be transfered. Range: [1, 30].
mc_area: The MC Unit’s memory selection to read the data from.

MC _ TABLE 8 Table variable array
MC _ VR 9 Global (VR) variable array

mc_offset: The address of the specified MC Unit memory area to read from.

When using the HLM _ WRITE, be sure to set-up the Host Link Master protocol by using the SETCOM
command.

The Host Link Master commands are required to be executed from one program task only to avoid any
multi-task timing problems.

EXAMPLE:
The following example shows how to write 25 words from MC Unit’s VR addresses 200-224 to the PC EM area
addresses 50-74. The PC has Slave node address 28 and is connected to the RS-232C port.

HLM _ WRITE(1, 28, PLC _ EM, 50, 25, MC _ VR, 200)

HLS_MODEL
TYPE:
System Parameter

DESCRIPTION:
Defines the model number returned to a Hostlink Master.

VALUE:
The model number returned. Default 250

HLS_NODE
TYPE:
System Parameter

DESCRIPTION:
Sets the Hostlink node number for the slave node. Used in multidrop RS485 Hostlink networks or set to 0 for
RS232 single master/slave link.

Trio Motion Technology

TRIOBaSIC COMMaNdS
HMI_PROC

2-270

HMI_PROC
TYPE:
System Parameter (MC _ CONFIG / FLASH)

SYNTAX:
HMI _ PROC=value

DESCRIPTION:
Sets the process number on which the HMI Server protocol will be initiated. This value must be set before
the first HMI Client connection occurs. The default value at power up is -1, which will automatically select
the process number according to the normal RUN command rules.

If this value is to be set, the it is recommended that it be set in the special MC _ CONFIG program to insure
that the value is valid before any HMI Client can connect to the Motion Coordinator.

HMI_SERVER
TYPE:
System Command

SYNTAX:
HMI _ SERVER[(function [, parameter])]

DESCRIPTION:
This command allows the Trio HMI Server to be controlled, configured and interrogated from a TrioBASIC
program.

If there are no parameters then the function is 0, and the parameter is 0.

PARAMETERS:
function: description:
0 Run the HMI _ SERVER protocol
1 Read the HMI Client error data
2 Write the HMI _ SERVER event flags
3 Read the HMI _ SERVER status data
4 Set the HMI poll timeout
5 Read the HMI Client version information

Software Reference Manual

TRIOBaSIC COMMaNdS
HMI_SERVER

2-271

FUNCTION = 0:

SYNTAX:
HMI _ SERVER

HMI _ SERVER(0[,debug])

DESCRIPTION:
This function starts the HMI _ SERVER protocol. This function never stops, so no TrioBASIC statement after
this command in a program will be executed.

If the debug parameter is 0, then no debug information is printed. If the parameter is not 0, then debug
information will be printed to channel 0. It is not recommended to use this option as it is only applicable to
HMI _ SERVER development.

� The HMI _ SERVER program is normally started automatically when the HMI Client connects to the
Motion Coordinator. You can call it manually if you wish to specify which process it should run on and
whether it should print debug information.

 M IF YOU EXECUTE HMI _ SERVER MANUALLY THE PROGRAM IT RUNS IN WILL SUSPEND AT THE HMI _ SERVER LINE.
THE HMI _ SERVER THEREFORE SHOULD BE THE LAST LINE OF THE PROGRAM TO EXECUTE.

FUNCTION = 1:

SYNTAX:
value = HMI _ SERVER(1, parameter)

DESCRIPTION:
When an error occurs in the HMI Client, this event is sent to the HMI Server if possible. This command will
return the data about the last error that occurred in the HMI Client.

PARAMETERS:

Parameter: Description: Values:
0 Error number Specific to the HMI Client operating system
1 Error string Specific to the HMI Client operating system
2 Error program When applicable, the name of the program on the

Motion Coordinator with which the HMI Client was
communicating when the error occurred.

3 Error process When applicable, the process number of the program on
the Motion Coordinator with which the HMI Client was
communicating when the error occurred.

Trio Motion Technology

TRIOBaSIC COMMaNdS
HMI_SERVER

2-272

EXAMPLE:
Report an error on the HMI Client

 ‘ check for error
 IF HMI _ SERVER(1,0) THEN
 PRINT “HMI Client reports error”
 PRINT “HMI Error=”;HMI _ SERVER(1,0)
 PRINT “HMI Description=”;HMI _ SERVER(1,1)
 PRINT “MC Program=”;HMI _ SERVER(1,2)
 PRINT “MC Process=”;HMI _ SERVER(1,3)
 ENDIF

FUNCTION = 2:

SYNTAX:
HMI _ SERVER(2, parameter)

DESCRIPTION:
The HMI Server can inform the HMI Client that certain events have occurred. These events are used by
MotionPerfectV3.

PARAMETERS:

Parameter: Description:
0 No event
1 The Motion Coordinator has an updated HMI Design file, the HMI Client must

request it.
2 Request that the HMI Client send its’ current configuration file.
4 The Motion Coordinator has an updated HMI configuration file, the HMI Client must

request it.
8 The Motion Coordinator has an updated HMI Client firmware file, the HMI Client

must request it.

FUNCTION = 3:

SYNTAX:
value = HMI _ SERVER(3, parameter)

DESCRIPTION:
Read the HMI Client status information.

Software Reference Manual

TRIOBaSIC COMMaNdS
HMI_SERVER

2-273

PARAMETERS:
Parameter: Description:
0 Client status (integer)
1 Current HMI Design page (string)

FUNCTION = 4:

SYNTAX:
HMI _ SERVER(4, parameter)

DESCRIPTION:
Set the number of milliseconds without activity that the HMI Server will wait before aborting a client
connection.

PARAMETERS:

Parameter: Description: Values:
0 Error number Specific to the HMI Client operating system
1 Error string Specific to the HMI Client operating system
2 Error program When applicable, the name of the program on the

Motion Coordinator with which the HMI Client was
communicating when the error occurred.

3 Error process When applicable, the process number of the program on
the Motion Coordinator with which the HMI Client was
communicating when the error occurred.

FUNCTION = 5:

SYNTAX:
value = HMI _ SERVER(5, parameter)

DESCRIPTION:
Return the HMI Client description. The HMI Client sends this data to the HMI Server during the protocol
initialisation.

PARAMETERS:

Parameter: Description: Values
0 HMI Client Engine major version number
1 HMI Client Engine minor version number

Trio Motion Technology

TRIOBaSIC COMMaNdS
HW_TIMER

2-274

2 HMI Client Communications Protocol major
version number

3 HMI Client Communications Protocol minor
version number

4 HMI Client OS ID 0 => Windows CE
1 => Windows Desktop

5 HMI Client OS Version Bit 0-15 => Minor number
Bit 16-31 => Major number

6 HMI Client Canvas Size Bit 0-15 => Width in pixels
Bit 16-31 => Height in pixels

HW_TIMER
TYPE:
SLOT command

SYNTAX:
HW _ TIMER(mode, cycleTime, <onTime, reps, > opState, opMode, opSel)

DESCRIPTION:
The HW _ TIMER command turns ON/OFF a digital output or enable output of an axis for a specified length of
‘cycleTime’ (microseconds) in mode 1 or ‘onTime’ (microseconds) in mode 2 within the overall on/off time
‘cycleTime’.

The command can be used with either 1, 5 or 7 parameters. Only 1 parameter is needed to disable the
timer. Five parameters are needed to enable the timer in mode 1, seven parameters for mode 2.

Note that the internal FPGA timer resolution is 10us so the requested time will be divided by 10 thus
effectively truncating any remainder less than 10us e.g. 27 us will be interpreted as 20us. The user should
also consider the rise/fall times of digital outputs, for highest performance then enable output selection
should be used.

When using mode1 or 2 you must use an ATYPE with an enable output.

This command is only supported on controllers that have the correct FPGA _ PROGRAM

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ATYPE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FPGA_PROGRAM.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
HW_TIMER

2-275

PARAMETERS:

mode: 0 Disable timer
1 Starts timer after which the selected output changes state.
2 Starts timer after which the selected output changes state and then changes state

again at the end of the overall cycle time and repeats for the given number of
repetitions.

cycleTime: Specifies in microseconds the timer cycle time to be used. For mode 1 this is effectively
the ON time.

onTime Mode 2 only, specifies in microseconds the timer ON time to be used within the overall
‘cycleTime’.

reps Mode 2 only, specified how many repetitions of the ‘cycleTime’ sequence are required.
opState: Initial state of selected output, ON or OFF.
opMode: 0 Indicates that a digital output is to be controlled.

1 Indicates that a Enable output output is to be controlled.
2 Indicates that a digital output and enable output output are to be controlled. These

are only available in fixed pairs:

axis 0 + Digital Output 8

axis 1 + Digital Output 9

axis 2 + Digital Output 10

axis 3 + Digital Output 11

axis 4 + Digital Output 12
opSel: For opMode=0 this selects which digital output is to be controlled; valid range is 8..15.

For opMode=1 this selects which axis enable output (0..4) is to be controlled; valid range is
0..4.

For opMode=2 this selects which digital output and axis enable output is to be controlled;
valid range is 0..4 which is interpreted as 8..12 for the corresponding digital output.

EXAMPLES:

EXAMPLE 1:
Request output 14 to be ON for 350us.

HW _ TIMER(1,350,ON,0,14)

EXAMPLE 2:
Disable the timer after it was enabled previously.

HW _ TIMER(0)

EXAMPLE 3:
Request enable output of axis 2 to be ON for 1.5s.

HW _ TIMER(1,1500000,ON,1,2)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
HW_TIMER_dONE

2-276

EXAMPLE 4:
Request digital output 9 and enable output of axis 1 to be OFF for 200ms.

HW _ TIMER(1,200000,OFF,2,1) : WAIT UNTIL HW _ TIMER _ DONE

EXAMPLE 5:
Request a cycle time of 1s to be repeated 10 times with digital output 13 being ON for 3500us within each
cycle.

HW _ TIMER(2,1000000,3500,10,ON,0,13)

SEE ALSO:
HW _ TIMER _ DONE

HW_TIMER_DONE
TYPE:
SLOT command (Read Only)

SYNTAX:
HW _ TIMER _ DONE

DESCRIPTION:
Indicates whether or not a requested HW _ TIMER is complete.

VALUE:

TRUE The previous HW_TIMER request is complete

FALSE The previous HW_TIMER request is NOT complete

EXAMPLE:
Request enable output of axis 4 to be ON for 500ms.

HW _ TIMER(1,500000,ON,1,4) : WAIT UNTIL HW _ TIMER _ DONE

SEE ALSO:
HW _ TIMER

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/HW_TIMER_DONE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/HW_TIMER.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/HW_TIMER.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/HW_TIMER.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/HW_TIMER.docx

TRIOBaSIC COMMaNdS
I_GaIN

2-277

Software Reference Manual

II_GAIN
TYPE:
Axis Parameter

DESCRIPTION:
Used as part of the closed loop control, adding integral gain to a system reduces position error when at rest
or moving steadily. It will produce or increase overshoot and may lead to oscillation.

For an integral gain Ki and a sum of position errors ∫e, the contribution to the output signal is:

Oi = Ki × ∫e

VALUE:
The integral gain is a constant which is multiplied by the sum of following errors. Default value = 0

EXAMPLE:
Setting the gain values as part of a STARTUP program

P _ GAIN=1
I _ GAIN=0.01
D _ GAIN=0
OV _ GAIN=0
…

IDLE
TYPE:
Axis Parameter

DESCRIPTION:
Checks to see if an axis MTYPE is IDLE

VALUE:

TRUE MTYPE is empty (MTYPE=0)
FALSE MTYPE has a command loaded (MTYPE<>0)

EXAMPLES:

EXAMPLE 1:
Start a move and then suspend program execution until the move has finished. Note: This does not
necessarily imply that the axis is stationary in a servo motor system.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MTYPE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MTYPE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MTYPE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MTYPE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MTYPE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
IEEE_IN

2-278

MOVE(100)
WAIT IDLE
PRINT “Move Done”

EXAMPLE 2:
If the axis does not have any moves loaded then load a new sequence.

IF IDLE AXIS(1) THEN
 MOVE(100)
 MOVE(50)
 MOVE(-150)
ENDIF

IEEE_IN
TYPE:
Mathematical Function

SYNTAX:
IEEE _ IN(byte0,byte1,byte2,byte3)

DESCRIPTION:
The IEEE _ IN function returns the floating point number represented by 4 bytes which typically have been
received over a communications link such as Modbus.

PARAMETERS:
byte0 - 3: Any combination of 8 bit values that represents a valid IEEE floating point number.

Byte 0 is the high byte of the 32 bit floating point format.

EXAMPLE:
Take 4 bytes that have been sent over Modbus to VRs and recombine them into a floating point number.

VR(200) = IEEE _ IN(VR(0),VR(1),VR(2),VR(3))

IEEE_OUT
TYPE:
Mathematical Function

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
IF..THEN..ELSEIF..ELSE..ENdIF

2-279

SYNTAX:
byte _ n = IEEE _ OUT(value, n)

DESCRIPTION:
The IEEE _ OUT function returns a single byte in IEEE format extracted from the floating point value for
transmission over a communication bus system. The function will typically be called 4 times to extract each
byte in turn.

PARAMETERS:
value: Any TrioBASIC floating point variable or parameter.
n: The byte number (0 - 3) to be extracted.

Byte 0 is the high byte of the 32 bit floating point format.

EXAMPLE:
Extract the 4 bytes from MPOS and store then in local variables ready for transmission over a
communications bus.

a = MPOS AXIS(2)
byte0 = IEEE _ OUT(a, 0)
byte1 = IEEE _ OUT(a, 1)
byte2 = IEEE _ OUT(a, 2)
byte3 = IEEE _ OUT(a, 3)

IF..THEN..ELSEIF..ELSE..ENDIF
TYPE:
Program Structure

SYNTAX:
IF condition THEN
 commands
ELSEIF expression THEN
 commands
ELSE
 commands
ENDIF

DESCRIPTION:
An IF program structure is used to execute a block of code after a valid expression. The structure will

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
IF..THEN..ELSEIF..ELSE..ENdIF

2-280

execute only one block of commands depending on the conditions. If multiple expressions are valid then
the first will have its commands executed. If no expressions are valid and an ELSE is present the commands
under the ELSE will be executed.

PARAMETERS:

condition: Any valid logical TrioBASIC expression
commands: TrioBASIC statements that you wish to execute

EXAMPLES:

EXAMPLE 1:
Check for the batch to be complete, if it is then tell the user and process the batch

IF count >= batch _ size THEN
 PRINT #3,CURSOR(20);” BATCH COMPLETE “;
 GOSUB index ‘Index conveyor to clear batch
 count=0
ENDIF

EXAMPLE 2:
Use an IF statement to light a warning lamp when machine is running

IF WDOG=ON THEN
 OP(warning, ON)
ELSE
 OP(warning, OFF)
ENDIF

EXAMPLE 3:
Use an IF structure to report the operating state of a machine.

IF operating _ state=0 THEN
 PRINT#5, “Machine Running”
ELSEIF operating _ state=1 THEN
 PRINT#5, “Machine Idle”
ELSEIF operating _ state=2 THEN
 PRINT#5, “Machine Jammed”
ELSE
 PRINT#5, “Machine in unknown state”
ENDIF

Software Reference Manual

TRIOBaSIC COMMaNdS
IN

2-281

IN
TYPE:
System Function.

SYNTAX:
value = IN[(input _ no[,final _ input])]

DESCRIPTION:
IN is used to read the state of the inputs.

If called with no parameters, IN returns the binary sum of the first 32 inputs. If called with one parameter it
returns the state (1 or 0) of that particular input channel. If called with 2 parameters IN() returns in binary
sum of the group of inputs.

In the 2 parameter case the inputs should be less than 32 apart.

IN is equivalent to IN(0,31)

PARAMETERS:

value: The state of the selected input or range of inputs
none: Returns the binary sum of the first 32 inputs
input_no: input to return the value of/start of input group
final_input: last input of group

EXAMPLES:

EXAMPLE 1:
In this example a single input is tested:

WAIT UNTIL IN(4)=ON
GOSUB place

EXAMPLE 2:
Move to the distance set on a thumb wheel multiplied by a factor. The thumb wheel is connected to inputs
4,5,6,7 and gives output in binary coded decimal.

The move command is constructed in the following order:

Step 1: IN(4,7) will get a number 0..15

Step 2: multiply by 1.5467 to get required distance

Step 3: absolute MOVE to this position
WHILE TRUE

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
INCLudE

2-282

 MOVEABS(IN(4,7)*1.5467)
 WAIT IDLE
WEND

EXAMPLE 3:
Test if either input 2 or 3 is ON.

If (IN and 12) <> 0 THEN GOTO start
‘(Bit 2 = 4 + Bit 3 = 8) so mask = 12

INCLUDE
TYPE:
System Command.

SYNTAX:
INCLUDE “filename”

DESCRIPTION:
The INCLUDE command resolves all local variable definitions in the included file at compile time and allows
all the local variables to be declared “globally”.

Whenever an included program is modified, all programs that depend on it are re-compiled as well,
avoiding inconsistencies.

Nested INCLUDE s are not allowed.

The INCLUDE command must be the first BASIC statement in the program.

Only variable definitions are allowed in the include file. It cannot be used as a general subroutine with
any other BASIC commands in it.

PARAMETERS:

filename: The name of the program to be included

EXAMPLE:
Initialise all local variables with an include program.

PROGRAM “T1”:
‘include global definitions

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
INdEVICE

2-283

INCLUDE “GLOBAL _ DEFS”
‘Motion commands using defined vars
FORWARD AXIS(drive _ axis)
CONNECT(1, drive _ axis) AXIS(link _ axis)

PROGRAM “GLOBAL _ DEFS”:
drive _ axis=4
linked _ axis=1

INDEVICE
TYPE:
Process Parameter

DESCRIPTION:
This parameter specifies the default active input device. Specifying an INDEVICE for a process allows the
channel number for a program to set for all subsequent GET, KEY, INPUT and LINPUT statements.

This command is process specific so other processes will use the default channel.

This command is available for backward compatibility, it is currently recommended to use #channel,
instead.

 VALUE:
The channel number to use for any inputs

For a full list of communication channels see #

EXAMPLE:
Set up a program to use channel 5 by default for any GET commands

INDEVICE=5
‘ Get character on channel 5:
IF KEY THEN
 GET k
ENDIF

SEE ALSO:
#, GET, INPUT, KEY, LINPUT

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GET.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/INPUT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LINPUT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GET.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/HASH.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GET.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/INPUT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/KEY.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LINPUT.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
INITIaLISE

2-284

INITIALISE
TYPE:
System Command.

DESCRIPTION:
Sets all axis, system and process parameters to their default values.

The parameters are also reset each time the controller is powered up, or when an EX (software reset)
command is performed.

 M INITIALISE MAY RESET A PARAMETER RELATING TO A DIGITAL DRIVE COMMUNICATION OR ENCODER CAUSING YOU
TO LOSE THE CONNECTION.

EXAMPLE:
When developing you wish to clear all parameters back to default using the command line.

>>INITIALISE
>>

INPUT
TYPE:
System Command.

SYNTAX:
INPUT [#channel,] variable [, variable…]

DESCRIPTION:
Waits for an ASCII string to be received on the current input device, terminated with a carriage return
<CR>. If the string is valid its numeric value is assigned to the specified variable. If an invalid string is
entered it is ignored, an error message displayed and input repeated. Multiple values may be requested on
one line, the values are separated by commas, or by carriage returns <CR>.

� Poll KEY to check to if a character has been received before performing an INPUT.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/KEY.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
INPuTS0 / INPuTS1

2-285

PARAMETERS:
#channel: See # for the full channel list (default 0 if omitted)
variable: The variable to store the received character, this may be local variable, VR or TABLE

 M PERFORMING AN INPUT OR INPUT#0 WILL SUSPEND THE COMMAND LINE UNTIL A CHARACTER IS SENT ON THAT
CHANNEL.

EXAMPLES:

EXAMPLE 1:
Receive a single value and store it in a local variable num

INPUT num
PRINT “BATCH COUNT=”;num[0]

On terminal:
123 <CR>
BATCH COUNT=123

EXAMPLE 2:
Get the length and width variables using one INPUT.

PRINT “ENTER LENGTH AND WIDTH?”;
INPUT VR(11),VR(12)

This will display on terminal:
ENTER LENGTH AND WIDTH ? 1200,
1500 <CR>

SEE ALSO:
#, KEY

INPUTS0 / INPUTS1
TYPE:
System Parameter

DESCRIPTION:
The INPUTS0/ INPUTS1 parameters holds the state of the Input channels as a system parameter.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/Hash.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/KEY.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
INSTR

2-286

Reading the inputs using these system parameters is not normally required. The IN(x,y) command
should be used instead. They are made available in this format to make the input channels accessible
to the SCOPE command which can only store parameters.

VALUE:

INPUTS0 The binary sum of IN(0)..IN(15)
INPUTS1 The binary sum of IN(16)..IN(31)

SEE ALSO:
IN

INSTR
TYPE:
STRING Function

SYNTAX:
INSTR(<offset index,>string, search string<,wild card char>)

DESCRIPTION:
Searches the input string looking for the search string and returns the (zero based) index of the first
occurrence of the string or -1 if the string is not found.

PARAMETERS:

Offset index: An integer offset into the string being searched
string: String to be searched
Search string: Search string to look for
Wild card char: A single wild card character to use within the search string expressed as a single character

string or as a numerical ASCII value

EXAMPLES:

EXAMPLE:
Pre-define a variable of type string and search it for various sub-strings:

DIM str1 AS STRING(32)
str1 = “TRIO MOTION TECHNOLOGY”
PRINT INSTR(str1, “MOTION”) ‘value = 5
PRINT INSTR(6, str1, “MOTION”) ‘value = -1
PRINT INSTR(“Value = 123.45E10”, “###.##E##”, “#”) ‘Value = 8
PRINT INSTR(“this is my string”, “is *y”, 42) ‘Value = 5

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/IN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SCOPE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/IN.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
INT

2-287

PRINT INSTR(3, str1, “IO”) ‘Value = 8

SEE ALSO:
CHR, STR, VAL, LEFT, RIGHT, MID, LEN, LCASE, UCASE

INT
TYPE:
Mathematical Function

SYNTAX:
value = INT(expression)

DESCRIPTION:
The INT function returns the integer part of a number.

� To round a positive number to the nearest integer value take the INT function of the (number + 0.5)

PARAMETERS:

expression: Any valid TrioBASIC expression.
value: The integer part of the expression

EXAMPLES:

EXAMPLE 1:
Print the integer part of a number on the command line

>>PRINT INT(1.79)
1.0000
>>

EXAMPLE 2:
Round a value to the nearest integer.

IF value>0 THEN
 rounded = INT(value + 0.5)
ELSE
 rounded = INT(value - 0.5)
ENDIF

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CHR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VAL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LEFT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RIGHT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MID.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LEN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LCASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UCASE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
INTEGER_REad

2-288

INTEGER_READ
TYPE:
Mathematical Command

SYNTAX:
INTEGER _ READ(source, least _ significant, most _ significant)

DESCRIPTION:
INTEGER _ READ performs a low level access to the 64 bit register splitting it into two 32 bit segments.

� This can be used to read the position from high resolution encoders

PARAMETERS:
source: 2 bit value that will be read, can be VR, TABLE, or system variable.
least_significant: The variable to store the least significant (rightmost) 32 bits, this may be local

variable, VR or TABLE
most_significant: The variable to store the most significant (leftmost) 32 bits, this may be local

variable, VR or TABLE

INTEGER_WRITE
TYPE:
Mathematical Command

SYNTAX:
INTEGER _ WRITE(destination, least _ significant, most _ significant)

DESCRIPTION:
INTEGER _ WRITE performs a low level write to a 64 bit register by combining two 32 bit segments.

PARAMETERS:
destination: 64 bit value that will be written, can be VR, TABLE, or system variable.
least_significant: Least significant (rightmost) 16 bits, can be any valid TrioBASIC expression.
most_significant: Most significant (leftmost) 16 bits, can be any valid TrioBASIC expression.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
INTERP_FaCTOR

2-289

INTERP_FACTOR
TYPE:
Axis parameter

DESCRIPTION:
This parameter excludes the axis from the interpolated motion calculations so that it will become a
following axis. This means that you can create an interpolated x,y move with z completing its movement
over the same time period. The interpolated speed is calculated using any axes that have INTERP _
FACTOR enabled. This means that at least one axis must be enabled and have a distance in the motion
command otherwise the calculated speed will be zero and the command will complete immediately with no
movement.

INTERP _ FACTOR only operates with MOVE, MOVEABS and MHELICAL (on the 3rd axis) and their SP versions.
All other motion commands require interpolated axes and so ignore this parameter.

EXAMPLE:
It is required to move a ‘z’ axis interpolated with x and y however we want the interpolated speed to only
be active on the ‘x,y’ move. We disable the z axis from the interpolation group using INTERP _ FACTOR.
Remember when the movement is complete you must enable INTERP _ FACTOR again.

BASE(2)
INTERP _ FACTOR=0

‘Perform movement
BASE(0,1,2)
MOVEABS(x _ offset, y _ offset, z _ offset)

WAIT IDLE
INTERP _ FACTOR AXIS(2) = 1

INVERT_IN
TYPE:
System Function

SYNTAX:
INVERT _ IN(input, state)

DESCRIPTION:
The INVERT _ IN command allows the input channels to be individually inverted in software.

This is important as these input channels can be assigned to activate functions such as feedhold.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVEABS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MHELICAL.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
INVERT_STEP

2-290

PARAMETERS:

input: The input to invert
state: ON the input is inverted in software

OFF the input is not inverted

EXAMPLE:
Invert input 7 so that when the input is low the FWD _ JOG is off

INVERT _ IN(7,ON)
FWD _ JOG=7

INVERT_STEP
TYPE:
Axis Parameter

DESCRIPTION:
INVERT _ STEP is used to switch a hardware inverter into the stepper pulse output circuit. This can be
necessary for connecting to some stepper drives. The electronic logic inside the Motion Coordinator stepper
pulse generation assumes that the FALLING edge of the step output is the active edge which results in
motor movement. This is suitable for the majority of stepper drives.

INVERT _ STEP should be set with WDOG=OFF.

 M IF THE SETTING IS INCORRECT, A STEPPER MOTOR MAY LOSE POSITION BY ONE STEP WHEN CHANGING DIRECTION.

VALUE:

ON RISING edge of the step signal the active edge
OFF FALLING edge of the step signal the active edge (default)

EXAMPLE:
Set INVERT _ STEP for axis 2 as part of a startup routine.

BASE(2)
INVERT _ STEP = ON

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FWD_JOG.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
IP_addRESS

2-291

IP_ADDRESS
TYPE:
System Parameter (MC _ CONFIG / FLASH)

DESCRIPTION:
IP _ ADDRESS is used to set the Ethernet IPv4 address of the main Ethernet port of the Motion Coordinator.
This parameter uses the standard dot (.) notation to define the 4 separate octets of the IP address.

The value is held in flash EPROM and can be set in the MC _ CONFIG script.

VALUE:
Network IP address in dot (.) format.

EXAMPLES:

EXAMPLE 1:
IP _ ADDRESS = 192.168.0.250

EXAMPLE 2:
Set IP address in the MC _ CONFIG file

‘ MC _ CONFIG script file
IP _ ADDRESS=192.168.2.100

IP_GATEWAY
TYPE:
System Parameter (MC _ CONFIG / FLASH)

DESCRIPTION:
IP _ GATEWAY is used to set the Ethernet network gateway address of the main Ethernet port of the Motion
Coordinator. The Gateway is the IPv4 address of the internet access router on the factory network. It is
only required if the Motion Coordinator is to be accessed via the internet. This parameter uses the standard
dot (.) notation to define the 4 separate octets of the IP gateway address.

The value is held in flash EPROM and can be set in the MC _ CONFIG script.

VALUE:
Network gateway address in dot (.) format.

Trio Motion Technology

TRIOBaSIC COMMaNdS
IP_MaC

2-292

EXAMPLES:

EXAMPLE 1:
IP _ GATEWAY = 192.168.0.254

EXAMPLE 2:
Set IP gateway in the MC _ CONFIG file

‘ MC _ CONFIG script file
IP _ GATEWAY=192.168.0.254

IP_MAC
TYPE:
System Parameter (FLASH / Read-only)

DESCRIPTION:
IP _ MAC returns the configured MAC address of the main Ethernet port of the Motion Coordinator. The
MAC address is set once at manufacture and is unique to that controller.

The value is held in flash EPROM and is normally read-only. If write access is available on older versions of
firmware, do not change the MAC address under any circumstances without first consulting Trio.

VALUE:
Ethernet MAC address as a single 48 bit number.

EXAMPLES:

EXAMPLE 1:
>>PRINT IP _ MAC
27648852217.0000
>>

EXAMPLE 2:
Get the MAC address in hexadecimal format

>>?hex(ip _ mac)
6700000F9
>>

Converted to the 6 Octets format this is: 00 06 70 00 00 F9

Software Reference Manual

TRIOBaSIC COMMaNdS
IP_MEMORY_CONFIG

2-293

IP_MEMORY_CONFIG
TYPE:
System Parameter (MC _ CONFIG)

DESCRIPTION:
The MC464 Ethernet port has memory allocated to buffer the incoming and outgoing data telegrams. Each
buffer page uses 1600 bytes of memory. If some ports are turned off using IP _ PROTOCOL _ CONFIG, then
IP _ MEMORY _ CONFIG may be used to re-allocate the unused memory and give a larger buffer size to the
incoming and outgoing data.

By default there are 2 x 1600 bytes allocated to Tx and 2 x 1600 allocated to Rx. The value of IP _
MEMORY _ CONFIG is $22. (or 2 + 32 in decimal) In most networks this buffer size is enough to handle all the
network traffic.

VALUE:

The IP _ MEMORY _ CONFIG is a byte which is split into 2 nibbles.

Bits Description Value
0 - 3 Size of Rx buffer; number of 1600 byte pages. $01 to $09
4 - 7 Size of Tx buffer; number of 1600 byte pages. $10 to $90

 M DO NOT SET EITHER NIBBLE TO LESS THAN 1 OTHERWISE THERE WILL BE NO MEMORY ALLOCATED AND MOTION
PERFECT WILL NOT BE USABLE.

EXAMPLE:
Allocate more buffer space for incoming Rx Ethernet traffic to cope with frequent broadcast telegrams on a
busy network.

‘ Disable Ethernet IP and text file loader ports
IP _ PROTOCOL _ CONFIG = $37
‘ Allocate the freed memory space to Rx net-buffer
IP _ MEMORY _ CONFIG = $29

IP_NETMASK
TYPE:
System Parameter (MC _ CONFIG / FLASH)

Trio Motion Technology

TRIOBaSIC COMMaNdS
IP_PROTOCOL_CONFIG

2-294

DESCRIPTION:
IP _ NETMASK is used to set the Ethernet IPv4 subnet mask of the main Ethernet port of the Motion
Coordinator. This parameter uses the standard dot (.) notation to define the 4 separate octets of the IP
subnet mask.

The value is held in flash EPROM and can be set in the MC _ CONFIG script.

VALUE:
Network subnet mask in dot (.) format.

EXAMPLES:

EXAMPLE 1:
IP _ NETMASK = 255.255.255.0

EXAMPLE 2:
Set IP subnet mask in the MC _ CONFIG file

‘ MC _ CONFIG script file
IP _ NETMASK=255.255.255.0

IP_PROTOCOL_CONFIG
TYPE:
System Parameter (MC _ CONFIG)

DESCRIPTION:
The MC464 is limited to 7 communication ports on Ethernet, IP _ PROTOCOL _ CONFIG allows the user to
select which ports they would like to use.

By default all ports except the transparent protocol text file loader port are enabled. It is recommended to
use the MC4xx protocol which is enabled by default.

VALUE:

Up to 7 bits can be selected, the default value is 575 ($23F).

Bit Description Value
0 Motion Perfect (Telnet) 1
1 PCMotion 2
2 Modbus 4
3 EthernetIP 8
4 IEC61131-3 programming 16
5 Uniplay 32

Software Reference Manual

TRIOBaSIC COMMaNdS
IP_TCP_TX_THRESHOLd

2-295

6 Transparent protocol text file loader 64
7 Reserved bit 128
8 Reserved bit 256
9 MC4xx protocol text file loader 512

 M DO NOT DISABLE BIT 0 OTHERWISE THE COMMAND LINE AND MOTION PERFECT WILL NOT BE USABLE.

EXAMPLE:
Enable the standard ports using bits 0-5 and the transparent protocol text file loader ports.

IP _ PROTOCOL _ CONFIG = 1+2+4+8+16+32+64
‘ or
IP _ PROTOCOL _ CONFIG = $7F

IP_TCP_TX_THRESHOLD
TYPE:
System Parameter (MC _ CONFIG)

DESCRIPTION:
IP _ TCP _ TX _ THRESHOLD defines the number of bytes in the TCP socket transmit buffer which will
trigger a telegram transmit. The default is 32. This value applies to all the TCP protocols.

Value:

Please consult Trio before changing this value.

Size Description Value Default
word Number of bytes in TCP socket transmit buffer which triggers a

transmission.
1 to 1023 32

 M SETTING THIS VALUE AWAY FROM THE DEFAULT MAY MAKE THE CONNECTION TO MOTION PERFECT UNSTABLE.

EXAMPLE:
Force the Ethernet processor to transmit TCP packets immediately when the data size is small, so as not to
wait for the timeout before sending.

Trio Motion Technology

TRIOBaSIC COMMaNdS
IP_TCP_TX_TIMEOuT

2-296

IP _ TCP _ TX _ THRESHOLD = 16

IP_TCP_TX_TIMEOUT
TYPE:
System Parameter (MC _ CONFIG)

DESCRIPTION:
IP _ TCP _ TX _ TIMEOUT defines the time period (in msec) at which a TCP telegram will be transmitted
after receiving the first byte if the number of bytes threshold is not reached. The default is 20msec. This
value applies to all the TCP protocols.

VALUE:

Please consult Trio before changing this value.

Size Description Value Default
Long word Time after which telegram will be transmitted if the data size

threshold is not reached. (milliseconds)
1 to 2^32-1 20

 M SETTING THIS VALUE AWAY FROM THE DEFAULT MAY MAKE THE CONNECTION TO MOTION PERFECT UNSTABLE.

EXAMPLE:
Force the Ethernet processor to transmit TCP packets only after 1 second when the data size threshold is not
reached.

IP _ TCP _ TX _ TIMEOUT = 1000

TRIOBaSIC COMMaNdS
JOGSPEEd

2-297

Software Reference Manual

JJOGSPEED
TYPE:
Axis Parameter

DESCRIPTION:
Sets the jog speed in user units for an axis to run at when performing a jog.

� You can set a faster jog speed using SPEED and the FAST _ JOG input

VALUE:
The speed in user UNITS/second which an axis will use when being jogged

EXAMPLE:
Configure an input to be the jog input at 20mm/sec on axis 12

BASE(12)
SPEED=3000
FWD _ JOG = 12
JOGSPEED = 20

SEE ALSO:
FAST _ JOG, FWD _ JOG, REV _ JOG

KEY
TYPE:
System Function.

SYNTAX:
value = KEY [#channel]

DESCRIPTION:
Key is used to check if there are characters in a channel buffer. This command does not read the character
but allows the program to test if any character has arrived.

A TRUE result will be reset when the character is read with GET.

K

file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\SPEED.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\FAST_JOG.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\UNITS.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\FAST_JOG.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\FWD_JOG.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\REV_JOG.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GET.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
KEY

2-298

PARAMETERS:

#channel: See # for the full channel list (default 0 if omitted)
value: A negative value representing the number of characters in the channel buffer

EXAMPLE:
Call a subroutine if a character has been received on channel 1

main:
 IF KEY#1 THEN GOSUB read
...
read:
 GET#1 k
RETURN

SEE ALSO:
GET

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GET.docx

TRIOBaSIC COMMaNdS
LaST_aXIS

2-299

Software Reference Manual

LLAST_AXIS
TYPE:
System Parameter

DESCRIPTION:
The Motion coordinator keeps a list of axes that are currently in use. LAST _ AXIS is used to read the
number of the highest axis in the list.

LAST _ AXIS is set automatically by the system software when an axis is written to; this can include setting
BASE for the axis.

Axes higher than LAST _ AXIS are not processed. Not all axis lower than LAST _ AXIS are processed.

VALUE:
The highest axis in the axis list that is processed.

EXAMPLE:
Check LAST _ AXIS to ensure that the digital network has configured enough drives.

IF LAST _ AXIS <> 26 THEN
 PRINT#user, “Digital Drives not initialised”
ENDIF

LCASE
TYPE:
STRING Function

SYNTAX:
LCASE(string)

DESCRIPTION:
Returns a new string with the input string converted to all lower case.

PARAMETERS:

string: String to be used

file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\BASE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
LCdSTR

2-300

EXAMPLES:

EXAMPLE 1:
Pre-define a variable of type string and later print it in all lower case characters:

DIM str1 AS STRING(32)
str1 = “TRIO MOTION TECHNOLOGY”
PRINT LCASE(str1)

SEE ALSO:
CHR, STR, VAL, LEFT, RIGHT, MID, LEN, UCASE, INSTR

LCDSTR
TYPE:
STRING Function

SYNTAX:
LCDSTR = string

DESCRIPTION:
Allows the currently displayed character string on display to be read from or written to when under user
control. This will only be allowed when the display is in normal display mode, for example if the user
removes and replaces the EtherNET cable then the displaying of IP address data will take priority before
returning to the previous display string again.

Note, this function is available on the MC405 only.

VALUE:
The string is predefined with a length of 3 and reflects the currently displayed 7-segment characters.

EXAMPLES:

EXAMPLE 1:
Take user control of 7-segement characters and display integer value of VR(100).

DISPLAY.16 = 1 ‘Enable user control of 7-segment chars
vr(100) = -88
LCDSTR = STR(VR(100),0,3)

SEE ALSO:
DISPLAY

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CHR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VAL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LEFT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RIGHT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MID.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LEN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UCASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/INSTR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DISPLAY.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
LEFT

2-301

LEFT
TYPE:
STRING Function

SYNTAX:
LEFT(string, length)

DESCRIPTION:
Returns the left most section of the specified string using the length specified.

PARAMETERS:

string: String to be used
length: Length of string to be returned

EXAMPLES:

EXAMPLE 1:
Pre-define a variable of type string and later print its left most 4 characters:

DIM str1 AS STRING(32)
str1 = “TRIO MOTION TECHNOLOGY”
PRINT LEFT(str1, 4)

SEE ALSO:
CHR, STR, VAL, RIGHT, MID, LEN, LCASE, UCASE, INSTR

LEN
TYPE:
STRING Function

SYNTAX:
LEN(string)

DESCRIPTION:
Returns length of the specified string

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CHR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VAL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RIGHT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MID.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LEN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LCASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UCASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/INSTR.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
<= Less Than or Equal

2-302

PARAMETERS:

string: String to be measured.

EXAMPLES:

EXAMPLE 1:
Pre-define a variable of type string and later determine its length:

DIM str1 AS STRING(20)
Str1=”MyString”
x=LEN(str1) ‘ x will be 8

SEE ALSO:
CHR, STR, VAL, LEFT, RIGHT, MID, LCASE, UCASE, INSTR

<= Less Than or Equal
TYPE:
Comparison Operator

SYNTAX:
<expression1> <= <expression2>

DESCRIPTION:
Returns TRUE if expression1 is less than or equal to expression2, otherwise returns FALSE.

PARAMETERS:

Expression1: Any valid TrioBASIC expression
Expression2: Any valid TrioBASIC expression

EXAMPLE:
1 is not less than or equal to 0 and therefore variable maybe holds the value 0 (FALSE)

maybe=1<=0

< Less Than
 TYPE:
Comparison Operator

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CHR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VAL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LEFT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RIGHT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MID.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LCASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UCASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/INSTR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
LIMIT_BuFFEREd

2-303

SYNTAX:
<expression1> < <expression2>

DESCRIPTION:
Returns TRUE if expression1 is less than expression2, otherwise returns FALSE.

PARAMETERS:

Expression1: Any valid TrioBASIC expression
Expression2: Any valid TrioBASIC expression

EXAMPLE:
Check that the value from analogue input 1 is less than 10, if it is then execute the sub routine ‘rollup’.

IF AIN(1)<10 THEN GOSUB rollup

LIMIT_BUFFERED
TYPE:
System Parameter

DESCRIPTION:
This sets the maximum number of move buffers available in the controller.

� You can increase the machine speed when using MERGE or CORNER _ MODE by increasing the number
of buffers.

VALUE:

1..64 The number of move buffers (default = 1)

EXAMPLE:
Configure the Motion Coordinator to have 10 move buffers so a large sequence of small moves can be
merged together.

LIMIT _ BUFFERED = 10

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MERGE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CORNER_MODE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
_ (Line Continue)

2-304

_ (Line Continue)
TYPE:
Special Character

SYNTAX:
ExpressionStart _
ExpressionEnd

DESCRIPTION:
The line extension allows the user to split a long expression or command over more than one lines in the
TrioBASIC program.

The split must be at the end of a parameter or keyword.

PARAMETERS:

ExpressionStart: The start of the command or expression.
ExpressionEnd: The end of the command or expression.

EXAMPLE:
Split the SERVO _ READ command over 2 lines so you can use all 8 parameters.

SERVO _ READ(123, MPOS AXIS(0), MPOS AXIS(1), MPOS AXIS(2), _
MPOS AXIS(3), MPOS AXIS(4), MPOS AXIS(5), MPOS AXIS(6))

LINK_AXIS
TYPE:
Axis Parameter (Read Only)

ALTERNATIVE FORMAT:
LINKAX

DESCRIPTION:
Returns the axis number that the axis is linked to during any linked moves.

Linked moves are where the demand position is a function of another axis e.g. CONNECT, CAMBOX,
MOVELINK

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SERVO_READ.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CONNECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CAMBOX.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVELINK.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
LINPuT

2-305

VALUE:

-1 Axis is not linked
Number Axis number the BASE axis is linked to

EXAMPLE
CONNECT an axis , then check that it is linked.

>>BASE(0)
>>CONNECT(12,4)
>>PRINT LINK _ AXIS
4.0000
>>

LINPUT
TYPE:
System Command

SYNTAX:
LINPUT [#channel,] variable

DESCRIPTION:
Waits for an input string and stores the ASCII values of the string in an array of variables starting at a
specified numbered variable. The string must be terminated with a carriage return <CR> which is also
stored. The string is not echoed by the controller.

You can print the string from the VRs using VRSTRING

PARAMETERS:

#channel: See # for the full channel list (default 0 if omitted)
variable: The VR variable to store the received character

EXAMPLE:
Use LINPUT to receive a string of characters on channel 5 and place then into a series of VRs starting at
VR(0)

LINPUT#5, VR(0)
Now entering: START<CR> on channel 5 will give:

VR(0) 83 ASCII ‘S’
VR(1) 84 ASCII ‘T’

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CONNECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VRSTRING.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
LIST

2-306

VR(2) 65 ASCII ‘A’
VR(3) 82 ASCII ‘R’
VR(4) 84 ASCII ‘T’
VR(5) 13 ASCII carriage return

SEE ALSO:
#, VRSTRING

LIST
TYPE:
System Command (command line only)

SYNTAX:
LIST [“program”]

DESCRIPTION:
Prints the current SELECTed program or a specified program to the current output channel.

Usually you will view a program by using Motion Perfect.

PARAMETERS:
none: Prints the selected program
program: The name of the program to print

LIST_GLOBAL
TYPE:
System Command (command line only)

SYNTAX:
LIST _ GLOBAL

DESCRIPTION:
Prints all the GLOBAL and CONSTANTs to the current output channel

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/Hash.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VRSTRING.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GLOBAL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CONSTANT.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
LN

2-307

EXAMPLE:
Check all global data in an application where the following GLOBAL and CONSTANT have been set.

CONSTANT “cutter”, 23
GLOBAL “conveyor”,5

>>LIST _ GLOBAL
Global VR
---------------- ----
conveyor 5
Constant Value
---------------- -------
cutter 23.00000
>>

LN
TYPE:
Mathematical Function

SYNTAX:
value = LN(expression)

DESCRIPTION:
Returns the natural logarithm of the expression.

PARAMETER:

value: The natural logarithm f the expression
expression: Any valid TrioBASIC expression.

EXAMPLE:
Storing the natural logarithm of a value in VR(0)

VR(0) = LN(a*b)

LOAD_PROJECT
TYPE:
System Command

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GLOBAL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CONSTANT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
LOadEd

2-308

DESCRIPTION:
Used by Motion Perfect to load projects to the controller.

� If you wish to load projects outside of Motion Perfect use the Autoloader ActiveX

LOADED
TYPE:
Axis Parameter

DESCRIPTION:
Checks if all the movements have been loaded into the MTYPE buffer so will return a TRUE value when there
are no buffered movements.

� Although it is possible to use LOADED as part of any expression it is typically used with a WAIT.

VALUE:

TRUE when there are no buffered moves

FALSE when there are buffered moves.

EXAMPLE:
Continue to load a sequence of moves when the NTYPE buffer is free

WHILE machine _ on =TRUE
 WAIT UNTIL LOADED or machine _ off=FALSE
 IF machine _ on=TRUE THEN
 MOVE(TABLE(position)
 position=position+1
 ENDIF
WEND

SEE ALSO:
MOVES _ BUFFERED, WAIT

LOADSYSTEM
TYPE:
System Command

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/WAIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/NTYPE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVES_BUFFERED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/WAIT.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
LOCK

2-309

DESCRIPTION:
Used by Motion Perfect to load Firmware to the controller

If you wish to load firmware without Motion Perfect you can use the SD card (FILE command)

SEE ALSO:
FILE

LOCK
TYPE:
System Command (command line only)

SYNTAX:
LOCK(code)

DESCRIPTION:
The LOCK copmmand is designed to prevent programs from being viewed or modified by personnel unaware
of the security code. The lock code number is stored in the flash EPROM.

When a Motion Coordinator is locked, it is not possible to view, edit or save any programs and command line
instructions are limited to those required to execute the program. The CONTROL value has 1000 added to it
when the controller is LOCKed.

� You should use Motion Perfect to LOCK and UNLOCK your controller.

To unlock the Motion Coordinator, the UNLOCK command should be entered using the same lock code
number which was used originally to LOCK it.

The lock code number may be any integer and is held in encoded form. Once LOCKed, the only way to gain
full access to the Motion Coordinator is to UNLOCK it with the correct code. For best security the lock
number should be 7 digits.

 M IT IS POSSIBLE TO COMPROMISE THE SECURITY OF THE LOCK SYSTEM. USERS MUST CONSIDER IF THE LEVEL OF
SECURITY IS SUFFICIENT TO PROTECT THEIR PROGRAMS. IF YOU WANT BETTER SECURITY CONSIDER ENCRYPTING
YOUR PROJECT.

If you forget the security code number, the Motion Coordinator may have to be returned to your
supplier to be unlocked.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FILE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LOCK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CONTROL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNLOCK.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
LOOKuP

2-310

PARAMETERS:

code: Any 7 digit integer number

SEE ALSO:
UNLOCK

LOOKUP
TYPE:
Process Command

SYNTAX:
LOOKUP(format,entry) <PROC(process#)>

DESCRIPTION:
The LOOKUP command is used by Motion Perfect to access the local variables on an executing process.

� You should use the variable watch window in Motion Perfect to access the variables on an executing
process.

PARAMETERS:
format: 0 Prints (in binary) floating point value from an expression

1 Prints (in binary) integer value from an expression
2 Prints (in binary) local variable from a process
3 Returns to BASIC local variable from a process
4 Write

entry: Either an expression string (format=0 or 1) or the offset number of the local variable into the
processes local variable list.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNLOCK.docx

TRIOBaSIC COMMaNdS
MaRK

2-311

Software Reference Manual

MMARK
TYPE:
Axis Parameter (Read Only)

DESCRIPTION:
This parameter can be polled to determine if the registration event has occurred.

MARK is reset when REGIST is executed

VALUE:
TRUE The registration event has occurred (default)
FALSE The registration event has not occurred

When TRUE the REG _ POS is valid.

EXAMPLE:
Apply an offset to the position of the axis depending on the registration position.

loop:
 WAIT UNTIL IN(punch _ clr)=ON
 MOVE(index _ length)
 REGIST(20, 0, 0, 0, 0) ‘rising edge of R
 WAIT UNTIL MARK
 MOVEMODIFY(REG _ POS + offset)
 WAIT IDLE
GOTO loop

SEE ALSO:
REGIST, REG _ POS

MARKB
TYPE:
Axis Parameter (Read Only)

DESCRIPTION:
This parameter can be polled to determine if the registration event has occurred on the second registration
channel.

MARKB is reset when REGIST is executed

file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\REGIST.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\TRUE.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\FALSE.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\TRUE.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\REG_POS.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\REGIST.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\REG_POS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
MERGE

2-312

VALUE:
TRUE The registration event has occurred (default)
FALSE The registration event has not occurred

When TRUE the REG _ POSB is valid.

SEE ALSO
REGIST, REG _ POSB

MERGE
TYPE:
Axis Parameter

DESCRIPTION:
Velocity profiled moves can be MERGEd together so that the speed will not ramp down to zero between the
current move and the buffered move.

 M IT IS UP TO THE PROGRAMMER TO ENSURE THAT THE MERGING IS SENSIBLE. FOR EXAMPLE MERGING A FORWARD
MOVE WITH A REVERSE MOVE WILL CAUSE AN ATTEMPTED INSTANTANEOUS CHANGE OF DIRECTION.

MERGE will only function if:

•	 The next move is loaded into the buffer

•	 The axis group does not change on multi-axis moves

Velocity profiled moves (MOVE, MOVEABS, MOVECIRC, MHELICAL, REVERSE, FORWARD) cannot be merged
with linked moves (CONNECT, MOVELINK, CAMBOX)

When merging multi-axis moves only the base axis MERGE flag needs to be set.

� If you are merging short moves you may need to increase the number of buffered moves by increasing
LIMIT _ BUFFERED

VALUE:

ON motion commands are merged
OFF motion commands decelerate to zero speed

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POSB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POSB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVEABS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVECIRC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MHELICAL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REVERSE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FORWARD.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CONNECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVELINK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CAMBOX.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LIMIT_BUFFERED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
MHELICaL

2-313

EXAMPLE:
Turn on MERGE before a sequence of moves, then disable at the end.

BASE(0,1) ‘set base array
MERGE=ON ‘set MERGE state
MOVEABS(0,50) ‘run a sequence of moves
MOVE(0,100)
MOVECIRC(50,50,50,0,1)
MOVE(100,0)
MOVECIRC(50,-50,0,-50,1)
MOVE(0,-100)
MOVECIRC(-50,-50,-50,0,1)
MOVE(-100,0)
MOVECIRC(-50,50,0,50,1)
WAIT IDLE
MERGE=OFF

MHELICAL
TYPE:
Axis Command.

SYNTAX:
MHELICAL(end1, end2, centre1, centre2, direction, distance3 [,mode])

ALTERNATE FORMAT:
MH()

DESCRIPTION:
Performs a helical move.

Moves 2 orthogonal axes in such a way as to produce a circular arc at the tool point with a simultaneous
linear move on a third axis. The first 5 parameters are similar to those of an MOVECIRC command. The sixth
parameter defines the simultaneous linear move.

PARAMETERS:
end1: position on BASE axis to finish at.
end2: position on next axis in BASE array to finish at.
centre1: position on BASE axis about which to move.
centre2: position on next axis in BASE array about which to move.
direction: 0 Arc is interpolated in an anti-clockwise direction

1 Arc is interpolated in a clockwise direction

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVECIRC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
MHELICaL

2-314

distance3: The distance to move on the third axis in the BASE array axis in user units
mode: 0 Interpolate the 3rd axis with the main 2 axes when calculating path speed. (True helical

path)
1 Interpolate only the first 2 axes for path speed, but move the 3rd axis in coordination

with the other 2 axes. (Circular path with following 3rd axis)

The first 4 distance parameters are scaled according to the current unit conversion factor for the BASE axis.
The sixth parameter uses its own axis units.

EXAMPLES:

EXAMPLE1:
The command sequence follows a rounded rectangle path with axis 1 and 2. Axis 3 is the tool rotation
so that the tool is always perpendicular to the product. The UNITS for axis 3 are set such that the axis is
calibrated in degrees.

REP _ DIST AXIS(3)=360
REP _ OPTION AXIS(3)=ON ‘all 3 axes must be homed before starting
MERGE=ON
MOVEABS(360) AXIS(3) ‘point axis 3 in correct starting direction
WAIT IDLE AXIS(3)
MOVE(0,12)
MHELICAL(3,3,3,0,1,90)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
MHELICaL

2-315

MOVE(16,0)
MHELICAL(3,-3,0,-3,1,90)
MOVE(0,-6)
MHELICAL(-3,-3,-3,0,1,90)
MOVE(-2,0)
MHELICAL(-3,3,0,3,1,90)

EXAPMLE 2:
A PVC cutter uses 2 axis similar to a xy plotter, a third axis is used to control the cutting angle of the knife.
To keep the resultant cutting speed for the x and y axis the same when cutting curves, mode 1 is applied to
the helical command.

BASE(0,1,2) : MERGE=ON ‘merge moves into one continuous movement
MOVE(50,0)
MHELICAL(0,-6,0,-3,1,180,1)
MOVE(-22,0)
WAIT IDLE
MOVE(-90) AXIS(2) ‘rotate the knife after stopping at corner
WAIT IDLE AXIS(2)
MOVE(0,-50)
MHELICAL(-6,0,-3,0,1,180,1)
MOVE(0,50)

Trio Motion Technology

TRIOBaSIC COMMaNdS
MHELICaLSP

2-316

WAIT IDLE ‘pause again to rotate the knife
MOVE(-90) AXIS(2)
WAIT IDLE AXIS(2)
MOVE(-22,0)
MHELICAL(0,6,0,3,1,180,1)
WAIT IDLE

SEE ALSO:
MOVECIRC

MHELICALSP
TYPE:
Axis Command.

SYNTAX:
MHELICALSP(end1, end2, centre1, centre2, direction, distance3 [,mode])

DESCRIPTION:
Performs a helical move the same as MHELICAL and additionally allows vector speed to be changed when
using multiple moves in the buffer. Uses additional axis parameters FORCE _ SPEED, ENDMOVE _ SPEED. and
STARTMOVE _ SPEED.

EXAMPLE:
In a series of buffered moves using the look ahead buffer with MERGE=ON a helical move is required where
the incoming vector speed is 40 UNITS/second and the finishing vector speed is 20 UNITS/second.

FORCE _ SPEED=40
ENDMOVE _ SPEED=20
MHELICALSP(100,100,0,100,1,100)

SEE ALSO:
MHELICAL

MID
TYPE:
STRING Function

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVECIRC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MHELICAL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FORCE_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENDMOVE_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STARTMOVE_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MERGE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MHELICAL.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
MOd

2-317

SYNTAX:
MID(string, start[, length])

DESCRIPTION:
Returns the mid-section of the specified string using the optional length specified, or defaults to the
remainder of the string when not specified.

PARAMETERS:

string: String to be used
start Start index of string
length: Length of string to be returned, if not specified then the remainder of the string will be used

EXAMPLES:

EXAMPLE 1:
Pre-define a variable of type string and later print characters: from index 5 to 10

DIM str1 AS STRING(32)
str1 = “TRIO MOTION TECHNOLOGY”
PRINT MID(str1, 5, 6)

SEE ALSO:
CHR, STR, VAL, LEN, LEFT, RIGHT, LCASE, UCASE, INSTR

MOD
TYPE:
Mathematical Operator

SYNTAX:
value = expression1 MOD(expression2)

DESCRIPTION:
Returns the integer modulus of an expression, this is the value after the integer has wrapped around the
modulus

PARAMETERS:

value: the modulus of expression 1
expression1: Any valid TrioBASIC expression used as the value to apply the modulus to.
expression2: Any valid TrioBASIC expression used as the modulus

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CHR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VAL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LEN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LEFT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RIGHT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LCASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UCASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/INSTR.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
MOdBuS

2-318

EXAMPLE:
Use the MOD(12) to turn a 24 hour value into 12 hour.

>>PRINT 18 MOD(12)
6.0000
>>

MODBUS
TYPE:
System Function

SYNTAX:
MODBUS(function, slot [, parameters…])

DESCRIPTION:
This function allows the user to configure the Ethernet port to run as a Modbus TCP Client (Master). Using
the MODBUS command, the user can open a connection to a remote server, transfer data using a sub-set of
Modbus Function Numbers and check for errors.

PARAMETERS:

function: 0 Open a ModbusTCP client connection
1 Close connection
2 Check connection status
3 Send commands (Modbus functions)
$10 Get Error Log Entry
$11 Get Error Log Count

FUNCTION = 0;

SYNTAX:
value = MODBUS(0,slot , ip address 1...4 [, port number [,vr _ index]])

DESCRIPTION:
Attempt to open a ModbusTCP client connection to the given remote server.

PARAMETERS:

value: TRUE = the command was successful
FALSE = the command was unsuccessful

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
MOdBuS

2-319

slot: Module slot in which the communication port is fitted
ip address: Server’s IP address as 4 octets separated by commas
port number: Optional port number. Default is port 502 if none given.
vr_index: Index number of the VR where the connection handle will be written. Default value is -1.

-1 means print to the standard output stream. (normally terminal 0)

EXAMPLE:
‘IP Address 192.168.0.185, Port Number 502
IF MODBUS(0,-1,192,168,0,185,502,20)=TRUE THEN
 PRINT “Modbus port opened OK”
 modbus _ handle = VR(20)
ELSE
 PRINT “Error, Modbus server not found”
ENDIF

FUNCTION = 1:

SYNTAX:
value = MODBUS(1,slot,handle)

DESCRIPTION:
Close ModbusTCP client connection if open.

PARAMETERS:

value: TRUE the command was successful
FALSE the command was unsuccessful or the connection was already closed

slot: Module slot in which the communication port is fitted
handle: number that was returned by the previous “open” function

EXAMPLE:
‘Close Modbus connection
MODBUS(1,-1,modbus _ handle)

FUNCTION = 2:

SYNTAX:
value = MODBUS(2, slot [,VR index])

DESCRIPTION:
Return connection status (0 = closed, 1 = open)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
MOdBuS

2-320

PARAMETERS:

value: TRUE the command was successful
FALSE the command was unsuccessful

slot: Module slot in which the communication port is fitted
VR index: VR number which will hold the returned value. If set to -1 or not included, then the value is

printed to the command-line terminal

EXAMPLE:

EXAMPLE 1
‘Is Modbus connection open?
MODBUS(2, -1, 200)
IF VR(200)=1 THEN
 PRINT “Modbus port is open”
ELSE
 PRINT “Modbus port is closed”
ENDIF

EXAMPLE 2
>>MODBUS(2, -1, -1)
1

FUNCTION = 3:

SYNTAX:
value = MODBUS(3, slot, handle, modbus function code [, parameters])

DESCRIPTION:
Execute the given Modbus function if the connection is open. The parameters vary depending upon the
function required. Holding Registers are mapped to the corresponding VR in the client. IO functions use
the VRs to hold the remote IO states when reading from the remote server, or as the IO source when writing
to the remote server. Each VR entry is used to hold up to 32 IO bits. The Modbus functions supported are
defined below.

PARAMETERS:
value: TRUE the command was successful

FALSE the command was unsuccessful
slot: Module slot in which the communication port is fitted
handle: Handle of the previously opened connection
Modbus function code: A recognised valid Modbus function code number
Other parameters: See table below

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
MOdBuS

2-321

Function # Parameters Notes

Read Coils 1 Start Address

Number of values

Result start address VR index for response values

Read Discrete Inputs 2 Start Address

Number of values

Result start address VR index for response values

Read Holding Registers 3 Start Address Data read is mapped directly into same VRs in
client

Number of values

Read Input Registers 4 Start Address Data read directly into VRs

Number of values

Write Single Coil 5 Address

Value 1 (on) or 0 (off)

Write Single Register 6 Address Value held by VR written into request.

Write Multiple Coils 15 Start Address

Number of coils

Source address VR start address containing required coil state
values.

Write Multiple Registers 16 Start Address Start address of the VRs. Values are copied from
same VRs in Client.

Number of registers

Read Write Multiple
Registers

23 Read Start address Mapped to same VRs in Client

Number of Read
registers

Write Start address Mapped from same VRs in Client.

Number of Write
registers

EXAMPLE
my _ slot=-1

open _ modbus = $00
close _ modbus = $01
get _ status = $02
ex _ modbus _ func = $03
get _ error _ log = $10

‘ check if Modbus is already open

Trio Motion Technology

TRIOBaSIC COMMaNdS
MOdBuS

2-322

MODBUS(get _ status, my _ slot, 100)
IF VR(100)=1 THEN
 ‘ close the connection so that it can be re-opened
 MODBUS(close _ modbus, my _ slot)
ENDIF

‘ open the modbus server (remote slave) & put handle in VR(20)
MODBUS(open _ modbus, my _ slot, 192,168,000,249,502,20)

REPEAT
 ‘ get 10 values from holding registers 1000 to 1009
 MODBUS(ex _ modbus _ func, my _ slot, VR(20), 3, 1000, 10)
 ‘ send 10 values to holding registers 1010 to 1019
 MODBUS(ex _ modbus _ func, my _ slot, VR(20), 16, 1010, 10)
 WA(200)
UNTIL FALSE

FUNCTION = $10:

SYNTAX:
MODBUS($10, slot, handle [,entry offset [,VR index]])

DESCRIPTION:
Returns the error log entry. If no entry offset is supplied, then the last entry (offset = 0) is returned.
Otherwise, 1 will return the previous entry, 2 will return the last one but 2 etc.

PARAMETERS:

value: TRUE the command was successful
FALSE the command was unsuccessful

slot: Module slot in which the communication port is fitted
handle: Handle of the connection whose error log entry is required. If -1 then access general

protocol errors (for example failed to open connection.)
entry offset: Entry in the error log. If not supplied then entry 0 is returned.
VR index: VR number which will hold the returned value. If set to -1 or not included, then the

value is printed to the command-line terminal.

EXAMPLE:

EXAMPLE 1
‘Get error log entries 0 to 4 and put in VR(100) to VR(104)
FOR i=0 to 4
 error _ flag = MODBUS($10, -1, modbus _ handle, i, 100+i)
 IF error _ flag = FALSE THEN
 PRINT “Error fetching error log entry ”;i[0]

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
MOduLE_IO_MOdE

2-323

 ENDIF
NEXT i

EXAMPLE 2
‘Get an error log entry from the terminal
>>MODBUS($10, -1, modbus _ handle, 0, -1)
19

FUNCTION = $11:

SYNTAX:
MODBUS($11, slot, handle [,vr_index])

DESCRIPTION:
Return the count of the number of error codes logged for the given handle.

PARAMETERS:
value: TRUE the command was successful

FALSE the command was unsuccessful
slot: Module slot in which the communication port is fitted
handle: Handle of the connection whose error log entry is required. If -1 then access general

protocol errors (for example failed to open connection.)
VR index: VR number which will hold the returned value. If set to -1 or not included, then the

value is printed to the command-line terminal.

MODULE_IO_MODE
TYPE:
System Parameter (MC _ CONFIG / FLASH)

DESCRIPTION:
This parameter sets the start address of any expansion module I/O channels. You can also turn off module
I/O for backwards compatibility.

This parameter is stored in Flash EPROM and can be included in the MC _ CONFIG script.

VALUE:
0 Module I/O disabled
1 Module I/O is after controller I/O and before CAN I/O (default)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
MOduLE_IO_MOdE

2-324

2 Module I/O is at the end of the I/O sequence
3 Module I/O disabled and CAN I/O starts at 32

 M IF YOU ARE UPGRADING THE FIRMWARE IN AN EXISTING CONTROLLER, THIS PARAMETER MAY BE SET TO 0. THE
DEFAULT OF 1 IS ON A FACTORY INSTALLED SYSTEM.

EXAMPLE:
A system with MC464, a Panasonic module (slot 0), a FlexAxis (slot 1) and a CANIO Module will have the
following I/O assignment:

MODULE_IO_MODE=1 (DEFAULT)

0-7 Built in inputs
8-15 Built in bi-directional I/O
16-23 Panasonic inputs
24-27 FlexAxis inputs
28-31 FlexAxis bi-directional I/O
32-47 CANIO bi-directional I/O

MODULE_IO_MODE=0 (OFF)

0-7 Built in inputs
8-15 Built in bi-directional I/O
16-31 CANIO bi-directional I/O

MODULE_IO_MODE=2 (END)

0-7 Built in inputs
8-15 Built in bi-directional I/O
16-31 CANIO bi-directional I/O
32-39 Panasonic inputs
40-43 FlexAxis inputs

Software Reference Manual

TRIOBaSIC COMMaNdS
MOTION_ERROR

2-325

44-47 FlexAxis bi-directional I/O

MOTION_ERROR
TYPE:
System Parameter (read only)

DESCRIPTION:
The MOTION _ ERROR provides a simple single indicator that at least one axis is in error and can indicate
multiple axes that have an error.

VALUE:
A sum of the bits representing each axis that is in error.

Bit Value Axis
0 1 0

1 2 1

2 4 2

3 8 3

…

EXAMPLE:
MOTION _ ERROR=11 and ERROR _ AXIS=3 indicates axes 0, 1 and 3 have an error and the axis 3 occurred
first.

SEE ALSO:
AXISSTATUS, ERROR _ AXIS

MOVE
TYPE:
Axis Command

SYNTAX:
MOVE(distance1 [,distance2 [,distance3 [,distance4...]]])

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ERROR_AXIS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXISSTATUS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ERROR_AXIS.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
MOVE

2-326

ALTERNATE FORMAT:
MO()

DESCRIPTION:
Incremental move. One axis or multiple axes move at the programmed speed and acceleration for a
distance specified as an increment from the end of the last specified move. The first parameter in the list is
sent to the BASE axis, the second to the next axis in the BASE array, and so on.

In the multi-axis form, the speed and acceleration employed for the movement are taken from the first
axis in the BASE group. The speeds of each axis are controlled so as to make the resulting vector of the
movement run at the SPEED setting.

Uninterpolated, unsynchronised multi-axis motion can be achieved by simply placing MOVE commands on
each axis independently. If needed, the target axis for an individual MOVE can be specified using the AXIS()
command modifier. This overrides the BASE axis setting for one MOVE only.

The distance values specified are scaled using the unit conversion factor axis parameter; UNITS. Therefore
if, for example, an axis has 400 encoder edges/mm and UNITS for that axis are 400, the command
MOVE(12.5) would move 12.5 mm. When MERGE is set to ON, individual moves in the same axis group are
merged together to make a continuous path movement.

PARAMETERS:
distance1: distance to move on base axis from current position.
distance2: distance to move on next axis in BASE array from current position.
distance3: distance to move on next axis in BASE array from current position.
distance4: distance to move on next axis in BASE array from current position.

The maximum number of parameters is the number of axes available on the controller

EXAMPLES

EXAMPLE 1:
A system is working with a unit conversion factor of 1 and has a 1000 line encoder. Note that a 1000 line
encoder gives 4000 edges/turn.

MOVE(40000) ‘ move 10 turns on the motor.

EXAMPLE 2:
Axes 3, 4 and 5 are to move independently (without interpolation). Each axis will move at its own
programmed SPEED, ACCEL and DECEL etc.

‘setup axis speed and enable
BASE(3)
SPEED=5000
ACCEL=100000
DECEL=150000
SERVO=ON

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MERGE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ACCEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DECEL.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
MOVE

2-327

BASE(4)
SPEED=5000
ACCEL=150000
DECEL=560000
SERVO=ON
BASE(5)
SPEED=2000
ACCEL=320000
DECEL=352000
SERVO=ON
WDOG=ON
MOVE(10) AXIS(5) ‘start moves
MOVE(10) AXIS(4)
MOVE(10) AXIS(3)
WAIT IDLE AXIS(5) ‘wait for moves to finish
WAIT IDLE AXIS(4)
WAIT IDLE AXIS(3)

EXAMPLE 3:
An X-Y plotter can write text at any position within its working envelope. Individual characters are defined
as a sequence of moves relative to a start point so that the same commands may be used regardless of the
plot origin. The command subroutine for the letter ‘M’ might be:

write _ m:
 MOVE(0,12) ‘move A > B
 MOVE(3,-6) ‘move B > C
 MOVE(3,6) ‘move C > D
 MOVE(0,-12)’move D > E
 RETURN

Trio Motion Technology

TRIOBaSIC COMMaNdS
MOVEaBS

2-328

MOVEABS
TYPE:
Axis Command.

SYNTAX:
MOVEABS(position1[, position2[, position3[, position4...]]])

ALTERNATE FORMAT:
MA()

DESCRIPTION:
Absolute position move. Move one axis or multiple axes to position(s) referenced with respect to the zero
(home) position. The first parameter in the list is sent to the axis specified with the AXIS command or to
the current BASE axis, the second to the next axis, and so on.

In the multi-axis form, the speed, acceleration and deceleration employed for the movement are taken from
the first axis in the BASE group. The speeds of each axis are controlled so as to make the resulting vector of
the movement run at the SPEED setting.

Uninterpolated, unsynchronised multi-axis motion can be achieved by simply placing MOVEABS commands
on each axis independently. If needed, the target axis for an individual MOVEABS can be specified using the
AXIS() command. This overrides the BASE axis setting for one MOVEABS only.

The values specified are scaled using the unit conversion factor axis parameter; UNITS. Therefore if, for
example, an axis has 400 encoder edges/mm the UNITS for that axis is 400. The command MOVEABS(6)
would then move to a position 6 mm from the zero position. When MERGE is set to ON, absolute and relative
moves are merged together to make a continuous path movement.

The position of the axes’ zero(home) positions can be changed by the commands: OFFPOS, DEFPOS,
REP _ DIST, REP _ OPTION, and DATUM.

PARAMETERS:
position1: position to move to on base axis.
position2: position to move to on next axis in BASE array.
position3: position to move to on next axis in BASE array.
position4: position to move to on next axis in BASE array

The MOVEABS command can interpolate up to the full number of axes available on the controller.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MERGE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DEFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_DIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_OPTION.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DATUM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
MOVEaBS

2-329

EXAMPLES:

EXAMPLE 1:
A machine must move to one of 3 positions depending on the selection made by 2 switches. The options
are home, position 1 and position 2 where both switches are off, first switch on and second switch on
respectively. Position 2 has priority over position 1.

‘define absolute positions
home=1000
position _ 1=2000
position _ 2=3000
WHILE IN(run _ switch)=ON
 IF IN(6)=ON THEN ‘switch 6 selects position 2
 MOVEABS(position _ 2)
 WAIT IDLE
 ELSEIF IN(7)=ON THEN ‘switch 7 selects position 1
 MOVEABS(position _ 1)
 WAIT IDLE
 ELSE
 MOVEABS(home)
 WAIT IDLE
 ENDIF

Trio Motion Technology

TRIOBaSIC COMMaNdS
MOVEaBS

2-330

WEND

EXAMPLE 2:
An X-Y plotter has a pen carousel whose position is fixed relative to the plotter absolute zero position. To
change pen an absolute move to the carousel position will find the target irrespective of the plot position
when commanded.

MOVEABS(28.5,350) ‘move to just outside the pen holder area
WAIT IDLE
SPEED = pen _ pickup _ speed
MOVEABS(20.5,350) ‘move in to pick up the pen

EXAMPLE 3:
A pallet consists of a 6 by 8 grid in which gas canisters are inserted 185mm apart by a packaging machine.
The canisters are picked up from a fixed point. The first position in the pallet is defined as position 0,0 using
the DEFPOS() command. The part of the program to position the canisters in the pallet is:

FOR x=0 TO 5
 FOR y=0 TO 7
 MOVEABS(-340,-516.5) ‘move to pick-up point
 WAIT IDLE
 GOSUB pick ‘call pick up subroutine
 PRINT “Move to Position: “;x*6+y+1

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DEFPOS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
MOVEaBSSP

2-331

 MOVEABS(x*185,y*185) ‘move to position in grid
 WAIT IDLE
 GOSUB place ‘call place down subroutine
 NEXT y
NEXT x

EXAMPLE 4:
Using MOVEABS with REP _ DIST to move to a final position.

REPDIST = 360
DEFPOS(0)
MOVEABS(300) ‘will move through 300d egrees to 300
MOVEABS(200) ‘will move back 100 degrees to 200
MOVEABS(370) ‘will move through 170 degrees to 10 crossing repdist
MOVEABS(350) ‘will move through 340 degrees to 350

� if you want to move in the shortest direction to the absolute position use MOVETANG

SEE ALSO:
MOVETANG

MOVEABSSP
TYPE:
Axis Command.

SYNTAX:
MOVEABSSP(position1[, position2[, position3[, position4…]]])

DESCRIPTION:
Works as MOVEABS and additionally allows vector speed to be changed when using multiple moves in the
look ahead buffer when MERGE=ON, using additional parameters FORCE _ SPEED, ENDMOVE _ SPEED and
STARTMOVE _ SPEED.

Absolute moves are converted to incremental moves as they enter the buffer. This is essential as the
vector length is required to calculate the start of deceleration. It should be noted that if any move in
the buffer is cancelled by the programmer, the absolute position will not be achieved.

PARAMETERS:
position1: position to move to on base axis.
position2: position to move to on next axis in BASE array.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_DIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVETANG.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVETANG.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVEABS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MERGE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FORCE_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENDMOVE_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STARTMOVE_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
MOVECIRC

2-332

position3: position to move to on next axis in BASE array.
position4: position to move to on next axis in BASE array

The maximum number of parameters is the number of axes available on the controller.

EXAMPLE:
In a series of buffered moves with MERGE=ON, an absolute move is required where the incoming vector
speed is 40units/second and the finishing vector speed is 20 units/second.

FORCE _ SPEED=40
ENDMOVE _ SPEED=20
MOVEABSSP(100,100)

SEE ALSO:
MOVEABS

MOVECIRC
TYPE:
Axis Command.

SYNTAX:
MOVECIRC(end1, end2, centre1, centre2, direction)

ALTERNATE FORMAT:
MC()

DESCRIPTION:
Moves 2 orthogonal axes in such a way as to produce a circular arc at the tool point. The length and radius
of the arc are defined by the five parameters in the command line. The move parameters are always
relative to the end of the last specified move. This is the start position on the circle circumference. Axis 1
is the current BASE axis. Axis 2 is the next axis in the BASE array. The first 4 distance parameters are scaled
according to the current unit conversion factor for the BASE axis.

� In order for the MOVECIRC() command to be correctly executed, the two axes generating the circular
arc must have the same number of encoder pulses/linear axis distance. If this is not the case it is
possible to adjust the encoder scales in many cases by using ENCODER _ RATIO or STEP _ RATIO.

If the end point specified is not on the circular arc. The arc will end at the angle specified by a line
between the centre and the end point.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MERGE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVEABS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENCODER_RATIO.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STEP_RATIO.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
MOVECIRC

2-333

Neither axis may cross the set absolute repeat distance (REP _ DIST) during a MOVECIRC. Doing so
may cause one or both axes to jump or for their FE value to exceed FE _ LIMIT.

PARAMETERS:
end1: Position on BASE axis to finish at.
end2: Position on next axis in BASE array to finish at.
centre1: Position on BASE about which to move.
centre2: Position on next axis in BASE array about which to move.
direction: 0 Arc is interpolated in an anti-clockwise direction

1 Arc is interpolated in a clockwise direction

2 Arc is interpolated using the shortest path to endpoint

3 Arc is interpolated using the longest path to endpoint

EXAMPLES:

EXAMPLE 1:
The command sequence to plot the letter ‘0’ might be:

MOVE(0,6) ‘move A -> B
MOVECIRC(3,3,3,0,1) ‘move B -> C

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_DIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
MOVECIRC

2-334

MOVE(2,0) ‘move C -> D
MOVECIRC(3,-3,0,-3,1) ‘move D -> E
MOVE(0,-6) ‘move E -> F
MOVECIRC(-3,-3,-3,0,1)’move F -> G
MOVE(-2,0) ‘move G -> H
MOVECIRC(-3,3,0,3,1) ‘move H -> A

EXAMPLE 2:
A machine is required to drop chemicals into test tubes. The nozzle can move up and down as well as along
its rail. The most efficient motion is for the nozzle to move in an arc between the test tubes.

BASE(0,1)

Software Reference Manual

TRIOBaSIC COMMaNdS
MOVECIRCSP

2-335

MOVEABS(0,5) ‘move to position above first tube
MOVEABS(0,0) ‘lower for first drop
WAIT IDLE
OP(15,ON) ‘apply dropper
WA(20)
OP(15,OFF)
FOR x=0 TO 5
 MOVECIRC(5,0,2.5,0,1) ‘arc between the test tubes
 WAIT IDLE
 OP(15,ON) ‘Apply dropper
 WA(20)
 OP(15,OFF)
NEXT x
MOVECIRC(5,5,5,0,1) ‘move to rest position

MOVECIRCSP
TYPE:
Axis Command.

SYNTAX:
MOVECIRCSP(end1, end2, centre1, centre2, direction)

DESCRIPTION:
Works as MOVECIRC and additionally allows vector speed to be changed when using multiple moves in the
look ahead buffer when MERGE=ON, using additional parameters FORCE _ SPEED and ENDMOVE _ SPEED.

EXAMPLE:
In a series of buffered moves using the look ahead buffer with MERGE=ON, a circular move is required where
the incoming vector speed is 40units/second and the finishing vector speed is 20 units/second.

FORCE _ SPEED=40
ENDMOVE _ SPEED=20
MOVECIRCSP(100,100,0,100,1)

SEE ALSO:
MOVECIRC

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVECIRC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MERGE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FORCE_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENDMOVE_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MERGE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVECIRC.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
MOVELINK

2-336

MOVELINK
TYPE:
Axis Command.

SYNTAX:
MOVELINK (distance, link dist, link acc, link dec, link axis[, link options][, link
pos]).

ALTERNATE FORMAT:
ML()

DESCRIPTION:
The linked move command is designed for controlling movements such as:

• Synchronization to conveyors

• Flying shears

• Thread chasing, tapping etc.

• Coil winding

The motion consists of a linear movement with separately variable acceleration and deceleration phases
linked via a software gearbox to the MEASURED position (MPOS) of another axis. The command uses the
BASE() and AXIS(), and unit conversion factors in a similar way to other move commands.

The “link” axis may move in either direction to drive the output motion. The link distances specified
are always positive.

PARAMETERS:
distance: incremental distance in user units to be moved on the current base axis, as a result of the

measured movement on the “input” axis which drives the move.
link dist: positive incremental distance in user units which is required to be measured on the “link”

axis to result in the motion on the base axis.
link acc: positive incremental distance in user units on the input axis over which the base axis

accelerates.
link dec: positive incremental distance in user units on the input axis over which the base axis

decelerates.
link axis: Specifies the axis to “link” to. It should be set to a value between 0 and the number of

available axes.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
MOVELINK

2-337

link_options: Bit value options to customize how your MOVELINK operates
Bit 0 1 link commences exactly when registration event MARK occurs on link axis
Bit 1 2 link commences at an absolute position on link axis (see link_pos for start

position)
Bit 2 4 MOVELINK repeats automatically and bi-directionally when this bit is

set. (This mode can be cleared by setting bit 1 of the REP _ OPTION axis
parameter)

Bit

4

16 If this bit is set the MOVELINK acceleration and deceleration phases are
constructed using an “S” speed profile not a trapezoidal speed profile

Bit 5 32 Link is only active during a positive move on the link axis
Bit 8 256 link commences exactly when registration event MARKB occurs on link axis
Bit 9 512 link commences exactly when registration event R _ MARK occurs on link

axis. (see link_pos for channel number)
link_pos: link_option bit 1 - the absolute position on the link axis in user UNITS where the CAMBOX

is to be start.

link_option bit 9 – the registration channel to start the movement on

 M IF THE SUM OF PARAMETER 3 AND PARAMETER 4 IS GREATER THAN PARAMETER 2, THEY ARE BOTH REDUCED IN
PROPORTION UNTIL THEY EQUAL PARAMETER 2.

The link_dist is in the user units of the link axis and should always be specified as a positive distance.

The link options for start (bits 1, 2, 8 and 9) may be combined with the link options for repeat (bits 4
and 8) and direction.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MARK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_OPTION.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MARKB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/R_MARK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
MOVELINK

2-338

start_pos cannot be at or within one servo period’s worth of movement of the REP _ DIST position.

EXAMPLES:

EXAMPLE 1:
A flying shear cuts a long sheet of paper into cards every 160 m whilst moving at the speed of the material.
The shear is able to travel up to 1.2 metres of which 1m is used in this example. The paper distance is
measured by an encoder, the unit conversion factor being set to give units of metres on both axes: (Note
that axis 7 is the link axis)

WHILE IN(2)=ON
 MOVELINK(0,150,0,0,7) ‘dwell (no movement) for 150m
 MOVELINK(0.3,0.6,0.6,0,7) ‘accelerate to paper speed
 MOVELINK(0.7,1.0,0,0.6,7) ‘track the paper then decelerate
 WAIT LOADED ‘wait until acceleration movelink is finished
 OP(8,ON) ‘activate cutter
 MOVELINK(-1.0,8.4,0.5,0.5,7) ‘retract cutter back to start
 WAIT LOADED
 OP(8,OFF) ‘deactivate cutter at end of outward stroke
WEND

In this program the controller firstly waits for the roll to feed out 150m in the first line. After this distance
the shear accelerates up to match the speed of the paper, moves at the same speed then decelerates to a
stop within the 1m stroke. This movement is specified using two separate MOVELINK commands. This allows
the program to wait for the next move buffer to be clear, NTYPE=0, which indicates that the acceleration
phase is complete. Note that the distances on the measurement axis (link distance in each MOVELINK

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/NTYPE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
MOVELINK

2-339

command): 150, 0.8, 1.0 and 8.2 add up to 160m.

To ensure that speed and positions of the cutter and paper match during the cut process the parameters of
the MOVELINK command must be correct: It is normally easiest to consider the acceleration, constant speed
and deceleration phases separately then combine them as required:

RULE 1:
In an acceleration phase to a matching speed the link distance should be twice the movement distance. The
acceleration phase could therefore be specified alone as:

MOVELINK(0.3,0.6,0.6,0,1)’ move is all accel

RULE 2:
In a constant speed phase with matching speed the two axes travel the same distance so distance to move
should equal the link distance. The constant speed phase could therefore be specified as:

MOVELINK(0.4,0.4,0,0,1)’ all constant speed
The deceleration phase is set in this case to match the acceleration:

MOVELINK(0.3,0.6,0,0.6,1)’ all decel
The movements of each phase could now be added to give the total movement.

MOVELINK(1,1.6,0.6,0.6,1)’ Same as 3 moves above
But in the example above, the acceleration phase is kept separate:

MOVELINK(0.3,0.6,0.6,0,1)
MOVELINK(0.7,1.0,0,0.6,1)

This allows the output to be switched on at the end of the acceleration phase.

EXAMPLE 2:

EXACT RATIO GEARBOX
MOVELINK can be used to create an exact ratio gearbox between two axes. Suppose it is required to create
gearbox link of 4000/3072. This ratio is inexact (1.30208333) and if entered into a CONNECT command the
axes will slowly creep out of synchronisation. Setting the “link option” to 4 allows a continuously repeating
MOVELINK to eliminate this problem:

MOVELINK(4000,3072,0,0,linkaxis,4)

EXAMPLE 3:

COIL WINDING
In this example the unit conversion factors UNITS are set so that the payout movements are in mm and the
spindle position is measured in revolutions. The payout eye therefore moves 50mm over 25 revolutions of
the spindle with the command:

MOVELINK(50,25,0,0,linkax).
If it were desired to accelerate up over the first spindle revolution and decelerate over the final 3 the
command would be

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CONNECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
MOVEMOdIFY

2-340

MOVELINK(50,25,1,3,linkax)
OP(motor,ON) ‘- Switch spindle motor on
FOR layer=1 TO 10
 MOVELINK(50,25,0,0,1)
 MOVELINK(-50,25,0,0,1)
NEXT layer
WAIT IDLE
OP(motor,OFF)

MOVEMODIFY
TYPE:
Axis Command.

SYNTAX:
MOVEMODIFY(position)

ALTERNATE FORMAT:
MM()

Software Reference Manual

TRIOBaSIC COMMaNdS
MOVEMOdIFY

2-341

DESCRIPTION:
MOVEMODIFY will change the absolute end position of a single axis MOVE, MOVEABS, MOVESP, MOVEABSSP
or MOVEMODIFY that is in the last position in the movement buffer. If there is no motion command in the
movement buffers or the last movement is not a single axis linear move then MOVEMODIFY is loaded.

If the change in end position requires a change in direction the move in MTYPE is CANCELed. This will use
DECEL unless FASTDEC has been specified.

If there are multiple buffered linier moves the MOVEMODIFY will only act on the command in front of it
in the buffer.

PARAMETERS:

position: Absolute position for the current move to complete at.

EXAMPLES:

EXAMPLE 1:
A sheet of glass is fed on a conveyor and is required to be stopped 250mm after the leading edge is sensed
by a proximity switch. The proximity switch is connected to the registration input:

MOVE(10000) ‘Start a long move on conveyor
REGIST(3) ‘set up registration
WAIT UNTIL MARK ‘MARK goes TRUE when sensor detects glass edge
OFFPOS = -REG _ POS ‘set position where mark was seen to 0
WAIT UNTIL OFFPOS=0 ‘wait for OFFPOS to take effect
MOVEMODIFY(250) ‘change move to stop at 250mm

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVEABS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVESP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVEABSSP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MTYPE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CANCEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DECEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FASTDEC.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
MOVEMOdIFY

2-342

EAMPLE 2:
A paper feed system slips. To counteract this, a proximity sensor is positioned one third of the way into the
movement. This detects at which position the paper passes and so how much slip has occurred. The move is
then modified to account for this variation.

paper _ length=4000
DEFPOS(0)
REGIST(3)

Software Reference Manual

TRIOBaSIC COMMaNdS
MOVEMOdIFY

2-343

MOVE(paper _ length)
WAIT UNTIL MARK
slip=REG _ POS-(paper _ length/3)
offset=slip*3
MOVEMODIFY(paper _ length+offset)

EXAMPLE 3:
A satellite receiver sits on top of a van; it has to align correctly to the satellite from data processed in
a computer. This information is sent to the controller through the serial link and sets VRs 0 and 1. This
information is used to control the two axes. MOVEMODIFY is used so that the position can be continuously
changed even if the previous set position has not been achieved.

bearing=0 ‘set labels for VRs
elevation=1
UNITS AXIS(0)=360/counts _ per _ rev0
UNITS AXIS(1)=360/counts _ per _ rev1
WHILE IN(2)=ON
 MOVEMODIFY(VR(bearing))AXIS(0) ‘adjust bearing to match VR0
 MOVEMODIFY(VR(elevation))AXIS(1) ‘adjust elevation to match VR1
 WA(250)
WEND
RAPIDSTOP ‘stop movement

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
MOVES_BuFFEREd

2-344

WAIT IDLE AXIS(0)
MOVEABS(0) AXIS(0) ‘return to transport position
WAIT IDLE AXIS(1)
MOVEABS(0) AXIS (1)

SEE ALSO:
ENDMOVE

MOVES_BUFFERED
TYPE:
Axis Parameter (Read only)

DESCRIPTION:
This returns the number of moves being buffered by the axis.

The value does not include the move in the MTYPE buffer.

PARAMETERS:

value: number of commands in the move buffers.

EXAMPLE:
Check if there is room in the move buffer before adding in another command.

IF MOVES _ BUFFERED < 64 THEN
 xpos = TABLE(count+x)
 ypos = TABLE(count+y)
 MOVEABS(xpos, ypos)
 count=count + 1
ENDIF

MOVESP
TYPE:
Axis Command

SYNTAX:
MOVESP(distance1[,distance2[,distance3[,distance4…]]])

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENDMOVE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MTYPE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
MOVETaNG

2-345

DESCRIPTION:
Works as MOVE and additionally allows vector speed to be changed when using multiple moves in the
look ahead buffer when MERGE=ON, using additional parameters FORCE _ SPEED, ENDMOVE _ SPEED and
STARTMOVE _ SPEED.

PARAMETERS:
distance1: distance to move on base axis from current position.
distance2: distance to move on next axis in BASE array from current position.
distance3: distance to move on next axis in BASE array from current position.
distance4: distance to move on next axis in BASE array from current position.

The maximum number of parameters is the number of axes available on the controller

EXAMPLE:
In a series of buffered moves with MERGE=ON, an incremental move is required where the incoming vector
speed is 40units/second and the finishing vector speed is 20 units/second.

FORCE _ SPEED=40
ENDMOVE _ SPEED=20
MOVESP(100,100)

SEE ALSO:
MOVE

MOVETANG
TYPE:
Axis Command

SYNTAX:
MOVETANG(absolute _ position, [link _ axis])

DESCRIPTION:
Moves the axis to the required position using the programmed SPEED, ACCEL and DECEL for the axis. The
direction of movement is determined by a calculation of the shortest path to the position assuming that the
axis is rotating and that REP _ DIST has been set to PI radians (180 degrees) and that REP _ OPTION=0.

The REP _ DIST value will depend on the UNITS value and the number of steps representing PI
radians. For example if the rotary axis has 4000 pulses/turn and UNITS=1 the REP _ DIST value would
be 2000.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MERGE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FORCE_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENDMOVE_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STARTMOVE_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MERGE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ACCEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DECEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_DIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PI.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_OPTION.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_DIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_DIST.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
MOVETaNG

2-346

MOVETANG does not get cleared from the MTYPE when it has completed its movement. This is so that you
can use it in a tight loop which updates the end position by calling the MOVETANG again. When using the
link_axis the end position is automatically updated from TANG _ DIRECTION of the link axis.

PARAMETERS:

absolute_position: The absolute position to be set as the endpoint of the move. Value must be within
the range –PI to +PI in the units of the rotary axis. For example if the rotary axis
has 4000 pulses/turn, the UNITS value=1 and the angle required is PI/2 (90 deg)
the position value would be 1000.

link_axis An optional link axis may be specified. When a link_axis is specified the system
software calculates the absolute position required each servo cycle based on the
link axis TANG _ DIRECTION. The TANG _ DIRECTION is multiplied by the REP _
DIST/PI to calculate the required position. Note that when using a link_axis the
absolute_position parameter becomes unused. The position is copied every servo
cycle until the MOVETANG is CANCELled.

EXAMPLES:

EXAMPLE 1:
An X-Y positioning system has a stylus which must be turned so that it is facing in the same direction as it is
traveling at all times. A tangential control routine is run in a separate process.

BASE(0,1)
WHILE TRUE
 angle=TANG _ DIRECTION
 MOVETANG(angle) AXIS(2)
WEND

EXAMPLE 2:
An X-Y positioning system has a stylus which must be turned so that it is facing in the same direction as it is
traveling at all times.

The XY axis pair are axes 4 and 5. The tangential stylus axis is 2:
MOVETANG(0,4) AXIS(2)

EXAMPLE 3:
An X-Y cutting table has a “pizza wheel” cutter which must be steered so that it is always aligned with the
direction of travel. The main X and Y axes are controlled by Motion Coordinator axes 0 and 1, and the pizza
wheel is turned by axis 2.

Control of the Pizza Wheel is done in a separate program from the main X-Y motion program. In this
example the steering program also does the axis initialisation.

PROGRAM TC_SETUP.BAS:
‘Set up 3 axes for Tangential Control
WDOG=OFF

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MTYPE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TANG_DIRECTION.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PI.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PI.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PI.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TANG_DIRECTION.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TANG_DIRECTION.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_DIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_DIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PI.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CANCEL.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
MOVETaNG

2-347

BASE(0)
P _ GAIN=0.9
VFF _ GAIN=12.85
UNITS=50 ‘set units for mm
SERVO=ON

BASE(1)
P _ GAIN=0.9
VFF _ GAIN=12.30
UNITS=50 ‘units must be the same for both axes
SERVO=ON

BASE(2)
UNITS=1 ‘make units 1 for the setting of rep _ dist
REP _ DIST=2000 ‘encoder has 4000 edges per rev.
REP _ OPTION=0
UNITS=4000/(2*PI) ‘set units for Radians
SERVO=ON

WDOG=ON
‘Home the 3rd axis to its Z mark
DATUM(1) AXIS(2)
WAIT IDLE
WA(10)

‘start the tangential control routine
BASE(0,1) ‘define the pair of axes which are for X and Y
‘start the tangential control
BASE(2)
MOVETANG(0, 0) ‘use axes 0 and 1 as the linked pair

PROGRAM MOTION.BAS:
‘program to cut a square shape with rounded corners
MERGE=ON
SPEED=300

nobuf=FALSE ‘when true, the moves are not buffered
size=120 ‘size of each side of the square
c=30 ‘size (radius) of quarter circles on each corner

DEFPOS(0,0)
WAIT UNTIL OFFPOS=0
WA(10)

Trio Motion Technology

TRIOBaSIC COMMaNdS
MPE

2-348

MOVEABS(10,10+c)
REPEAT
 MOVE(0,size)
 MOVECIRC(c,c,c,0,1)
 IF nobuf THEN WAIT IDLE:WA(2)
 MOVE(size,0)
 MOVECIRC(c,-c,0,-c,1)
 IF nobuf THEN WAIT IDLE:WA(2)
 MOVE(0,-size)
 MOVECIRC(-c,-c,-c,0,1)
 IF nobuf THEN WAIT IDLE:WA(2)
 MOVE(-size,0)
 MOVECIRC(-c,c,0,c,1)
 IF nobuf THEN WAIT IDLE:WA(2)
UNTIL FALSE

MPE
TYPE:
System Command

SYNTAX:
MPE(mode)

DESCRIPTION:
Sets the type of channel handshaking to be performed on the command line.

This is normally only used by the Motion Perfect program, but can be used for user applications with
the PCMotion ActiveX control in asynchronous mode.

Software Reference Manual

TRIOBaSIC COMMaNdS
MPOS

2-349

PARAMETERS:
mode: 0 No channel handshaking, XON/XOFF controlled by the port. When the current output channel

is changed then nothing is sent to the command line. When there is not enough space to store
any more characters in the current input channel then XOFF is sent even though there may
be enough space in a different channel buffer to receive more characters

1 Channel handshaking on, XON/XOFF controlled by the port. When the current output channel
is changed, the channel change sequence is sent (<ESC><channel number>). When there is
not enough space to store any more characters in the current input channel then XOFF is
sent even though there may be enough space in a different channel buffer to receive more
characters

2 Channel handshaking on, XON/XOFF controller by the channel. When the current output
channel is changed, the channel change sequence is sent (<ESC><channel number>). When
there is not enough space to store any more characters in the current input buffer, then XOFF
is sent for this channel (<XOFF><channel number>) and characters can still be received into a
different channel.

3 Channel handshaking on, XON/XOFF controller by the channel. In MPE(3) mode the system
transmits and receives using a protected packet protocol using a 16 bit CRC.

4 As mode 1 but with extra error reporting from the Motion Coordinator.

Whatever the MPE state, if a channel change sequence is received on the command line then the
current input channel will be changed.

EXAMPLE:
Use the command line to demonstrate mode 0 and 1

>> PRINT #5,”Hello”
Hello
MPE(1)
>> PRINT #5,”Hello”
<ESC>5Hello
<ESC>0
>>

MPOS
TYPE:
Axis Parameter (Read Only)

DESCRIPTION:
This parameter is the position of the axis as measured by the encoder or resolver.

Unless using an absolute encoder MPOS is reset to 0 on power up or software reset.

Trio Motion Technology

TRIOBaSIC COMMaNdS
MSPEEd

2-350

The value is adjusted using the DEFPOS() command or OFFPOS axis parameter to shift the datum position or
when the REP _ DIST is in operation. The position is reported in user UNITS.

VALUE:
Actual axis position in user UNITS.

EXAMPLE:
WAIT UNTIL MPOS>=1250
SPEED=2.5

MSPEED
TYPE:
Axis Parameter (Read Only)

DESCRIPTION:
MSPEED can be used to represent the speed measured as it represents the change in measured position in
user UNITS (per second) in the last servo period.

This value represents a snapshot of the speed and significant fluctuations can occur, particularly at low
speeds. It can be worthwhile to average several readings if a stable value is required at low speeds.

VALUE:
Change in measured position per second in user UNITS.

EXAMPLE:
Average MSPEED using a filter algorithm.

‘ VR(10) filter output

c = 0.005 ‘filter coefficient (0<c<1)
VR(10)=MSPEED ‘initialise filter output to MSPEED

WHILE TRUE
 WA(1)
 VR(10)=(1-c)*VR(10)+c*MSPEED
WEND

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DEFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_DIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
MSPHERICaL

2-351

MSPHERICAL
TYPE:
Axis Command

SYNTAX:
MSPHERICAL({parameters}, mode [, gtpi][, rotau][, rotav][, rotaw])

DESCRIPTION:
Moves the three axis group defined in BASE along a spherical path with a vector speed determined by the
SPEED set in the first axis of the BASE array. There are 2 modes of operation with the option of finishing the
move at an endpoint different to the start, or returning to the start point to complete a circle. The path
of the movement in 3D space can be defined either by specifying a point somewhere along the path, or by
specifying the centre of the sphere.

PARAMETERS:
mode: 0 specify end point and mid point on curve.

1 specify end point and centre of sphere.
2 two mid point are specified and the curve completes a full circle.
3 mid point on curve and centre of sphere are specified and the curve completes a full circle.

gtpi: If this optional parameter is non zero, modes 0 and 1 will perform a move taking the opposite
way around a 360 degree circle to the same endpoint.

rotau: If this optional parameter is non zero, a 4th axis will perform linear interpolation at the
same time as the spherical move. The axis is the next in the BASE sequence. The move
distance does not affect the path length or time taken for the movement. The path length is
calculated just from the spherical distance.

rotav: If this optional parameter is non zero, a 5th axis will perform linear interpolation at the same
time as the spherical move.

rotaw: If this optional parameter is non zero, a 6th axis will perform linear interpolation at the same
time as the spherical move.

� If you specify the parameters for the third axis as 0 and assign it to a virtual, you can use MSPHERICAL
to perform circular movements. This allows you to specify the arc without knowing the centre point.

MODE = 0:

SYNTAX:
MSPHERICAL(endx, endy, endz, midx, midy, midz, 0)

file://HYPERION/documents/Manual%207/Source/BASIC%20Commands/BASE.docx
file://HYPERION/documents/Manual%207/Source/BASIC%20Commands/SPEED.docx
file://HYPERION/documents/Manual%207/Source/BASIC%20Commands/BASE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
MSPHERICaL

2-352

DESCRIPTION:
Move the three axis, set in the BASE array through a section of a sphere by specifying the end point and a
mid point on the curve.

PARAMETERS:

endx: End position of the first axis

endy: End position of the second axis

endz: End position of the third axis

midx: Mid position of the first axis

midy: Mid position of the second axis

midz: Mid position of the third axis

MODE = 1:

SYNTAX:
MSPHERICAL(endx, endy, endz, centrex, centrey, centrez, 1)

DESCRIPTION:
Move the three axis, set in the BASE array through a section of a sphere by specifying the end point and the
centre of the sphere. The profile will always go the shortest path to the endpoint, this may be clockwise or
counterclockwise.

 M THE COORDINATES OF THE CENTRE POINT AND END POINT MUST NOT BE CO-LINEAR. SEMI-CIRCLES CANNOT BE
DEFINED BY USING MODE 1 BECAUSE THE SPHERE CENTRE WOULD BE CO-LINEAR WITH THE ENDPOINT. IF CO-LINIER
POINTS ARE SPECIFIED THE CONTROLLER WILL STOP THE PROGRAM WITH A RUN _ ERROR.

PARAMETERS:

endx: End position of the first axis
endy: End position of the second axis
endz: End position of the third axis
centrex: position of the first axis
centrey: Centre position of the second axis
centrez: Centre position of the third axis

file://HYPERION/documents/Manual%207/Source/BASIC%20Commands/BASE.docx
file://HYPERION/documents/Manual%207/Source/BASIC%20Commands/BASE.docx
file://HYPERION/documents/Manual%207/Source/BASIC%20Commands/RUN_ERROR.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
MSPHERICaL

2-353

MODE = 2:

SYNTAX:
MSPHERICAL(midx1, midy1, midz1, midx, midy, midz, 2)

DESCRIPTION:
Move the three axis, set in the BASE array through a full circle on a sphere by specifying two mid points of
the curve. The profile will move through the first mid position, then the second and finally back to the start
point.

PARAMETERS:

midx1: Second mid position of the first axis
midy1: Second mid position of the second axis
midz1: Second mid position of the third axis
midx: First mid position of the first axis
midy: First mid position of the second axis
midz: First mid position of the third axis

MODE = 3:

SYNTAX:
MSPHERICAL(midx, midy, midz, centrex, centrey, centrez, 3)

DESCRIPTION:
Move the three axis, set in the BASE array through a full circle on a sphere by specifying a mid point and the
centre of the sphere. The profile will start by heading in the shortest distance to the mid point, this enables
you to define the direction.

 M THE COORDINATES OF THE CENTRE POINT AND MID POINT MUST NOT BE CO-LINEAR. IF CO-LINIER POINTS ARE
SPECIFIED THE CONTROLLER WILL STOP THE PROGRAM WITH A RUN _ ERROR.

PARAMETERS:

midx: Mid position of the first axis
midy: Mid position of the second axis
midz: Mid position of the third axis
centrex: position of the first axis
centrey: Centre position of the second axis
centrez: Centre position of the third axis

file://HYPERION/documents/Manual%207/Source/BASIC%20Commands/BASE.docx
file://HYPERION/documents/Manual%207/Source/BASIC%20Commands/BASE.docx
file://HYPERION/documents/Manual%207/Source/BASIC%20Commands/RUN_ERROR.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
MSPHERICaL

2-354

EXAMPLES:

EXAMPLE 1:
A move is needed that follows a spherical path which ends 30mm up in the Z direction:

BASE(3,4,5)
MSPHERICAL(30,0,30,8.7868,0,21.2132,0)

EXAMPLE 2:
A similar move that follows a spherical path but at 45 degrees to the Y axis which ends 30mm above the XY
plane:

BASE(0,1,2)
MSPHERICAL(21.2132,21.2132,30,6.2132,6.2132,21.2132,0)

Software Reference Manual

TRIOBaSIC COMMaNdS
MSPHERICaLSP

2-355

MSPHERICALSP
TYPE:
Axis Command

SYNTAX:
MSPHERICAL({parameters}, mode [, gtpi][, rotau][, rotav][, rotaw])

DESCRIPTION:
Performs a spherical move the same as MSPHERICAL and additionally allows vector speed to be changed
when using multiple moves in the look ahead buffer when MERGE=ON, using additional parameters FORCE _
SPEED, ENDMOVE _ SPEED and STARTMOVE _ SPEED

EXAMPLE:
A move is needed that follows a spherical path which ends 30mm up in the Z direction, the profile should
decelerate from the previous move so that it is performed at 30UNITS/second:

BASE(3,4,5)
FORCE _ SPEED=30
ENDMOVE _ SPEED=30
MSPHERICALSP(30,0,30,8.7868,0,21.2132,0)

SEE ALSO:
MSPHERICAL

MTYPE
TYPE:
Axis Parameter (read only)

DESCRIPTION:
This parameter holds the type of move currently being executed.

This parameter may be interrogated to determine whether a move has finished or if a transition from one
move type to another has taken place.

A non-idle move type does not necessarily mean that the axis is actually moving. It may be at zero
speed part way along a move or interpolating with another axis without moving itself.

It takes a servo period before a motion command is loaded into the buffer, so checking MTYPE
immediately after a motion command will probably fail. You should use WAIT LOADED or WAIT IDLE to
check that a command is loaded or complete

file://HYPERION/documents/Manual%207/Source/BASIC%20Commands/MSPHERICAL.docx
file://HYPERION/documents/Manual%207/Source/BASIC%20Commands/MERGE.docx
file://HYPERION/documents/Manual%207/Source/BASIC%20Commands/ON.docx
file://HYPERION/documents/Manual%207/Source/BASIC%20Commands/FORCE_SPEED.docx
file://HYPERION/documents/Manual%207/Source/BASIC%20Commands/FORCE_SPEED.docx
file://HYPERION/documents/Manual%207/Source/BASIC%20Commands/ENDMOVE_SPEED.docx
file://HYPERION/documents/Manual%207/Source/BASIC%20Commands/STARTMOVE_SPEED.docx
file://HYPERION/documents/Manual%207/Source/BASIC%20Commands/UNITS.docx
file://HYPERION/documents/Manual%207/Source/BASIC%20Commands/MSPHERICAL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/WAIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LOADED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/WAIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/IDLE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
MTYPE

2-356

VALUE:

Value Motion command in progress
0 Idle (No move)

1 MOVE

2 MOVEABS

3 MHELICAL

4 MOVECIRC

5 MOVEMODIFY

6 MOVESP

7 MOVEABSSP

8 MOVECIRCSP

9 MHELICALSP

10 FORWARD

11 REVERSE

12 DATUM

13 CAM

14 FWD _ JOG

15 REV _ JOG

20 CAMBOX

21 CONNECT

22 MOVELINK

23 CONNPATH

24 FLEXLINK

30 MOVETANG

31 MSPHERICAL

EXAMPLE:
Load another move if the existing move has finished

IF MTYPE AXIS(2) = 0 THEN
 MOVE (TABLE(count)) AXIS(2)
 count = count + 1
ENDIF

SEE ALSO:
WAIT

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/WAIT.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
* Multiply

2-357

* Multiply
TYPE:
Mathematical operator

SYNTAX
<expression1> * <expression2>

DESCRIPTION:
Multiplies expression1 by expression2

PARAMETERS:

expression1: Any valid TrioBASIC expression
expression2: Any valid TrioBASIC expression

EXAMPLE:
Calculate the value of ‘factor’ by multiplying 10 by the sum of 2.1 and 9. the value stored in ‘factor’ will be
111.

factor=10*(2.1+9)

Trio Motion Technology

TRIOBaSIC COMMaNdS
N_aNa_IN

2-358

TRIOBaSIC COMMaNdS
N_aNa_IN

2-359

Software Reference Manual

NN_ANA_IN
TYPE:
System Parameter (read only)

ALTERNATIVE FORMAT:
NAIO

DESCRIPTION:
This parameter returns the number of analogue input channels available to the Motion Coordinator. This
includes all built in and external inputs.

VALUE:
The number of analogue inputs

EXAMPLE:
Check the system configuration in the command line for the correct number of analogue inputs.

>>PRINT N _ ANA _ IN
10
>>

N_ANA_OUT
TYPE:
System Parameter (Read Only)

DESCRIPTION:
This parameter returns the number of analogue output channels available to the controller

VALUE:
The number of analogue outputs

EXAMPLE:
Use the command line to check that the system has detected the correct number of analogue outputs:

>>PRINT N _ ANA _ OUT
12
>>

Trio Motion Technology

TRIOBaSIC COMMaNdS
NEG_OFFSET

2-360

NEG_OFFSET
TYPE:
Axis Parameter

DESCRIPTION:
For Piezo Motor Control. This sets an offset to the DAC output when the position loop is demanding a
negative voltage output. NEG _ OFFSET is applied after DAC _ SCALE so is always a value appropriate to
the D to A converter resolution. The negative offset must be a negative value.

EXAMPLE:
An offset of -0.1 volts is required on an axis with a 16 bit D to A converter. With a 16 bit DAC, -10V is
commanded with the value -32768 so for -0.1V need -32768 / 100.

NEG _ OFFSET = -328
POS _ OFFSET and NEG _ OFFSET are normally used together. It is suggested that the offset is 65% to 70% of
the value required to make the stage move in an open loop situation.

POS _ OFFSET = 450
NEG _ OFFSET = -395

NEW
TYPE:
System Command (command line only)

SYNTAX:
NEW [item]

DESCRIPTION:
Deletes a program or table from the controller memory.

When deleting the table all the values are set to 0

 M DO NOT DELETE PROGRAMS WHEN CONNECTED TO MOTION PERFECT AS IT WILL CAUSE A CONTROLLER MISMATCH AND
YOU WILL BE DISCONNECTED.

PARAMETERS:
none deletes the currently selected program

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DAC_SCALE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/POS_OFFSET.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
NIN

2-361

item “TABLE” sets all table values to 0
“name” deletes a named program
ALL deletes all programs

Quotes (“) are required when deleting the table or a named program.

EXAMPLE:

EXAMPLE1:
Delete a named program on the command line:

>>NEW “NAMEDPROGRAM”
OK
>>

EXAMPLE 2:
Clear all table values to 0

>>NEW “TABLE”
OK
>>

NIN
TYPE:
System Parameter

DESCRIPTION:
This parameter returns the number of inputs fitted to the system. The value is normally set by the firmware
taking into consideration the total IO detected; including module IO, CAN IO, Fieldbus IO and CanOpen IO.

VALUE:
The highest input point + 1 that is in use.

EXAMPLE:
There are 24 external Output points in addition to the 16 built-in IO points on the controller. Typing ?NIN in
the terminal:
>>?NIN
40.0000
>>

In this case the last input point addressable is IN(39).

Trio Motion Technology

TRIOBaSIC COMMaNdS
NIO

2-362

NIO
TYPE:
System Parameter

DESCRIPTION:
This parameter returns the number of inputs/outputs fitted to the system. The value is normally set by
the firmware taking into consideration the total IO detected; including module IO, CAN IO, Fieldbus IO and
CanOpen IO.

� Inputs / Outputs outside of NIO can be used as virtual

VALUE:
The highest input / output point + 1 that is in use. If the number of Inputs is not the same as the number of
Outputs then the higher count is returned in the NIO parameter.

EXAMPLE:
There are 32 external IO points in addition to the 16 built-in IO points on the controller. Typing ?NIO in the
terminal:
>>?NIO
48.0000
>>

In this case the last IO point addressable is IN(47) and OP(47,state)

NOP
TYPE:
System Parameter

DESCRIPTION:
This parameter returns the number of outputs fitted to the system. The value is normally set by the
firmware taking into consideration the total IO detected; including module IO, CAN IO, Fieldbus IO and
CanOpen IO.

VALUE:
The highest output point + 1 that is in use.

Software Reference Manual

TRIOBaSIC COMMaNdS
<> Not Equal

2-363

EXAMPLE:
There are 64 external Output points in addition to the 8 built-in IO points on the controller. Typing ?NOP in
the terminal:
>>?NOP
80.0000
>>

In this case the last output point addressable is OP(79,state) and READ _ OP(79). The outputs start at
OP(8,state) so the NOP value is not the total output points, it is the number at which the output map
has as the highest available.

<> Not Equal
TYPE:
Comparison Operator

SYNTAX:
<expression1> <> <expression2>

DESCRIPTION:
Returns TRUE if expression1 is not equal to expression2, otherwise returns FALSE.

PARAMETERS:

Expression1: Any valid TrioBASIC expression
Expression2: Any valid TrioBASIC expression

EXAMPLE:
Run the Scoop subroutine if axis is not idle (MTYPE=0 indicates axis idle)

IF MTYPE<>0 THEN GOTO scoop

NOT
TYPE:
Logical and Bitwise Function

SYNTAX:
NOT expression

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MTYPE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
NTYPE

2-364

DESCRIPTION:
The NOT function truncates the number and inverts all the bits of the integer remaining.

PARAMETER:

expression: Any valid TrioBASIC expression.

EXAMPLES:

EXAMPLE 1:
Bitwise AND 7 with NOT 1.5. This truncates 1.5 to 1 then ANDs it with 7.

PRINT 7 AND NOT(1.5)
 6.0000

EXAMPLE 2:
If a function fails then print an error message and stop the program

IF NOT CAN(0,9,13,1,8,$6060,0,$02) THEN
 PRINT#user, “Failed to set velocity mode”
 STOP
ENDIF

NTYPE
TYPE:
Axis Parameter (Read Only)

DESCRIPTION:
This parameter holds the type of the first buffered move.

� The NTYPE buffer can be cleared using CANCEL(1)

VALUE:
The numerical value of the move type

See MTYPE for a list of return values.

EXAMPLE:
If the first move buffer (NTYPE) is empty apply another move from a table

IF MTYPE = 0 THEN
 MOVE(TABLE(count)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CANCEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MTYPE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
NTYPE

2-365

 count = count +1
ENDIF

SEE ALSO:
MTYPE

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MTYPE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
OFF

2-366

TRIOBaSIC COMMaNdS
OFF

2-367

Software Reference Manual

OOFF
TYPE:
Constant

DESCRIPTION:
OFF returns the value 0

EXAMPLES:

EXAMPLE 1:
Run the subroutine “tiger” if input 56 is off.

IF IN(56)=OFF THEN GOSUB tiger

EXAMPLE 2:
Turn the watchdog relay off

WDOG = OFF

OFFPOS
TYPE:
Axis Parameter

DESCRIPTION:
The OFFPOS parameter allows the axis position value to be offset by any amount without affecting the
motion which is in progress. OFFPOS can therefore be used to effectively datum a system at full speed.
Values loaded into the OFFPOS axis parameter are reset to 0 by the system software after the axis position is
changed.

VALUE:
The distance to offset the current position

EXAMPLES:

EXAMPLE 1:
Change the current position by 125, using the command line terminal:

>>PRINT DPOS
300.0000
>>OFFPOS=125
>>PRINT DPOS
425.0000

Trio Motion Technology

TRIOBaSIC COMMaNdS
OFFPOS

2-368

>>

EXAMPLE 2:
Define the current demand position as zero:

OFFPOS=-DPOS ‘This is equivalent to DEFPOS(0)

EXAMPLE 3:
A conveyor is used to transport boxes onto which labels must be applied.

Using the REGIST() function, we can capture the position at which the leading edge of the box is seen, then
by using OFFPOS we can adjust the measured position of the axis to be zero at that point. Therefore, after
the registration event has occurred, the measured position (seen in MPOS) will actually reflect the absolute
distance from the start of the box, the mechanism which applies the label can take advantage of the
absolute position start mode of the MOVELINK or CAMBOX commands to apply the label.

BASE(conv)
REGIST(3)
WAIT UNTIL MARK
OFFPOS = -REG _ POS ‘ Leading edge of box is now zero

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVELINK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CAMBOX.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
ON

2-369

ON
TYPE:
Constant

DESCRIPTION:
ON returns the value 1.

EXAMPLE:
This sets the output named lever to ON.

OP(lever,ON)

ON.. GOSUB/ GOTO
TYPE:
Program Structure

SYNTAX:
ON expression GOxxx label[,label1[,...]]
…
label:
commands
RETURN
…
label1:
commands
RETURN
Where GOxxx can be GOSUB or GOTO

DESCRIPTION:
The expression is evaluated and then the integer part is used to select a label from the list. If the expression
has the value 1 then the first label is used, 2 then the second label is used, and so on. Once a label is
selected it is used with either GOSUB or GOTO

If the value of the expression is less than 1 or greater than the number of labels the command is
stepped through with no action. Once the label is selected a GOSUB is performed.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GOSUB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GOTO.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GOSUB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GOTO.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GOSUB.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
ON.. GOSuB/ GOTO

2-370

PARAMETERS:
expression: Any valid TrioBASIC expression, should return a value 1 or greater
commands: TrioBASIC statements that you wish to execute
label: A valid label that occurs in the program.
GOxxx GOSUB or GOTO

If the label does not exist an error message will be displayed at run time and the program execution
halted.

EXAMPLES:

EXAMPLE 1:
REPEAT
 GET #3,char
UNTIL 1<=char AND char<=3
ON char GOSUB mover,stopper,change

EXAMPLE 2:
Use inputs from a PLC to determine which program to run.

 ON (IN(4,6)+1)GOTO prog0, prog1, prog2, prog3, prog ‘ select program
 GOTO continue ‘skip progs if unknown input selected
prog0:
 RUN “tuning”,2
 GOTO continue
prog1:
 RUN “cutting”,2
 GOTO continue
prog2:
 RUN “packing”,2
 GOTO continue
prog3:
 RUN “moving”,2
 GOTO continue
Prog4:
 RUN “lifting”,2
 GOTO continue

continue:
 …

SEE ALSO:
GOSUB, GOTO,

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GOSUB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GOTO.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GOSUB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GOTO.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
OP

2-371

OP
TYPE:
System Command

DESCRIPTION:
Sets output(s) and allows the state of the first 32 outputs to be read back.

There are four modes of operation for the OP command, using up to three parameters:

• Read Base Block

• Write Base Block

• Set Single Output

• Write Block

MODE = READ BASE BLOCK:

SYNTAX:
value = OP

DESCRIPTION:
Return the state of the first 32 outputs as a binary pattern.

PARAMETERS:

value Binary pattern of the first 32 outputs

MODE = WRITE BASE BLOCK:

SYNTAX:
OP(state)

DESCRIPTION:
Simultaneously set the first 32 outputs with the binary pattern of the state.

PARAMETERS:

State Decimal equivalent of binary number to set on outputs

Trio Motion Technology

TRIOBaSIC COMMaNdS
OP

2-372

MODE = SET SINGLE OUTPUT:

SYNTAX:
OP(output, state)

DESCRIPTION:
Set the state of an individual output

PARAMETERS:

output Output number to set.
state 0 or OFF

1 or ON

MODE = WRITE BLOCK:

SYNTAX:
OP(start, end, state)

DESCRIPTION:
Simultaneously set a defined group of outputs with the binary pattern of the state.

PARAMETERS:

start First output in the group
end Last output in the group
state Decimal equivalent of binary number to set on the group

EXAMPLES:

EXAMPLE 1:
Turn on a single output 44

OP(44,1)
This is equivalent to:

OP(44,ON)

EXAMPLE 2:
Sets the bit pattern 10010 on the first 5 physical outputs, outputs 13-31 will be cleared. Note how the bit
pattern is shifted 8 bits by multiplying by 256 to set the first available outputs as 0 to 7 do not exist.

OP (18*256)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
OPEN

2-373

EXAMPLE 3:
Read the first 32 outputs, clear 0-7 as they are only inputs and 16-32. Then set 16-32 leaving 8-15 in their
original state.

read _ output:
 VR(0)=OP
 ‘clear 0-7 and 16-32
 VR(0)=VR(0) AND $0000FF00
 ‘set $1A42 in outputs 16-32,
 ‘8-15 will remain in their original state
 VR(0)=VR(0) OR $1A420000
 OP(VR(0))

EXAMPLE 4
Simultaneously setting outputs 10 to 13 all on.

OP(10,13, $F)

SEE ALSO:
READ _ OP()

OPEN
TYPE:
Command

SYNTAX:
OPEN # channel AS “[location:]name” FOR access

DESCRIPTION:
OPEN will provide access to a text file on the controller. The text file can be initialised as a file that Motion
Perfect can synchronise with, a temporary file, a file on the SD card or as a FIFO buffer. All files are in the
controller file directory however only a text file can be viewed or edited in Motion Perfect.

Once the file has been opened then it can be manipulated by the standard TrioBASIC channel commands. If
the file is opened with read access then any TrioBASIC GET type commands such as GET, INPUT, LINPUT
and KEY can be used on the channel. If the file is opened with write access then the PRINT type commands
can be used on the channel.

PARAMETERS:
channel: The TrioBASIC # channel to be associated with the file. It is in the range 40 to 44.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/READ_OP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GET.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/INPUT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LINPUT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/KEY.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/Hash.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
OPEN

2-374

access: The operations permitted on the file.
INPUT The file will be opened for reading. When the end of the file

is reached KEY will return FALSE, and the GET and INPUT
functions will fail.

OUTPUT(mode) The file will be opened for writing. If the file does not exist then
it will be created. If the file does exist then it will be cleared.

mode function

0 Opens a text file that Motion Perfect can read, edit
and save into the project.

1 Opens a temporary file that is only accessible by the
controller.

FIFO _ READ The file will be opened for reading and will be managed as a
circular buffer. This is only valid for files stored in internal RAM.

FIFO _ WRITE(size) The file will be opened for writing and will be managed as a
circular buffer. This is only valid for files in internal RAM. If the
file does not exist it will be created (size) bytes long.

If the file does exist then it must be of type FIFO, the size
parameter is ignored and the contents are cleared.

name: Name of the file to be opened. The format is “[RAM|SD:]filename”. If the prefix is omitted or
is RAM: then filename refers to an internal controller memory directory entry. If the prefix is
SD: then filename refers to an SDCARD directory entry.

If you are creating a file on the SD card you will need to append the file extension. A text file stored
in controller memory will be saved as a .txt file in the project by Motion Perfect. This enables you to
generate and read files on the SD card in any text based format.

 M IF YOU ARE WRITING TO A TEXT FILE THAT MOTION PERFECT CAN READ THEN BE AWARE THAT MOTION PERFECT
WILL NOT SEE THE CHANGES UNTIL YOU PERFORM A PROJECT CHECK. BE VERY CAREFUL WHEN WRITING TO A TEXT
FILE WHILE CONNECTED TO MOTION PERFECT. IF IT IS REQUIRED TO WRITE TO A FILE WHILE CONNECTED TO MOTION
PERFECT IT IS RECOMMENDED TO USE THE TEMP FILE, OR ONE ON THE SD CARD.

EXAMPLES:

EXAMPLE 1:
Open a file that can be used to log information to a .txt file on the SD card then print end of shift
information to the file.

OPEN #40 AS “SD:product _ log.txt” FOR OUTPUT (0)
PRINT#40, DATE$ ‘Print the date
PRINT#40, products _ complete[0]; “ products completed”
PRINT#40, product _ failures[0]; “ products failed”

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/KEY.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GET.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/INPUT.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
OPEN_WIN

2-375

CLOSE# 40

EXAMPLE 2:
A G-Code file is loaded from a serial port into the controller, it is saved into a temp file on the controller for
use later on.

OPEN #41, AS “gcodeprogram” for OUTPUT (1)
WHILE file _ downloading
 IF KEY#1
 GET#1, char
 PRINT#40, char;
 ENDIF
 Length=length + 1
WEND

EXAMPLE 3:
The G-Code program has been downloaded to a temp file, it then should be transferred to a FIFO so that it
can be interpreted into motion.

OPEN #41, AS “gcodeprogram” for INPUT
OPEN#42, AS “gcodefifo” for FIFO _ WRITE(length)
WHILE KEY#41
 GET#41, char
 PRINT#42, char;
WEND

OPEN_WIN
TYPE:
Axis Parameter

ALTERNATE FORMAT:
OW

DESCRIPTION:
This parameter defines the first position of the window which will be used for registration marks if
windowing is specified by the REGIST() command.

VALUE:
Absolute position of the first registration window

EXAMPLE:
Enable registration but only look for registration marks between 170 and 230mm

OPEN _ WIN=170.00

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
OR

2-376

CLOSE _ WIN=230.0
REGIST(256+3)
WAIT UNTIL MARK

SEE ALSO:
CLOSE _ WIN, REGIST

OR
TYPE:
Logical and Bitwise operator

SYNTAX:
<expression1> OR <expression2>

DESCRIPTION:
This performs an OR function between corresponding bits of the integer part of two valid TrioBASIC
expressions.

The OR function between two bits is defined as follows:

OR 0 1
0 0 1

1 1 1

PARAMETERS:

expression1 Any valid Trio BASIC expression
expression2 Any valid Trio BASIC expression

EXAMPLES:

EXAMPLE 1:
Use OR to allow the program to progress if there is a MOTION _ ERROR or an input is pressed

WAIT UNTIL IN(2)=ON OR MOTION _ ERROR

EXAMPLE 2:
Calculate the bitwise OR between values

result=10 OR (2.1*9)
Trio BASIC evaluates the parentheses first giving the value 18.9, but as was specified earlier, only the
integer part of the number is used for the operation, therefore this expression is equivalent to:

result=10 OR 18

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CLOSE_WIN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOTION_ERROR.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
OuTdEVICE

2-377

The OR is a bitwise operator and so the binary action taking place is:
 01010
OR 10010
 11010

Therefore result holds the value 26

OUTDEVICE
TYPE:
Process Parameter

DESCRIPTION:
The value in this parameter determines the default active output device. Specifying an OUTDEVICE for a
process allows the channel number to set for all subsequent GET, KEY, INPUT and LINPUT statements.

This command is process specific so other processes will use the default channel.

This command is available for backward compatibility, it is currently recommended to use #channel,
instead.

VALUE:
The channel number to use for any inputs

For a full list of communication channels see #

EXAMPLE:
Set up a program to print all data to channel 5

OUTDEVICE = 5

IF error THEN
 PRINT “Error Detected”
ENDIF

SEE ALSO:
#, GET, INPUT, KEY, LINPUT

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GET.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/INPUT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LINPUT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/Hash.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/Hash.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/GET.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/INPUT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/KEY.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LINPUT.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
OuTLIMIT

2-378

OUTLIMIT
TYPE:
Axis Parameter

DESCRIPTION:
The output limit restricts the DAC output to a lower value than the maximum. This can be used to limit the
analogue outputs or demand value to a digital drive. OUTLIMIT will always limit the DAC output if you are
using a servo control or just manually setting DAC.

As it is applied to the output of the closed loop algorithm it is not applied to position based axis.

VALUE:
The range that the DAC is limited to

The value required varies depending on whether the axis has a 12 bit or 16 bit DAC. If the voltage
output is generated by a 12 bit DAC values an OUTLIMIT of 2047 will produce the full +/-10v range. If
the voltage output is generated by a 16 bit DAC values an OUTLIMIT of 32767 will produce the full +/-
10v range.

EXAMPLE:
Limit a 12bit DAC to ±5V (±1023)

OUTLIMIT AXIS(0)=1023

OV_GAIN
TYPE:
Axis Parameter

DESCRIPTION:
The Output Velocity (OV) gain is a gain constant which is multiplied by the change in measured position.
The result is summed with all the other gain terms and applied to the servo DAC. Adding NEGATIVE output
velocity gain to a system is mechanically equivalent to adding damping. It is likely to produce a smoother
response and allow the use of a higher proportional gain than could otherwise be used, but at the expense of
higher following errors. High values may lead to oscillation and produce high following errors. For an output
velocity term Kov and change in position DPm, the contribution to the output signal is:

Oov = KOv × δPm

Software Reference Manual

TRIOBaSIC COMMaNdS
OV_GaIN

2-379

VALUE:
Output velocity gain constant (default = 0)

� Negative values are normally required.

Trio Motion Technology

TRIOBaSIC COMMaNdS
P_GaIN

2-380

TRIOBaSIC COMMaNdS
P_GaIN

2-381

Software Reference Manual

PP_GAIN
TYPE:
Axis Parameter

DESCRIPTION:
The Proportional gain sets the ‘stiffness’ of the servo response. Values that are too high will produce
oscillation. Values that are too low will produce large following errors.

For a proportional gain Kp and position error E, its contribution to the output signal is:

Op = Kp × E

VALUE:
Proportional gain constant (default =1)

EXAMPLE:
Set the P _ GAIN on axis 11 to be a value smaller than the default

P _ GAIN AXIS(11)=0.25

PEEK
TYPE:
System Function

SYNTAX:
value = PEEK(address [,mask])

DESCRIPTION:
The PEEK command returns value of a memory location of the controller ANDed with an optional mask
value.

PEEK is only normally used for de-bugging purposes and should only be used under the instruction of
Trio Motion Technology

PARAMETERS:
value: The value returned from the memory location
address: The memory address to read
mask: A value so you can filter particular bits of the address

Q

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AND.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
PI

2-382

PI
TYPE:
Constant

DESCRIPTION:
PI is the circumference/diameter constant of approximately 3.14159

EXAMPLES:

EXAMPLE 1:
To print the radius of a circle of given circumference.

circum=100
PRINT “Radius = “;circum /(2*PI)

EXAMPLE 2:
Set the axis calibration to work in user UNITS of Radians.

‘Motor has 8192 counts per turn.
UNITS = 8192 / (2*PI)

PLM_OFFSET
TYPE:
Axis Parameter

DESCRIPTION:
This axis parameter is used exclusively for the SLM interface module and only in PLM (position mode). The
parameter allows for an offset between the absolute position within one turn held by the SLM/PLM motor
encoder and the zero position in the controller.

It is not normally required to set this parameter as it is configured during the initialisation if the PLM.

VALUE:
The offset between the absolute position and the controller zero position.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
PMOVE

2-383

PMOVE
TYPE:
Process Parameter (Read Only)

DESCRIPTION:
Returns the state of the process move buffer.

When one of the processes encounters a movement command the process loads the movement requirements
into its “process move buffer”. This can hold one movement instruction for any group of axes. When the
load into the process move buffer is complete the PMOVE parameter is set to 1. When the next servo period
occurs the motion generation program will load the movement into the “next move buffer” of the required
axes if these are available. When this second transfer is complete the PMOVE parameter is cleared to 0.

Each process has its own PMOVE parameter.

VALUE:
1 the process move buffer is occupied
0 the process move buffer is empty

POKE
TYPE:
System Command

SYNTAX:
POKE(address, value)

DESCRIPTION:
The POKE command allows a value to be entered into a memory location of the controller.

 M THE POKE COMMAND CAN PREVENT NORMAL OPERATION OF THE CONTROLLER AND SHOULD ONLY BE USED IF
INSTRUCTED BY TRIO MOTION TECHNOLOGY.

PARAMETERS:
address: The memory address to read
mask: A value so you can filter particular bits of the address

Trio Motion Technology

TRIOBaSIC COMMaNdS
PORT

2-384

PORT
TYPE:
Modifier

SYNTAX:
PORT(channel)

DESCRIPTION:
Assigns ONE command, function or port parameter operation to a particular communication PORT.

PARAMETERS:
channel: The channel number to use

See the # entry for full listings of all available channels.

POS_OFFSET
TYPE:
Axis Parameter

DESCRIPTION:
For Piezo Motor Control. This sets an offset to the DAC output when the position loop is demanding a positive
voltage output. POS _ OFFSET is applied after DAC _ SCALE so is always a value appropriate to the D to A
converter resolution.

EXAMPLES:

EXAMPLE 1:
An offset of 0.1 volts is required on an axis with a 16 bit D to A converter. With a 16 bit DAC, +10V is
commanded with the value 32767 so for 0.1V need 32767 / 100.

POS _ OFFSET = 328

EXAMPLE 2:
POS _ OFFSET and NEG _ OFFSET are normally used together. It is suggested that the offset is 65% to 70% of
the value required to make the stage move in an open loop situation.

POS _ OFFSET = 300
NEG _ OFFSET = -270

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/Hash.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DAC_SCALE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/NEG_OFFSET.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
^ Power

2-385

^ Power
TYPE:
Mathematical operator

SYNTAX:
<expression1> ^ <expression2>

DESCRIPTION:
Raises expression1 to the power of expression2

PARAMETERS:

Expression1: Any valid TrioBASIC expression
Expression2: Any valid TrioBASIC expression

EXAMPLE:
Raises the first number (2) to the power of the second number (6).and store it in local variable ‘x’. Then
print the value of ‘x’ which is 64.

x=2^6
PRINT x

POWER_UP
TYPE:
Reserved Keyword

PP_STEP
TYPE:
Axis parameter

DESCRIPTION:
PP _ STEP is an integer multiplier on the encoder value

� UNITS and ENCODER _ RATIO should be used in preference to PP _ STEP

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENCODER_RATIO.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
PRINT

2-386

VALUE:
Integer multiplier range (default = 1)

 M IT IS RECOMMENDED TO ONLY USE VALUES BETWEEN -1024 AND 1023

PRINT
TYPE:
Command.

ALTERNATIVE FORMAT:
?

SYNTAX:
PRINT [#channel,] print _ expression

DESCRIPTION:
The PRINT command allows the TrioBASIC program to output a series of characters to a channel. A channel
may be a serial port or some other type of connection to the Motion Coordinator.

A print_expression may include parameters, fixed ASCII strings, single ASCII characters and the returned
values from functions. Multiple items to be printed can be put on the same PRINT line provided they are
separated by a comma or semi-colon. The items can be modified using print formatters including HEX, CHR
and [w,x]

Any value larger than 1e19 and smaller than 1e-18 will be printed in scientific format. You can still use
[w,x] to format how this is displayed. A value is normally printed to 4 decimal places.

PARAMETERS:
#channel, See # for the full channel list (default 0 if omitted)
print_expression: A list of variable names (with or without print formatters) and quoted string

seperated by commas and/or semicolons

The following elements may be seen in a print_expression:

; Separates items with no space, omits carriage return line feed if used after the last item.
, Separates items with a tab space.
number[w,x] Prints a number with a specified width and number of decimal places.

w total number of characters to display, 29 maximum (optional).
x number of decimal places to use, 15 maximum.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/HEX.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CHR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/Hash.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
PRINT

2-387

“string” Prints the string contained in the quotes .

When using value[w,x], if the number is too big the field will be filled with question marks to signify
that there was not sufficient space to display the number. The numbers are right justified in the field
with any unused leading characters being filled with spaces.

EXAMPLES:

EXAMPLE 1:
Print a string using quotation marks.

PRINT “CAPITALS and lower case CAN BE PRINTED”

EXAMPLE 2:
Print a number and a value from a VR, separated by a comma to make the VR value in the next tab space.

>>PRINT 123.45,VR(1)
123.4500 1.5000
>>

EXAMPLE 3:
Print a VR with 4 characters and 1 decimal place, then in the next tab a local variable with 2 decimal
places.

VR(1)=6
variable=410.5:
PRINT VR(1)[4,1],variable[2]

print output will be:
6.0 410.50

EXAMPLE 4:
Print a string directly followed by a numerical value. Note how in this example the semi-colon separator is
used. This does not tab into the next column, allowing the programmer more freedom in where the print
items are put.

>>PRINT “DISTANCE=”;MPOS
DISTANCE=123.0000
>>

EXAMPLE 5:
Print a carriage return and no line feed at the end of a message. The semi-colon on the end of the print line
suppresses the carriage return normally sent at the end of a print line. ASCII (13) generates CR without a
line feed. The string is to output from serial port channel 1.

PRINT #1,”ITEM “;total;” OF “;limit;CHR(13);

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
PRMBLK

2-388

EXAMPLE 6:
Print the status of inputs 8-16 in hexadecimal format to terminal channel 5 in Motion Perfect.

PRINT #5, HEX(IN(8,16))

EXAMPLE 7:
Print AXISSTATUS for axis 6 in the hexadecimal format on the command line. (bits 1 and 8 are set)

>>?hex(AXISSTATUS AXIS(6))
102
>>

SEE ALSO:
#, CHR, HEX, DATE$, DAY$, TIME$

PRMBLK
TYPE:
Reserved Keyword

PROC
TYPE:
Modifier

DESCRIPTION:
Allows a particular process to be specified when using a Process Parameter, Function or Command.

EXAMPLE:
Run a program on a particular process then watch that process to see when it finishes.

RUN “MOTION”,2
‘Wait for the program to start running
WAIT UNTIL PROC _ STATUS PROC(2) <>0
‘Wait for the program to complete and flash an OP
REPEAT
 OP(10,ON)
 WA(100)
 OP(10,OFF)
 WA(50)
UNTIL PROC _ STATUS PROC(2) = 0

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXISSTATUS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/Hash.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CHR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/HEX.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DATE$.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DAY$.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TIME$.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
PROC_LINE

2-389

PROC_LINE
TYPE:
Process Parameter (Read Only)

DESCRIPTION:
Allows the current line number of another executing program to be obtained.

EXAMPLE:
Find out which line is being executed on the program running in process 2.

>>PRINT PROC _ LINE PROC(2)
12
>>

PROC_STATUS
TYPE:
Process Parameter (Read Only)

DESCRIPTION:
Returns the status of another process, referenced with the PROC(x) modifier.

VALUE:

0 Process Stopped
1 Process Running
2 Process Stepping
3 Process Paused
4 Process Pausing
5 Process Stopping

EXAMPLE:
Run a program in process 12, check for it to start and then for it to complete.

RUN “progname”,12
WAIT UNTIL PROC _ STATUS PROC(12)<>0 ‘ wait for program to start
WAIT UNTIL PROC _ STATUS PROC(12)=0
‘ Program “progname” has now finished.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PROC.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
PROCESS

2-390

PROCESS
TYPE:
System Command (Command line only)

DESCRIPTION:
Displays information about the running processes.

There are some housekeeping process that you cannot stop.

RETURNED VALUES:

Process: The process number
Type: The Type of process executing
Status: The execution state of the process
Program: The name of the program running in the process
Line: The line number of a program that is executing
Time: The length of time that the process has been running
CPU: The percentage of CPU time used by the process

EXAMPLE:
Check the state of the processes in the command line.
>>process
Process Type Status Program Line hhhh:mm:ss.ms [CPU %]
------- ---- ------- ------------------------ ----- -----------------------
 21 Fast Sleep[0] TEST 1 0000:00:02.634 [0.23%]
 22 SYS Run Command Line 0001:14:05.570 [0.16%]
 23 SYS Run IO Server 0001:14:01.183 [90.46%]
 24 SYS Sleep[8] MPE 0001:14:05.571 [0.00%]
 25 SYS Sleep[6] CAN Server 0001:14:05.571 [0.00%]
 KERNEL SYS Run Motion/Housekeeping 0001:14:05.571 [9.16%]
>>

PROCNUMBER
TYPE:
System Parameter

Software Reference Manual

TRIOBaSIC COMMaNdS
PROJECT_KEY

2-391

DESCRIPTION:
Returns the process on which a TrioBASIC program is running. This is normally required when multiple copies
of a program are running on different processes.

VALUE:
The process number the current program is running on

EXAMPLE:
Running the same program on processes 0 to 3 to use axes 0-3, PROCNUMBER is used to specify which axis the
program is using.

MOVE(length) AXIS(PROCNUMBER)

PROJECT_KEY
TYPE:
System Command

DESCRIPTION:
Used in the TRIOINIT.BAS script file on an SD card to enable loading of an encrypted project.

EXAMPLES:

EXAMPLE 1:
Use the SD card to load a project that was previously encrypted by the MC Project Encryptor. Target Motion
Coordinator is the MC2xx.

‘==
‘ Application: SDCARD startup file
‘ Filename: TRIOINIT.BAS
‘ Platform: Any Motion Coordinator with SD card support for
‘ encrypted projects. (Note, this file resides on the SD card)
‘ Euro209, MC206X, MC224 V1.6731 and later
‘
‘ Use the Project Encryptor to generate the PROJECT _ KEY which
‘ is specific to the target Motion Coordinator’s serial number.
‘
‘--
PRINT “”
PROJECT _ KEY “Q47cFL1W7r2”
FILE “LOAD _ PROJECT” “MyEncryptedProject” ‘load desired project
EPROM
POWER _ UP=1
‘ List the programs now loaded on the controller to

Trio Motion Technology

TRIOBaSIC COMMaNdS
PROTOCOL

2-392

‘ Motion Perfect terminal.
DIR
PRINT “”
PRINT “---”

EXAMPLE 2:
Use the SD card to load a project that was previously encrypted by the MC Project Encryptor. Target Motion
Coordinator is one of the MC4xx range.

‘==
‘ Application: SDCARD startup file
‘ Filename: TRIOINIT.BAS
‘ Platform: Any Motion Coordinator with SD card support for
‘ encrypted projects. (Note, this file resides on the SD card)
‘ System SW: MC464 V2.0153 and later.
‘ MC405 or MC403 V2.0192 and later.
‘
‘ Use the Project Encryptor to generate the PROJECT _ KEY which
‘ is specific to the target Motion Coordinator’s serial number.
‘
‘--
PRINT “”
PROJECT _ KEY “Q47cFL1W7r2”
FILE “LOAD _ PROJECT” “MyEncryptedProject” ‘load desired project
‘ List the programs now loaded on the controller to
‘ Motion Perfect terminal.
DIR
PRINT “”
PRINT “--”

SEE ALSO:
LOAD _ PROJECT

PROTOCOL
TYPE:
Port Parameter

DESCRIPTION:
This parameter allows the user to check which protocol is running on the specified PORT.

� You can write to this parameter however it is advisable to initialise the communication protocol
through SETCOM, ANYBUS etc.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LOAD_PROJECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PORT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SETCOM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ANYBUS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
PS_ENCOdER

2-393

 M DO NOT WRITE A VALUE TO PORT(0) AS YOU WILL DISABLE COMMUNICATIONS WITH MOTION PERFECT.

VALUE:

0 None
1 Download
2 MPE
3 MODBUS
4 Transparent
5 HostLink

EXAMPLE:
Check that Modbus is running on the RS485 channel (PORT(2))

IF PROTOCOL PORT(2) <>3 THEN
 PRINT#user, “MODBUS has stopped”
ENDIF

SEE ALSO:
ANYBUS, SETCOM

PS_ENCODER
TYPE:
Axis Parameter (Read Only)

DESCRIPTION:
The PS _ ENCODER axis parameter holds a raw copy of the positional feedback device used for the hardware
p-switch.

VALUE:
The 30bit value used for hardware p-switch encoder

SEE ALSO:
HW _ PSWITCH

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PORT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ANYBUS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SETCOM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/HW_PSWITCH.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
PSWITCH

2-394

PSWITCH
TYPE:
Command

SYNTAX:
PSWITCH(switch, enable [,axis, output, state, setpos, resetpos])

DESCRIPTION:
The PSWITCH command allows an output to be set when a predefined position is reached, and to be reset
when a second position is reached. There are 64 position switches each of which can be assigned to any axis
and to any output, virtual or real.

Multiple PSWITCH’s can be assigned to a single output.

The actual output is the OR of all position switches on the output OR the OP setting. This means that
OP(output,ON) can override a PSWITCH

After switching the PSWITCH OFF, the output will remain at the current state. You can use the OP
command to then set it to the state you require

PARAMETERS:

switch: The switch number in the range 0..63
enable: 1 or ON Enable software PSWITCH (requires all parameters)

0 or OFF Disable PSWITCH
5 Enable PSWITCH on DPOS

axis: Axis to link the PSWITCH to, may be any real or virtual axis.
output: Selects the output to set, can be any real or virtual output.
state: 1 or ON turn the output ON at setpos

0 or OFF turn the output OFF at setpos
setpos: The position at which output is set, in user units
resetpos: The position at which output is reset, in user units

EXAMPLE:
A rotating shaft has a cam operated switch which has to be changed for different size work pieces. There is
also a proximity switch on the shaft to indicate TDC of the machine. With a mechanical cam the change from
job to job is time consuming but this can be eased by using the PSWITCH as a software ‘cam switch’. The
proximity switch is wired to input 7 and the output is fired by output 11. The shaft is controlled by axis 0 of
a 3 axis system. The motor has a 900ppr encoder. The output must be on from 80° after TDC for a period of
120°. It can be assumed that the machine starts from TDC.

The PSWITCH command uses the unit conversion factor to allow the positions to be set in convenient units.
So first the unit conversion factor must be calculated and set. Each pulse on an encoder gives four edges

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
‘ Quote

2-395

which the controller counts, therefore there are 3600 edges/rev or 10 edges/°. If we set the unit conversion
factor to 10 we can then work in degrees.

Next we have to determine a value for all the PSWITCH parameters.

This can all be put together to form the two lines of Trio BASIC code that set up the position switch:

axis We are told that the shaft is controlled by axis 0, thus axis is set to 0.
output We are told that output 11 is the one to fire, so this is 11.
state When the output is set it should be ON.
setpos The output is to fire at 80° after TDC hence the set position is 80 as we are working in

degrees.
resetpos The output is to be on for a period of 120° after 80° therefore it goes off at 200°. So the

reset position is 200.

switch:
 UNITS AXIS(0)=10’ Set unit conversion factor (°)
 REPDIST=360
 REP _ OPTION=ON
 PSWITCH(0,ON,0,11,ON,80,200)

This program uses the repeat distance set to 360 degrees and the repeat option ON so that the axis position
will be maintained in the range 0..360 degrees.

‘ Quote
TYPE:
Special Character

SYNTAX:
‘text

DESCRIPTION:
A single quote ‘ is used to mark the rest of a line as being a comment only with no execution significance.

Comments use memory space and so should be concise in very long programs. Comments have no
effect on execution speed since they are not present in the compiled code.

PARAMETERS:

Text any text string

EXAMPLE:
Adding comment lines and comments after executable sections of code.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
‘ Quote

2-396

‘PROGRAM TO ROTATE WHEEL
turns=10
‘turns contains the number of turns required
MOVE(turns)’ the movement occurs here

TRIOBaSIC COMMaNdS
R_MaRK

2-397

Software Reference Manual

RR_MARK
TYPE:
Axis Parameter (Read Only)

SYNTAX:
R _ MARK(expression)

DESCRIPTION:
This parameter can be polled to determine if the registration event has occurred.

This is an AXIS parameter, you need to ensure that you are using this parameter with the same AXIS
that you used to set the REGIST.

R _ MARK is reset when REGIST is executed

PARAMETERS:

Expression: Any valid TrioBASIC expression. The result of the expression should be a valid integer
channel number.

VALUE:
TRUE The registration event has occurred (default)
FALSE The registration event has not occurred

When TRUE the R _ REGPOS is valid.

EXAMPLE:
Apply an offset to the position of the axis depending on the registration position.

loop:
 WAIT UNTIL IN(punch _ clr)=ON
 MOVE(index _ length)
 REGIST(21, 1, 0, 0) ‘rising edge input channel 1
 WAIT UNTIL R _ MARK(1)
 MOVEMODIFY(R _ REGPOS(1) + offset)
 WAIT IDLE
GOTO loop

SEE ALSO:
REGIST, R _ REGPOS, R _ REGISTSPEED

file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\REGIST.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\TRUE.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\FALSE.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\TRUE.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\R_REGPOS.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\REGIST.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\R_REGPOS.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\R_REGISTSPEED.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
R_REGISTSPEEd

2-398

R_REGISTSPEED
TYPE:
Axis Parameter (Read Only)

SYNTAX:
R _ REGISTSPEED(expression)

DESCRIPTION:
Stores the speed of the axis when a registration mark was seen. Value is in user units per millisecond. This
parameter is used with the time based registration channel set with the REGIST command.

� In most real-world systems there are delays built into the registration circuit; the external sensor and
the input opto-isolator will have some fixed response time. As machine speed increases, the fixed
electrical delays will have an effect on the captured registration position.

R _ REGISTSPEED returns the value of axis speed captured at the same time as R _ REGPOS. The captured
speed and position values can be used to calculate a registration position that does not vary with speed
because of the fixed delays.

This is an AXIS parameter, you need to ensure that you are using this parameter with the same AXIS
that you used to set the REGIST so to ensure that the correct UNITS are used.

PARAMETERS:

Expression: Any valid TrioBASIC expression. The result of the expression should be a valid integer
channel number.

VALUE:
The speed of the axis in user units per millisecond at which the registration event occurred.

This parameter has the units of UNITS/msec at all SERVO _ PERIOD settings.

EXAMPLE:
Compensate for fixed delays in the registration circuit using R _ REGISTSPEED.

fixed _ delays=0.012 ‘ circuit delays in milliseconds
REGIST(21, 3, 0, 0, 0) ‘ registration on time based channel 3
WAIT UNTIL R _ MARK(3)
captured _ position = R _ REGPOS(3)-(R _ REGISTSPEED(3)*fixed _ delays)

SEE ALSO:
REGIST, REGIST _ SPEED, REGIST _ SPEEDB

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/R_REGPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SERVO_PERIOD.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST_SPEEDB.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
R_REGPOS

2-399

R_REGPOS
TYPE:
Axis Parameter (Read Only)

SYNTAX:
R _ REGPOS(expression)

DESCRIPTION:
Stores the position at which a registration mark was seen on the axis in user units. This parameter is used
with the time based registration channel that was set by the REGIST command.

This is an AXIS parameter, you need to ensure that you are using this parameter with the same AXIS
that you used to set the REGIST so to ensure that the correct UNITS are used.

PARAMETERS:

Expression: Any valid TrioBASIC expression. The result of the expression should be a valid integer
channel number.

VALUE:
The absolute position in user UNITS at which the registration event occurred.

EXAMPLE:
A paper cutting machine uses a cam profile shape to quickly draw paper through servo driven rollers then
stop it whilst it is cut. The paper is printed with a registration mark. This mark is detected and the length of
the next sheet is adjusted by scaling the cam profile with the third parameter of the CAM command:

‘ Example Registration Program using CAM stretching:
‘ Set window open and close:
 length=200
 OPEN _ WIN=100
 CLOSE _ WIN=130
 GOSUB Initial
Loop:
 TICKS=0 ‘Set millisecond counter to 0
 IF R _ MARK(0) THEN
 offset=R _ REGPOS(0)
 ‘This next line makes offset -ve if at end of sheet:
 IF ABS(offset-length)<offset THEN offset=offset-length
 PRINT “Mark seen at:”offset[5,1]
 ELSE
 offset=0
 PRINT “Mark not seen”

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CAM.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
RaISE_aNGLE

2-400

 ENDIF

 ‘ Reset registration prior to each move:
 DEFPOS(0)
 REGIST(32,0,0,0,1) ‘Allow mark to be seen between 100 and 130
 CAM(0,50,(length+offset*0.5)*cf,1000)
 WAIT UNTIL TICKS<-500
 GOTO Loop

(variable “cf” is a constant which would be calculated depending on the machine draw length per encoder
edge)

SEE ALSO:
REGIST, REG _ POS, REG _ POSB

RAISE_ANGLE
TYPE:
Axis Parameter

DESCRIPTION:
This parameter is used with CORNER _ MODE, it defines the maximum change in direction of a 2 axis
interpolated move before CORNER _ STATE is triggered. When the change in direction is greater than this
angle CORNER _ STATE will change state so the system can interact with a program.

� This can be used to change the angle of a cutting knife

RAISE _ ANGLE does not control the speed so it should be set equal or greater than STOP _ ANGLE.

VALUE:
The angle to start to interact with a program through CORNER _ STATE

EXAMPLE:
Decelerate to a slower speed when the transition is between 15 and 45 degrees. If the transition is greater
than 45degrees stop so that a CORNER _ STATE routine can run.

CORNER _ MODE=2 + 4
DECEL _ ANGLE = 15 * (PI/180)
STOP _ ANGLE = 45 * (PI/180)
RAISE _ ANGLE= STOP _ ANGLE

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POSB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CORNER_MODE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CORNER_STATE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CORNER_STATE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STOP_ANGLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CORNER_STATE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CORNER_STATE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
.. (Range)

2-401

SEE ALSO:
CORNER _ MODE, CORNER _ STATE, DECEL _ ANGLE, STOP _ ANGLE

.. (Range)
TYPE:
Reserved Keyword

RAPIDSTOP
TYPE:
Axis Command

SYNTAX:
RAPIDSTOP [(mode)]

ALTERNATE FORMAT:
RS

DESCRIPTION:
The RAPIDSTOP command cancels the currently executing move on ALL axes. Velocity profiled moves,
for example; FORWARD, REVERSE, MOVE, MOVEABS, MOVECIRC, MHELICAL, MOVEMODIFY, will be ramped
down at the programmed DECEL or FASTDEC rate then terminated. Other move types will be terminated
immediately.

PARAMETERS:
mode: 0 or none Cancels axis commands from the MTYPE buffers

1 Cancels all buffered moves on all axis (excluding the PMOVE)
2 Cancels all active and buffered moves including the PMOVE

 M RAPIDSTOP WILL ONLY CANCEL THE PRESENTLY EXECUTING MOVES. IF FURTHER MOVES ARE BUFFERED THEY WILL
THEN BE LOADED AND THE AXIS WILL NOT STOP.

EXAMPLES:

EXAMPLE 1:
Implementing a stop override button that cuts out all motion.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CORNER_MODE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CORNER_STATE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DECEL_ANGLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STOP_ANGLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FORWARD.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REVERSE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVEABS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVECIRC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MHELICAL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVEMODIFY.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DECEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FASTDEC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MTYPE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PMOVE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PMOVE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
RaPIdSTOP

2-402

CONNECT (1,0) AXIS(1) ‘axis 1 follows axis 0
BASE(0)
REPAEAT
 MOVE(1000) AXIS (0)
 MOVE(-100000) AXIS (0)
 MOVE(100000) AXIS (0)
UNTIL IN (2)=OFF ‘stop button pressed?
RAPIDSTOP(2)

EXAMPLE 2:
Using RAPIDSTOP to cancel a MOVE on the main axis and a FORWARD on the second axis. After the axes have
stopped, a MOVEABS is applied to re-position the main axis.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FORWARD.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVEABS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
RaPIdSTOP

2-403

BASE(0)
REGIST(3)
FORWARD AXIS(1)
MOVE(100000) ‘apply a long move
WAIT UNTIL MARK
RAPIDSTOP
WAIT IDLE ‘for MOVEABS to be accurate, the axis must stop
MOVEABS(3000)

EXAMPLE 3:
Using RAPIDSTOP to break a connect, and stop motion. The connected axis stops immediately on the
RAPIDSTOP command, the forward axis decelerates at the decel value.

Trio Motion Technology

TRIOBaSIC COMMaNdS
REad_BIT

2-404

BASE(0)
CONNECT(1,1)
FORWARD AXIS(1)
WAIT UNTIL VPSPEED=SPEED ‘let the axis get to full speed
WA(1000)
RAPIDSTOP
WAIT IDLE AXIS(1) ‘wait for axis 1 to decel
CONNECT(1,1) ‘re-connect axis 0
REVERSE AXIS(1)
WAIT UNTIL VPSPEED=SPEED
WA(1000)
RAPIDSTOP
WAIT IDLE AXIS(1)

SEE ALSO:
CANCEL, FASTDEC

READ_BIT
TYPE:
Command

SYNTAX:
READ _ BIT(bit, variable)

DESCRIPTION:
READ _ BIT can be used to test the value of a single bit within a VR() variable.

PARAMETERS:

bit: The bit number to clear, valid range is 0 to 52
variable: The VR which to operate on

EXAMPLE:
Read bit 4 of VR(13).

Result = READ _ BIT(4,13)

SEE ALSO:
SET _ BIT, CLEAR _ BIT

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CANCEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FASTDEC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SET_BIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CLEAR_BIT.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
REad_OP

2-405

READ_OP
TYPE:
System Command

SYNTAX:
value = READ _ OP(output [,finaloutput])

DESCRIPTION:
Returns the state of digital output logic.

If called with one parameter, it returns the state (1 or 0) of that particular output channel. If called with 2
parameters READ _ OP() returns, in binary, the sum of the group of outputs.

READ _ OP checks the state of the output logic. The output may be virtual or not powered and you
will still see the logic state.

PARAMETERS:
value: The binary pattern of the selected outputs
output: Output to return the value of/start of output group
finaloutput: Last output of group

The range of output to final output must not exceed 32

EXAMPLES:

EXAMPLE 1:
In this example a single output is tested:

test:
 WAIT UNTIL READ _ OP(12)=ON
 GOSUB place

EXAMPLE 2:
Check the group of 8 outputs and call a routine if any of them are ON.

op _ bits = READ _ OP(16,23)
IF op _ bits<>0 THEN
 GOSUB check _ outputs
ENDIF

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
REadPaCKET

2-406

READPACKET
TYPE:
Command

SYNTAX:
READPACKET(port, variable, count [,format])

DESCRIPTION:
READPACKET is used to read in data to the VR variables over a serial communications port. The data is
transmitted from the PC in binary format with a CRC 16bit checksum. There are four different data formats,
all use the same packet structure:

Data CRC
Byte 0 Byte 1 Byte 2 … Byte n Byte 0 Byte 1

The 16bit checksum uses the generator polynomial:
x16+x15+x2+x0 or $8005

PARAMETERS:
port: This value should be 0 to 2
pariable: This value tells the Motion Coordinator where to start setting the variables in the VR() global

memory array.
VR count: The number of variables to download, maximum 250
format: The number format for the numbers being downloaded

0 Standard character
1 Standard integer
2 Standard long
4 7bit long

Depending on the format used the data may be split over multiple bytes. It is up to the user to recombine
these to get the final value.

FORMAT = 0 (STANDARD CHARACTER)
Each value is in each Byte:

Value0 = Byte 0
Value1 = Byte 1
…

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
REG_INPuTS

2-407

FORMAT = 1 (STANDARD INTEGER)
Each value is split over 2Bytes:

Value0 = Byte1 * 256 + Byte0
Value1 = Byte3 * 256 + Byte2
…

FORMAT = 2 (STANDARD LONG)
Each value is split over 4Bytes

Value0 = ((Byte3 * 256 + Byte2) * 256 + Byte1) * 256 +Byte0
Value1 = ((Byte7 * 256 + Byte6) * 256 + Byte5) * 256 +Byte4
…

FORMAT = 4 (7BIT LONG)
Each value is split over 4Bytes, but only uses 7 bits of each byte. Only Byte 0 (including the CRC) has bit 7
set . The values sent are therefore 24bits in length.

Bits 15 and Bits 7 of the CRC are not sent and so ignored by the check.

Value0 = ((Byte3 * 128 + Byte2) * 128 + Byte1) * 128 + Byte0
Value1 = ((Byte7 * 128 + Byte6) * 128 + Byte5) * 128 + Byte4
…

EXAMPLE:
Using Standard Long (format = 2) read in the values to a sequence of VR’s starting at 0 from port 1. The
bytes from the READPACKET command are stored in VR(100) and onwards.

READPACKET(1, 100, 10, 2)
FOR value = 0 to 9
 ‘Off set the bytes
 VR(value*4+103) = VR(value*4+103) * (2 3̂2)
 VR(value*4+102) = VR(value*4+103) * (2^16)
 VR(value*4+101) = VR(value*4+103) * (2^8)
 VR(value)=(value*4+103)+VR(value*4+102))+VR(value*4+101)) _
 +VR(value*4+100)
NEXT value

REG_INPUTS
TYPE:
Axis Parameter

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
REG_INPuTS

2-408

DESCRIPTION:
Selects which of the hardware registration inputs to use for an axis. When using REGIST modes 3 to 17 the
first input is the A channel and the second is the B.

� It is recommended to use REGIST(20 to 22) for new projects.

On the MC464 FlexAxis the following defaults are used:

Axis First input Second input
0 0 4

1 1 5

2 2 6

3 3 7

4 4 0

5 5 1

6 6 2

7 7 3

VALUE:

Bits function
3:0 Selects the first input for the axis registration

0000 FlexAxis Input 0
0001 FlexAxis Input 1
0010 FlexAxis Input 2
0011 FlexAxis Input 3
0100 FlexAxis Input 4
0101 FlexAxis Input 5
0110 FlexAxis Input 6
0111 FlexAxis Input 7

7:4 Selects the second input for the axis registration
0000 FlexAxis Input 0
0001 FlexAxis Input 1
0010 FlexAxis Input 2
0011 FlexAxis Input 3
0100 FlexAxis Input 4
0101 FlexAxis Input 5
0110 FlexAxis Input 6
0111 FlexAxis Input 7

Software Reference Manual

TRIOBaSIC COMMaNdS
REG_POS

2-409

EXAMPLE:
Set registration input 2 as the first inputs and 7 as the second

REG _ INPUTS=$72

REG_POS
TYPE:
Axis Parameter (Read Only)

ALTERNATE FORMAT:
RPOS

DESCRIPTION:
Stores the position at which a registration mark was seen on each axis in user UNITS. This parameter is used
with the first (A) hardware registration channel, or Z mark only.

VALUE:
The absolute position in user UNITS at which the registration event occurred.

EXAMPLE:
A paper cutting machine uses a cam profile shape to quickly draw paper through servo driven rollers then
stop it whilst it is cut. The paper is printed with a registration mark. This mark is detected and the length of
the next sheet is adjusted by scaling the cam profile with the third parameter of the CAM command:

‘ Example Registration Program using CAM stretching:
‘ Set window open and close:
 length=200
 OPEN _ WIN=10
 CLOSE _ WIN=length-10
 GOSUB Initial
Loop:
 TICKS=0 ‘Set millisecond counter to 0
 IF MARK THEN
 offset=REG _ POS
 ‘This next line makes offset -ve if at end of sheet:
 IF ABS(offset-length)<offset THEN offset=offset-length
 PRINT “Mark seen at:”offset[5.1]
 ELSE
 offset=0
 PRINT “Mark not seen”
 ENDIF

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CAM.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
REG_POSB

2-410

 ‘Reset registration prior to each move:
 DEFPOS(0)
 REGIST(3+768)’ Allow mark at first 10mm/last 10mm of sheet
 CAM(0,50,(length+offset*0.5)*cf,1000)
 WAIT UNTIL TICKS<-500
 GOTO Loop

(variable “cf” is a constant which would be calculated depending on the machine draw length per encoder
edge)

SEE ALSO:
REGIST, REG _ POSB, R _ REGPOS

REG_POSB
TYPE:
Axis Parameter (Read Only)

DESCRIPTION:
Stores the position at which a registration mark was seen on each axis in user units. This parameter is used
with the second (B) hardware registration channel, or Z mark only.

VALUE:
The absolute position in user UNITS of where the registration event occurred.

EXAMPLE:
Detect the front and rear edges of an object on a conveyor and measure its length.

‘ Registration on rising edge R0 and falling edge R1
REGIST(11)
WAIT UNTIL MARK
position1 = REG _ POS
WAIT UNTIL MARKB
position2 = REG _ POSB

length = position2 – position1

SEE ALSO:
REGIST, REG _ POS, R _ REGPOS

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POSB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/R_REGPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/R_REGPOS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
REGIST

2-411

REGIST
TYPE:
Axis Command

SYNTAX:
REGIST(mode [,parameters])

DESCRIPTION:
The REGIST command initiates a capture of an axis position when it sees a registration input or the Z mark
on the encoder. Once a registration event is captured MARK is set and the position and speed at the event
can be read back.

� See the Hardware manual to understand which registration mode your hardware supports.

Filtering can be applied to the input as well as defining a window of where to capture.

Hardware registration captures the encoder count against the registration input in hardware

Time based registration captures the time of the registration event and interpolates the position values
being sent back from the drive against it.

Although all modes are available it is recommended to use modes 20-22 for new applications. Other
modes have been provided for compatibility with older products.

The REGIST command must be re-issued for each position capture.

PARAMETERS:

mode: 1..4 Single channel hardware registration
5 Reserved
6..13 Dual channel hardware registration
14..17 Single channel hardware registration
20 Single channel hardware registration
21 Single channel time based registration
22 8 channel hardware registration
23 Sets 2.4usec minimum pulse width
24 Sets 0.15usec minimum pulse width (default)
32..39 Rising edge on time based registration (use mode 21)
64..71 Falling edge on time based registration (use mode 21)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MARK.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
REGIST

2-412

MODE = 1..4:

SYNTAX:
REGIST(mode)
Where mode = 1..4

DESCRIPTION:

� It is recommend that you use mode 20 for all new applications

Modes 1 to 4 work with the first channel or Z mark of hardware based registration.

You can add 256 or 768 to enable windowing.

This mode works with MARK, REG _ POS and REGIST _ SPEED

PARAMETERS:

mode: 1 Z Mark rising into REG _ POS
2 Z Mark falling into REG _ POS
3 RA Input rising into REG _ POS
4 RA Input falling into REG _ POS
mode + 256 Position must be inside OPEN _ WIN..CLOSE _ WIN
mode + 768 Position must be outside OPEN _ WIN..CLOSE _ WIN

EXAMPLE:
A disc used in a laser printing process requires registration to the Z marker before printing can start. This
routine locates to the Z marker, then sets that as the zero position.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MARK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OPEN_WIN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OPEN_WIN.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
REGIST

2-413

BASE(0)
REGIST(1) ‘Initialise to Z mark
FORWARD ‘start movement
WAIT UNTIL MARK
CANCEL ‘stops movement after Z mark
WAIT IDLE
MOVEABS (REG _ POS) ‘relocate to Z mark
WAIT IDLE
DEFPOS(0) ‘set zero position

MODE = 6..13:

SYNTAX:
REGIST(6..13)
Where mode = 6..13

DESCRIPTION:

� It is recommend that you use mode 20 for all new applications

Modes 6 to 13 work with hardware based registration but enable you to arm 2 registration registers at once.

You can add 256 or 768 to enable windowing.

Trio Motion Technology

TRIOBaSIC COMMaNdS
REGIST

2-414

The first channel will use MARK, REG _ POS and REGIST _ SPEED and the second will use MARKB, REG _
POSB and REGIST _ SPEEDB

PARAMETERS:

mode: 6 RA Input rising into REG _ POS & Z Mark rising into REG _ POSB
7 RA Input rising into REG _ POS & Z Mark falling into REG _ POSB
 8 RA Input falling into REG _ POS & Z Mark rising into REG _ POSB
9 RA Input falling into REG _ POS & Z Mark falling into REG _ POSB
10 RA Input rising into REG _ POS & RB Input rising into REG _ POSB
11 RA Input rising into REG _ POS & RB Input falling into REG _ POSB
12 RA Input falling into REG _ POS & RB Input rising into REG _ POSB
13 RA Input falling into REG _ POS & RB Input falling into REG _ POSB
mode + 256 Position must be inside OPEN _ WIN..CLOSE _ WIN
mode + 768 Position must be outside OPEN _ WIN..CLOSE _ WIN

EXAMPLE:
A machine adds glue to the top of a box by switching output 8. It must detect the rising edge (appearance)
of and the falling edge (end) of a box. Additionally it is required that the MPOS be reset to zero on the
detection of the Z position.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MARK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MARKB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POSB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POSB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST_SPEEDB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POSB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POSB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POSB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POSB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POSB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POSB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POSB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POSB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OPEN_WIN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OPEN_WIN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
REGIST

2-415

reg=6 ‘select registration mode 6 (rising edge R, rising edge Z)
REGIST(reg)
FORWARD
WHILE IN(2)=OFF
 IF MARKB THEN ‘on a Z mark MPOS is reset to zero
 OFFPOS=-REG _ POSB
 REGIST(reg)
 ELSEIF MARK THEN ‘on R input output 8 is toggled
 IF reg=6 THEN
 ‘select registration mode 8 (falling edge R, rising edge Z)
 reg=8
 OP(8,ON)
 ELSE
 reg=6
 OP(8,OFF)
 ENDIF
 REGIST(reg)
 ENDIF
WEND
CANCEL

MODE = 14..17:

SYNTAX:
REGIST(mode)
Where mode = 14..17

DESCRIPTION:

� It is recommend that you use mode 20 for all new applications

Modes 14 to 17 work with the second channel or Z mark of hardware based registration.

You can add 256 or 768 to enable windowing.

This mode works with MARKB, REG _ POSB and REGIST _ SPEEDB

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MARKB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POSB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST_SPEEDB.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
REGIST

2-416

PARAMETERS:

mode: 14 ZB Mark rising into REG_POSB
15 ZB Mark falling into REG_POSB
16 RB Input rising into REG_POSB
17 RB Input falling into REG_POSB
mode + 256 Position must be inside OPEN_WIN..CLOSE_WIN
mode + 768 Position must be outside OPEN_WIN..CLOSE_WIN

EXAMPLE:
It is required to detect if a component is placed on a flighted belt so windowing is used to avoid sensing the
flights. The flights are at a pitch of 120 mm and the component will be found between 30 and 90mm. If a
component is found then an actuator is fired to push it off the belt.

REP _ DIST=120 ‘sets repeat distance to pitch of belt flights
REP _ OPTION=ON
OPEN _ WIN=30 ‘sets window open position
CLOSE _ WIN=90 ‘sets window close position
REGIST(17+256) ‘RB input registration with windowing
FORWARD ‘start the belt
box _ seen=0
REPEAT
 WAIT UNTIL MPOS<60 ‘wait for centre point between flights
 WAIT UNTIL MPOS>60 ‘so that actuator is fired between flights

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POSB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POSB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POSB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POSB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OPEN_WIN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OPEN_WIN.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
REGIST

2-417

 IF box _ seen=1 THEN ‘was a box seen on the previous cycle?
 OP(8,ON) ‘fire actuator
 WA(100)
 OP(8,OFF) ‘retract actuator
 box _ seen=0
 ENDIF
 IF MARKB THEN box _ seen=1 ‘set “box seen” flag
 REGIST(17+256)
UNTIL IN(2)=OFF
CANCEL ‘stop the belt
WAIT IDLE

MODE = 20:

SYNTAX:
REGIST(20, channel, source, edge, window)

DESCRIPTION:
Mode 20 is used to set the hardware registration inputs A or B. Alternatively A or B can be replaced with the
Z mark. A and B are completely independent.

When using a FlexAxis the actual input used for channel A and channel B can be selected with the
REG _ INPUTS command.

This mode can be used instead of REGIST modes 1..4 and 14..17

PARAMETERS:
channel:

0 Selects channel A
1 Selects channel B

source:

0 Selects the first 24V input.
1 Selects the Z mark.
2 Selects the second 24V input
3 Selects the 5V registration pin (built-in axis only)

edge:

0 Rising edge
1 Falling edge

window: 0 No windowing
1 Position must be inside OPEN _ WIN..CLOSE _ WIN
2 Position must be outside OPEN _ WIN..CLOSE _ WIN

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_INPUTS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OPEN_WIN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OPEN_WIN.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
REGIST

2-418

If channel = 0 then MARK, REG _ POS and REGIST _ SPEED are used
If channel = 1 then MARKB, REG _ POSB and REGIST _ SPEEDB are used

EXAMPLE:
Configure the windowing which will be used on channel B and then arm both channel B and the Z mark.

OPEN _ WIN=200
CLOSE _ WIN=400
REGIST(20,0,1,0,0)
REGIST(20,1,0,1,2)

MODE = 21:

SYNTAX:
REGIST(21, channel, source, edge, window)

DESCRIPTION:
REGIST mode 21 is used to arm the time based registration.

This can be used instead of REGIST modes 32..39 and 64..71.

This mode operates with the parameters R _ MARK(channel) , R _ REGPOS(channel) and R _
REGISTSPEED(channel).

PARAMETERS:

channel: This is the registration channel to be used (range 0..7)
source: Has no function, set to 0
edge:

0 rising edge
1 falling edge

window: 0 no windowing
1 position must be inside OPEN _ WIN..CLOSE _ WIN
2 position must be outside OPEN _ WIN..CLOSE _ WIN

MODE =22;

SYNTAX:
REGIST(22, channel, source, edge, window)

DESCRIPTION:
This mode allows up to 8 hardware registration inputs to be assigned to one axis.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MARK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MARKB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POSB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST_SPEEDB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/R_MARK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/R_REGPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/R_REGISTSPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/R_REGISTSPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OPEN_WIN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CLOSE_WIN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OPEN_WIN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CLOSE_WIN.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
REGIST

2-419

 M IF THIS MODE IS USED ALL 8 INPUTS ARE ASSIGNED TO THE ONE AXIS. YOU CANNOT MIX REGIST(22) AND REGIST(20)
ON ONE BANK OF INPUTS.

This mode operates with the parameters R _ MARK(channel) , R _ REGPOS(channel) and R _
REGISTSPEED(channel).

To use this mode REG _ INPUTS must be set to $10 before you call the REGIST command.

PARAMETERS:

channel: This is the registration channel to be used (range 0..7)
source:

0 Selects the 24V registration input.
1 Selects the Z mark.

edge:

0 Rising edge
1 falling edge

window: 0 no windowing
1 position must be inside OPEN_WIN..CLOSE_WIN
2 position must be outside OPEN_WIN..CLOSE_WIN

MODE = 23;

SYNTAX:
REGIST(23)

DESCRIPTION:
This mode assigns a 2.4usec minimum pulse width to the axis. This affects any REGIST mode that is used.

The default value is 0.15usec.

MODE = 24:

SYNTAX:
REGIST(24)

DESCRIPTION:
This mode assigns a 0.15usec minimum pulse width to the axis. This affects any REGIST mode that is used.

This is the default value.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/R_MARK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/R_REGPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/R_REGISTSPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/R_REGISTSPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_INPUTS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OPEN_WIN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CLOSE_WIN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OPEN_WIN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CLOSE_WIN.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
REGIST_CONTROL

2-420

SEE ALSO:
MARK, MARKB, R _ MARK, REG _ POS, REG _ POSB, R _ REGPOS, REGIST _ SPEED, REGIST _
SPEEDB, R _ REGISTSPEED, REGIST _ DELAY, REG _ INPUTS

REGIST_CONTROL
TYPE:
Reserved Keyword

DESCRIPTION:
Read or set the low level bit pattern in the control register

REGIST_DELAY
TYPE:
Axis Parameter

DESCRIPTION:
The value, in milliseconds, of the total system delays between a signal appearing on the registration input
and the position being available to the time-based registration algorithm. A digital system will usually
transfer the actual position information with a one servo period delay. Therefore the REGIST _ DELAY must
be adjusted when the SERVO _ PERIOD parameter is not at the default value.

� In most real-world systems there are delays built into the registration circuit; the external sensor and
the input opto-isolator will have some fixed response time. As machine speed increases, the fixed
electrical delays will have an effect on the captured registration position. REGIST _ DELAY can be
adjusted to take account of the total delays due to the servo period and input.

VALUE:
The total registration delay in milliseconds

EXAMPLES:

EXAMPLE 1:
Compensate for fixed delay of one servo period plus 10 microseconds sensor input delay when SERVO _
PERIOD is 1000.

REGIST _ DELAY = -1.01

EXAMPLE 2:
Compensate for fixed delay of one servo period plus 15 microseconds sensor input delay when SERVO _

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MARK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MARKB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/R_MARK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POSB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/R_REGPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST_SPEEDB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST_SPEEDB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/R_REGISTSPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST_DELAY.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_INPUTS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SERVO_PERIOD.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SERVO_PERIOD.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SERVO_PERIOD.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SERVO_PERIOD.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
REGIST_SPEEd

2-421

PERIOD is 500.
REGIST _ DELAY = -0.515

EXAMPLE 3:
Compensate for fixed delay of one servo period plus 10 microseconds sensor input delay plus one additional
SLM cycle of 125 microseconds.

REGIST _ DELAY = -1.135

REGIST_SPEED
TYPE:
Axis Parameter (Read Only)

DESCRIPTION:
Stores the speed of the axis when a registration mark was seen user units per milli-second. This parameter is
used with the first (A) hardware registration channel, or Z mark only.

� In most real-world systems there are delays built into the registration circuit; the external sensor and
the input opto-isolator will have some fixed response time. As machine speed increases, the fixed
electrical delays will have an effect on the captured registration position.

REGIST _ SPEED returns the value of axis speed captured at the same time as REG _ POS. The captured
speed and position values can be used to calculate a registration position that does not vary with speed
because of the fixed delays.

Value:

The speed of the axis in user units per milli-second at which the registration event occurred.

This parameter has the units of user_units/msec at all SERVO _ PERIOD settings.

EXAMPLE:
Compensate for fixed delays in the registration circuit using REGIST _ SPEED.

fixed_delays=0.020 ‘ circuit delays in milliseconds
REGIST(20, 0, 0, 0, 0)
WAIT UNTIL MARK
captured _ position = REG _ POS-(REGIST _ SPEED*fixed _ delays)

SEE ALSO:
REGIST, REGIST _ SPEEDB, R _ REGISTSPEED

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SERVO_PERIOD.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SERVO_PERIOD.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST_SPEEDB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/R_REGISTSPEED.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
REGIST_SPEEdB

2-422

REGIST_SPEEDB
TYPE:
Axis Parameter (Read Only)

DESCRIPTION:
Stores the speed of the axis when a registration mark was seen user units per milli-second. This parameter is
used with the second (B) hardware registration channel, or Z mark only.

� In most real-world systems there are delays built into the registration circuit; the external sensor and
the input opto-isolator will have some fixed response time. As machine speed increases, the fixed
electrical delays will have an effect on the captured registration position.

REGIST _ SPEEDB returns the value of axis speed captured at the same time as REG _ POSB. The captured
speed and position values can be used to calculate a registration position that does not vary with speed
because of the fixed delays.

VALUE:
The speed of the axis in user units per milli-second at which the registration event occurred.

This parameter has the units of UNITS/msec at all SERVO _ PERIOD settings.

SEE ALSO:
REGIST, REGIST _ SPEED, R _ REGISTSPEED

REMAIN
TYPE:
Axis Parameter (Read Only)

DESCRIPTION:
This is the distance, in UNITS, remaining to the end of the current move. It may be tested to see what
amount of the move has been completed.

VALUE:
The distance remaining in user UNITS of the current move

EXAMPLE:
To change the speed to a slower value 5mm from the end of a move.

start:
 SPEED=10

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POSB.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SERVO_PERIOD.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REGIST_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/R_REGISTSPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
REMOTE

2-423

 MOVE(45)
 WAIT UNTIL REMAIN<5
 SPEED=1
 WAIT IDLE

REMOTE
TYPE:
System Command

SYNTAX:
REMOTE(slot)

DESCRIPTION:
Starts up the REMOTE _ PROGRAM communication protocol as a program which communicates with PCMotion
ActiveX. The REMOTE program will take up a user process if it is run automatically or manually. It is
recommended that REMOTE should run on a high priority process, REMOTE _ PROC can be set to define which
process the REMOTE _ PROGRAM runs on.

� The REMOTE program is normally started automatically when you open a PCMotion connection. You
can call it manually if you wish to control the starting of the process manually.

 M IF YOU EXECUTE REMOTE MANUALLY THE PROGRAM IT RUNS IN WILL SUSPEND AT THE REMOTE LINE. THE REMOTE
THEREFORE SHOULD BE THE LAST LINE OF THE PROGRAM TO EXECUTE.

PARAMETERS:

slot: 0

EXAMPLE:
A program that will start the REMOTE program on process 20 if the project wants to run in debug mode.
 WHILE(1)
 IF VR(debug)=TRUE THEN
 REMOTE(0)
 ELSE
 WA(100)
 ENDIF
 WEND

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REMOTE_PROC.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
REMOTE_PROC

2-424

SEE ALSO:
REMOTE _ PROC

REMOTE_PROC
TYPE:
System Parameter (MC _ CONFIG / FLASH)

DESCRIPTION:
When the TrioPC ActiveX opens a synchronous connection to the Motion Coordinator, the REMOTE _
PROGRAM is started on the highest available process. REMOTE _ PROC can be set to specify a different
process for the REMOTE _ PROGRAM. If the defined process is in use then the next lower available process
will be used.

REMOTE _ PROC is stored in Flash EPROM and can also be set in the MC _ CONFIG script file.

VALUE:

-1 Use the highest available process (default)
0 to max process Run on defined process

EXAMPLES:

EXAMPLE1:
Set REMOTE _ PROGRAM to start on process 19 or lower (using the command line terminal).

>>REMOTE _ PROC=19
>>

EXAMPLE2:
Remove the REMOTE _ PROC setting so that REMOTE _ PROGRAM starts on default process (using MC _
CONFIG).

‘MC _ CONFIG script file
REMOTE _ PROC = -1 ‘Start on default process on connection

SEE ALSO:
REMOTE

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REMOTE_PROC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REMOTE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
RENaME

2-425

RENAME
TYPE:
System Command

SYNTAX:
RENAME oldname newname

DESCRIPTION:
Renames a program in the Motion Coordinator directory.

It is not normally used except by Motion Perfect.

PARAMETERS:

oldname: The name of the program to rename.

newname: The new name of the program.

EXAMPLE:
>>RENAME car voiture
OK
>>

REP_DIST
TYPE:
Axis Parameter

DESCRIPTION:
The repeat distance contains the allowable range of movement for an axis before the position count
overflows or underflows.

When MPOS and DPOS reach REP _ DIST they will wrap to either 0 or –REP _ DIST depending on REP _
OPTION. The same applies in reverse so when MPOS and DPOS reach either 0 or –REP _ DIST they wrap to
REP _ DIST.

 M BY DEFAULT REP _ DIST IS LESS THAN THE SOFTWARE LIMITS. IF YOU INCREASE REP _ DIST FROM THE DEFAULT
VALUE YOU MAY ACCIDENTLY ACTIVATE FS _ LIMIT OR RS _ LIMIT.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_OPTION.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_OPTION.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RS_LIMIT.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
REP_OPTION

2-426

If a position is outside REP _ DIST then it is adjusted by REP _ DIST every SERVO _ PERIOD, until the
position is within REP _ DIST. It is recommended to set the position within REP _ DIST using DEFPOS
or OFFPOS before setting REP _ DIST.

VALUE:
The position in user units where the axis position wraps.

EXAMPLES:

EXAMPLE 1:
Units are set so that an axis units is degrees. The programmer wants to work in the range 1-360, which
requires REP _ OPTION=1.

REP _ OPTION=1
REP _ DIST=360

EXAMPLE 2:
MOVETANG requires the axis to be configures so it pi radians of the full revolution. For a 4000 count per rev
encoder this means between -2000 and 2000. This can be configured as follows

BASE(0)
UNITS=1
REP _ OPTION=0
REP _ DIST=2000
MOVETANG(0,1)

SEE ALSO:
FS _ LIMIT, RS _ LIMIT

REP_OPTION
TYPE:
Axis Parameter

DESCRIPTION:
REP _ OPTION allows different repeat options for the axis. It can be used to affect the way the position of
an axis wraps or the repeating mode of CAMBOX and MOVELINK.

VALUE:
Bit Operation Value
0 0 Axis position range is –REP _ DIST to +REP _ DIST

1 Axis position range is 0 to +REP _ DIST 1

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SERVO_PERIOD.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DEFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_OPTION.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVETANG.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CAMBOX.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVELINK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_DIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_DIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_DIST.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
REPEaT.. uNTIL

2-427

1

0 Automatic repeat option is disabled
1 Disable the automatic repeat option of CAMBOX and MOVELINK 2

2 0 REP _ DIST, DEFPOS and OFFPOS will affect MPOS and DPOS
1 REP _ DIST, DEFPOS and OFFPOS will affect MPOS only 4

Bit 2 has been included for backward compatibility, it is not recommended to use this on new
applications.

EXAMPLES:

EXAMPLE 1:
An axis has 400 counts per revolution, configure REP _ DIST and REP _ OPTION so that it wraps from 0 to
4000.

REP _ OPTION = 1
REP _ DIST = 4000

EXAMPLE 2:
A program is running a continuous MOVELINK, when an input is triggered the link must end at the end of the
next cycle. Set bit is used so not to clear any other bits that may be active.

MOVELINK((1, 1.6, 0.6, 0.6, 1, 4)
WAIT UNTIL IN(1) = ON
REP _ OPTION = REP _ OPTION AND 2

SEE ALSO:
CAMBOX, MOVELINK, REP _ DIST

REPEAT.. UNTIL
TYPE:
Program Structure

SYNTAX:
REPEAT
 commands
UNTIL expression

DESCRIPTION:
The REPEAT..UNTIL construct allows a block of commands to be continuously repeated until an expression
becomes TRUE. REPEAT..UNTIL loops can be nested without limit.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CAMBOX.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVELINK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_DIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DEFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_DIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DEFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFFPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_DIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVELINK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CAMBOX.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVELINK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_DIST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
RESET

2-428

The commands inside a REPEAT..UNTIL structure will always be executed at least once, if you want
them to only be executed on the expression you can use a WHILE..WEND.

PARAMETERS:

expression: Any valid TrioBASIC expression
commands: TrioBASIC statements that you wish to execute

EXAMPLE:
A conveyor is to index 100mm at a speed of 1000mm/s wait for 0.5s and then repeat the cycle until an
external counter signals to stop by setting input 4 on.

SPEED=1000
REPEAT
 MOVE(100)
 WAIT IDLE
 WA(500)
UNTIL IN(4)=ON

RESET
TYPE:
Process Command

SYNTAX:
RESET

DESCRIPTION:
Sets the value of all the local named variables of a TrioBASIC process to 0.

EXAMPLE:
As part of an error recovery routine RESET can be used to clear all local variables before they are initialised
again

WDOG=OFF
DATUM(0) ‘reset error
RESET ‘clear local variables
counter = 0
error _ number =0

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/WHILE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
REV_IN

2-429

REV_IN
TYPE:
Axis Parameter

DESCRIPTION:
This parameter holds the input number to be used as a reverse limit input.

When the reverse limit input is active any motion on that axis is CANCELed

When REV _ IN is active AXISSTATUS bit 5 is set.

The input used for REV _ IN is active low.

VALUE:
-1 disable the input as REV _ IN (default)
0-63 Input to use as the reverse input switch

� Any type of input can be used, built in, Trio CAN I/O, CANopen or virtual.

EXAMPLE:
Set up inputs 8 and 9 as forward and reverse limit switches for axis 4.

BASE(4)
FWD _ IN = 8
REV _ IN = 9

SEE ALSO:
FWD _ IN, FS _ LIMIT, RS _ LIMIT

REV_JOG
TYPE:
Axis Parameter

DESCRIPTION:
This parameter holds the input number to be used as a jog reverse input.

When the REV _ JOG input is active the axis moves in reverse at JOGSPEED.

The input used for REV _ IN is active low.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CANCEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXISSTATUS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FWD_IN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/JOGSPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REV_IN.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
REVERSE

2-430

� It is advisable to use INVERT _ IN on the input for REV _ JOG so that 0V at the input disables the jog.

FWD _ JOG overrides REV _ JOG if both are active

VALUE:

-1 disable the input as REV _ JOG (default)
0-63 Input to use as datum input

EXAMPLE:
Initialise the REV _ JOG so that it is active high on input 12

INVERT _ IN(12,ON)
FWD _ JOG=12

REVERSE
TYPE:
Axis Command

SYNTAX:
REVERSE

ALTERNATE FORMAT:
RE

DESCRIPTION:
Sets continuous reverse movement. The axis accelerates at the programmed ACCEL rate and continues
moving at the SPEED value until either a CANCEL or RAPIDSTOP command are encountered. It then
decelerates to a stop at the programmed DECEL rate.

If the axis reaches either the reverse limit switch or reverse soft limit, the REVERSE will be cancelled
and the axis will decelerate to a stop.

EXAMPLES:

EXAMPLE 1:
Run an axis in reverse. When an input signal is detected on input 5, stop the axis.

back:
REVERSE

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/INVERT_IN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FWD_JOG.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ACCEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CANCEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RAPIDSTOP.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
REVERSE

2-431

‘Wait for stop signal:
WAIT UNTIL IN(5)=ON
CANCEL
WAIT IDLE

EXAMPLE 2:
Run an axis in reverse. When it reaches a certain position, slow down.

DEFPOS(0) ‘set starting position to zero
REVERSE
WAIT UNTIL MPOS<-129.45
SPEED=slow _ speed
WAIT UNTIL VP _ SPEED=slow _ speed ‘wait until the axis slows
OP(11,ON) ‘turn on an output to show that speed is now slow

EXAMPLE 3:
A joystick is used to control the speed of a platform. A dead-band is required to prevent oscillations from
the joystick midpoint. This is achieved through setting reverse, which sets the correct direction relative to
the operator, the joystick then adjusts the speed through analogue input 0.

Trio Motion Technology

TRIOBaSIC COMMaNdS
RIGHT

2-432

REVERSE
WHILE IN(2)=ON
 IF AIN(0)<50 AND AIN(0)>-50 THEN ‘sets a dead-band in the input
 SPEED=0
 ELSE
 SPEED=AIN(0)*100 ‘sets speed to a scale of AIN
 ENDIF
WEND
CANCEL

SEE ALSO:
FORWARD

RIGHT
TYPE:
STRING Function

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FORWARD.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
RS_LIMIT

2-433

SYNTAX:
RIGHT(string, length)

DESCRIPTION:
Returns the right most section of the specified string using the length specified.

PARAMETERS:

string: String to be used
length: Length of string to be returned

EXAMPLES:

EXAMPLE 1:
Pre-define a variable of type string and later print its right most 10 characters:

DIM str1 AS STRING(32)
str1 = “TRIO MOTION TECHNOLOGY”
PRINT RIGHT(str1, 10)

SEE ALSO:
CHR, STR, VAL, LEN, LEFT, MID, LCASE, UCASE, INSTR

RS_LIMIT
TYPE:
Axis Parameter

ALTERNATE FORMAT:
RSLIMIT

DESCRIPTION:
An end of travel limit may be set up in software thus allowing the program control of the working envelope
of the machine. This parameter holds the absolute position of the forward travel limit in user units.

Bit 10 of the AXISSTATUS register is set when the axis position is greater than the RS _ LIMIT.

When DPOS reaches RS _ LIMIT the controller will cancel the move, so the axis will decelerate at
DECEL or FASTDEC.

� RS _ LIMIT is disabled when it has a value greater than REP _ DIST.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CHR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VAL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LEN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LEFT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MID.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LCASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UCASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/INSTR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXISSTATUS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DECEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FASTDEC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REP_DIST.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
RuN

2-434

VALUE:
The absolute position of the software forward travel limit in user units. (default = 200000000000)

EXAMPLE:
After homing a machine set up the reverse software limit so that the axis will stop 10mm away from the
hard stop. So if the hard limit is at -200, with a maximum speed of 400 and a FASTDEC of 1000 the reverse
limit will be -189.6.

hard _ limit _ position = -200
max _ speed = 400
FASTDEC = 1000

DATUM(3)
WAIT IDLE
RS _ LIMIT= hard _ limit _ position + (max _ speed/FASTDEC +10)

SEE ALSO:
FS _ LIMIT, FWD _ IN, REV _ IN

RUN
TYPE:
System Command

SYNTAX:
RUN [“program” [, process]]

DESCRIPTION:
Runs a named program on the controller. Programs can be RUN from another program.

� A program can be run multiple times in different processes. You can use PROCNUMBER to help assign
values in the program.

Programs will continue to execute until there are no more lines to execute, a HALT is typed in the
command line, a STOP is issued or there is a run time error.

PARAMETERS:

program: Name of program to be run. If not present the SELECTed program is run
process: Optional process number. (default highest available)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FASTDEC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FS_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FWD_IN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REV_IN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PROCNUMBER.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/HALT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STOP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
RuN_ERROR

2-435

EXAMPLES:

EXAMPLE 1:
SELECT the program STARTUP and run it on he command line.

>>SELECT “STARTUP”
STARTUP selected
>>RUN%[Process 21:Program STARTUP] - Running
>>%[Process 21:Line 238] (31) - Program is stopped
>>

EXAMPLE 2:
From the MAIN program, run the STARTUP program on process 2 and wait for its completion:

RUN “STARTUP”, 2
WAIT UNTIL PROC _ STATUS PROC(2) <> 0 ‘wait for program to start
WAIT UNTIL PROC _ STATUS PROC(2) = 0 ‘wait for program to complete
WDOG=ON

EXAMPLE 3:
After STARTUP has completed the MAIN program will start other programs running in the highest available
processes.

RUN “IO _ CONTROL”
RUN “HMI”
RUN “SAUSAGE _ CHOPPER”

SEE ALSO:
HALT , PROCNUMBER, RUN _ ERROR, SELECT, STOP

RUN_ERROR
TYPE:
Process Parameter

DESCRIPTION:
Contains the number of the last run time error that stopped the program on the specified process.

� RUN _ ERROR = 31 is a normal completion of a program.

VALUE:

Value: Description:
1 Command not recognized

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/HALT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PROCNUMBER.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STOP.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
RuN_ERROR

2-436

Value: Description:
2 Invalid transfer type

3 Error programming Flash

4 Operand expected

5 Assignment expected

6 QUOTES expected

7 Stack overflow

8 Too many variables

9 Divide by zero

10 Extra characters at end of line

11] expected in PRINT

12 Cannot modify a special program

13 THEN expected in IF/ELSEIF

14 Error erasing Flash

15 Start of expression expected

16) expected

17 , expected

18 Command line broken by ESC

19 Parameter out of range

20 No process available

21 Value is read only

22 Modifier not allowed

23 Remote axis is in use

24 Command is command line only

25 Command is runtime only

26 LABEL expected

27 Program not found

28 Duplicate Identifier

29 Program is locked

30 Program(s) running

31 Program is stopped

32 Cannot select program

33 No program selected

34 No more programs available

Software Reference Manual

TRIOBaSIC COMMaNdS
RuN_ERROR

2-437

Value: Description:
35 Out of memory

36 No code available to run

37 Command out of context

38 Too many nested structures

39 Structure nesting error

40 ELSE/ELSEIF/ENDIF without previous IF

41 WEND without previous WHILE

42 UNTIL without previous REPEAT

43 Identifier expected

44 TO expected after FOR

45 Too may nested FOR/NEXT

46 NEXT without FOR

47 UNTIL/IDLE expected after WAIT

48 GOTO/GOSUB expected

49 Too many nested GOSUB

50 RETURN without GOSUB

51 LABEL must be at start of line

52 Cannot nest one line IF

53 LABEL not found

54 LINE NUMBER cannot have decimal point

55 Cannot have multiple instances of REMOTE

56 Invalid use of $

57 VR(x) expected

58 Program already exists

59 Process already selected

60 Duplicate axes not permitted

61 PLC type is invalid

62 Evaluation error

63 Reserved keyword not available on this controller

64 VARIABLE not found

65 Table index range error

66 Features enabled do not allow ATYPE change

67 Invalid line number

Trio Motion Technology

TRIOBaSIC COMMaNdS
RuN_ERROR

2-438

Value: Description:
68 String exceeds permitted length

69 Scope period should exceed number of Ain params

70 Value is incorrect

71 Invalid I/O channel

72 Value cannot be set. Use CLEAR _ PARAMS command

73 Directory not locked

74 Directory already locked

75 Program not running on this process

76 Program not running

77 Program not paused on this process

78 Program not paused

79 Command not allowed when running Motion Perfect

80 Directory structure invalid

81 Directory is LOCKED

82 Cannot edit program

83 Too many nested OPERANDS

84 Cannot reset when drive servo on

85 Flash Stick Blank

86 Flash Stick not available on this controller

87 Slave error

88 Master error

89 Network timeout

90 Network protocol error

91 Global definition is different

92 Invalid program name

93 Program corrupt

94 More than one program running when trying to set GLOBAL/CONSTANT

95 Program encrypted

96 BASIC TOKEN definition incorrect

97 (expected

98 Number expected

99 AS expected

100 STRING, VECTOR or ARRAY expected

Software Reference Manual

TRIOBaSIC COMMaNdS
RuN_ERROR

2-439

Value: Description:
101 String expected

102 Download Abort or Timeout

103 Cannot specify program type for an existing program

104 File error: Invalid COFF image file

105 Variable defined outside include file

106 Command not allowed within INCLUDE file

107 Serial Number must be -1

108 Append block inconsistent

109 Invalid range specified

110 Too many items defined for block

111 Invalid MSPHERICAL input

112 Too many labels

113 Symbol table locked

114 Incorrect symbol type

115 Variables not permitted on Command Line

116 Invalid program type

117 Parameter expected

118 Firmware error: Device in use

119 Device error: Timeout waiting for device

120 Device error: Command not supported by device

121 Device error: CRC error

122 Device error: Error writing to device

123 Device error: Invalid response from device

124 Firmware error: Cannot reference data outside current block

125 Disk error: Invalid MBR

126 Disk error: Invalid boot sector

127 Disk error: Invalid sector/cluster reference

128 File error: Disk full

129 File error: File not found

130 File error: Filename already exists

131 File error: Invalid filename

132 File error: Directory full

133 Command only allowed when running Motion Perfect

Trio Motion Technology

TRIOBaSIC COMMaNdS
RuN_ERROR

2-440

Value: Description:
134 # expected

135 FOR expected

136 INPUT/OUTPUT/APPEND/FIFO _ READ/FIFO _ WRITE expected

137 File not open

138 End of file

139 File already open

140 Invalid storage area

141 Numerical error: Invalid Floating-Point operation

142 Invalid System Code - wrong controller

143 IEC error: invalid variable access

144 Numerical error: Not-a-Number(NaN) used

145 Numerical error: Infinity used

146 Numerical error: Subnormal value used

147 MAC EEPROM is locked

148 Invalid mix of data types

149 Invalid startup configuration command

150 Symbol is not a variable

151 Robot Features are NOT enabled (FEC 22)

152 IEC runtime limited to 1 hour (FEC 21)

153 Command not allowed with current ATYPE

154 Wildcard length must be 1

155 Incompatible array dimensions

156 Matrix is singular

157 Program is not an executable type

158 Disk error: Format must be FAT32 compatible

159 Program is stopped (HALT FORCED)

EXAMPLE:
Use the command line to check why a program that was running on process 5 has stopped. The result of 9
indicates a divide by zero error.

>>? RUN _ ERROR PROC(5)
9.0000
>>

Software Reference Manual

TRIOBaSIC COMMaNdS
RuNTYPE

2-441

RUNTYPE
TYPE:
System Command

SYNTAX:
RUNTYPE “program”, mode [,process]

DESCRIPTION:
Sets if program is run automatically at power up, and which process it is to run on.

� The current status of each program’s RUNTYPE is displayed when a DIR command is performed.

 M FOR ANY PROGRAM TO RUN AUTOMATICALLY ON POWER-UP ALL THE PROGRAMS ON THE CONTROLLER MUST
COMPILE WITHOUT ERRORS. EVEN IF THEY ARE NOT USED.

Usually a programs RUNTYPE is set through Motion Perfect. It can be useful to set the RUNTYPE when
loading programs from a SD card.

PARAMETERS:

program: The program to set the power up mode.
mode:

1 Run automatically on power up.
0 Manual running.

process: The process number to run the program on.

EXAMPLE:
When loading a sequence of programs from a SD card, MAIN must be set to run from power up and HMI must
be run on process 4 on power up. The following is from the TRIOINIT.bas file.

FILE “LOAD _ PROGRAM” “MOTION”
FILE “LOAD _ PROGRAM” “HMI”
FILE “LOAD _ PROGRAM” “MAIN”
RUNTYPE “HMI”, 1, 4
RUNTYPE “MAIN”, 1
AUTORUN

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DIR.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
S_REF

2-442

TRIOBaSIC COMMaNdS
S_REF

2-443

Software Reference Manual

SS_REF
TYPE:
Axis Parameter

DESCRIPTION:
S _ REF is identical to DAC.

SEE ALSO:
DAC

S_REF_OUT
TYPE:
Axis Parameter

DESCRIPTION:
S _ REF _ OUT is identical to DAC _ OUT.

SEE ALSO:
DAC _ OUT

SCHEDULE_OFFSET
TYPE:
System Parameter

SCHEDULE_TYPE
TYPE:
System Parameter (MC _ CONFIG / FLASH)

DESCRIPTION:
This parameter disables the scheduling algorithm that allows another program to run while the scheduled
program is in a sleep state. A sleep state can be started through a pause in the program using, for example,
WAIT or WA. The value is saved in Flash memory and can be included in the MC _ CONFIG script.

file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\DAC.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\DAC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DAC_OUT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DAC_OUT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/WAIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/WA.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
SCOPE

2-444

� This parameter should only be used when upgrading projects from older controllers and the scheduling
system causes problems with the program timings.

VALUE:
0 Use new scheduling algorithm to make best use of CPU time e.g. any program executing a WA command

will not be available for execution again until the WA period is complete (default)
1 Revert to old style scheduling such that any active process will execute even when executing a WA

command for example.

SCOPE
TYPE:
System Command

SYNTAX:
SCOPE(enable, [period, table _ start, table _ stop, p0 [,p1[,p2 [,p3 [,p4 [,p5 [,p6
[,p7]]]]]]]])

DESCRIPTION:
The SCOPE command enables capture of up to 4 parameters every sample period. Samples are taken until
the table range is filled. Trigger is used to start the capture.

The SCOPE facility is a “one-shot” and needs to be re-started by the TRIGGER command each time an
update of the samples is required.

 M MAKE SURE TO ASSIGN THE TABLE RANGE OUTSIDE OF ANY TABLE DATA USED BY YOUR PROGRAMS.

� It is normal to use Motion Perfect to assign the SCOPE command, but it is sometimes useful to do it
manually. The table data can be read back to a PC and displayed on the Motion Perfect Oscilloscope,
saved using Motion Perfect or STICK _ WRITE.

PARAMETERS:

enable:

1 or ON Enable software SCOPE (requires at least 5 parameters)
0 or OFF Disable SCOPE

period: The number of servo periods between data samples
table_start: Position to start to store the data in the table array
table_stop: End of table range to use

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/WA.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/WA.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/WA.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRIGGER.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STICK_WRITE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
SCOPE_POS

2-445

p0: First parameter to store
p1: Second parameter to store
p2: Third parameter to store
p3: Fourth parameter to store
p4

p5

Fifth parameter to store

Sixth parameter to store
p6 Seventh parameter to store
p7 Eighth parameter to store

EXAMPLES:

EXAMPLE 1:
This example arms the SCOPE to store the MPOS and DPOS on axis 5 axis 5 every 10 milliseconds (SERVO _
PERIOD = 1000). The MPOS will be stored in table values 0..499, the DPOS in table values 500 to 999. The
sampling does not start until the TRIGGER command is executed.

SCOPE(ON,10,0,1000,MPOS AXIS(5), DPOS AXIS(5))

EXAMPLE 2:
Disable the SCOPE to prevent TRIGGER from starting a capture

SCOPE(OFF)

SEE ALSO:
TRIGGER

SCOPE_POS
TYPE:
System Parameter (Read Only)

DESCRIPTION:
Returns the current TABLE index position where the SCOPE function is currently storing its data.

VALUE:
The table position that is currently being used

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SERVO_PERIOD.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SERVO_PERIOD.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRIGGER.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRIGGER.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRIGGER.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SCOPE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
SELECT

2-446

SELECT
TYPE:
System Command

SYNTAX:
SELECT “program”

DESCRIPTION:
Makes the named program the currently selected program, if the named program does not exist then it
makes a program of that name.

It is not normally used except by Motion Perfect.

The SELECTed program cannot be changed when programs are running.

When a program is SELECTed any previously selected program is compiled.

SERCOS
TYPE:
System Function

SYNTAX:
sercos (function#,slot,{parameters})
Description:

This function allows the sercos ring to be controlled from the TrioBASIC programming system. A sercos
ring consists of a single master and 1 or more slaves daisy-chained together using fibre-optic cable. During
initialisation the ring passes through several ‘communication phases’ before entering the final cyclic
deterministic phase in which motion control is possible. In the final phase, the master transmits control
information and the slaves transmit status feedback information every cycle time.

Once the sercos ring is running in CP4, the standard TrioBASIC motion commands can be used.

The Motion Coordinator sercos hardware uses the Sercon 816 sercos interface chip which allows connection
speeds up to 16Mhz. This chip can be programmed at a register level using the sercos command if necessary.
To program in this way it is necessary to obtain a copy of the chip data sheet.

The sercos command provides access to 10 separate functions:

Software Reference Manual

TRIOBaSIC COMMaNdS
SERCOS

2-447

PARAMETERS:

function:

0 Read sercos ASIC
1 Write sercos ASIC
2 Initialise command
3 Link sercos drive to Axis
4 Read parameter
5 Write parameters
6 Run sercos procedure command
7 Check for dirve present
8 Print network parameter
9 Reserved
10 sercos ring status

slot: The slot number is in the range 0 to 6 and specifies the master module location.

FUNCTION = 0:

SYNTAX:
sercos (0, slot, ram/reg, address)

DESCRIPTION:
This function reads a value from the sercos ASIC.

 M DO NOT USE THIS FUNCTION WITHOUT REFERENCING THE SERCON 816 DATA SHEET.

PARAMETERS:

slot: The module slot in which the sercos is fitted.
ram/reg:

0 read value from RAM
1 read value from register.

address: The index address in RAM or register.

EXAMPLE:
>>?SERCOS(0, 0, 1, $0c)

Trio Motion Technology

TRIOBaSIC COMMaNdS
SERCOS

2-448

FUNCTION = 1:

SYNTAX:
sercos (1, slot, ram/reg, address, value)

DESCRIPTION:
This function writes a value to the sercos ASIC

 M DO NOT USE THIS FUNCTION WITHOUT REFERENCING THE SERCON 816 DATA SHEET.

PARAMETERS:

slot: The module slot in which the sercos is fitted.
ram/reg:

0 write value to RAM
1 write value to register.

address: The index address in RAM or register.
value: Date to be written

FUNCTION = 2:

SYNTAX:
sercos (2, slot [,intensity [,baudrate [, period]]])

DESCRIPTION:
This function initialises the parameters used for communications on the sercos ring.

PARAMETERS:

slot: The module slot in which the sercos is fitted.
intensity: Light transmission intensity (1 to 6). Default value is 3.
baudrate: Communication data rate. Set to 2, 4, 6, 8 or 16.
period: Sercos cycle time in microseconds. Accepted values are 2000, 1000, 500 and 250usec.

EXAMPLE:
>>SERCOS(2, 3, 4, 16, 500)

Software Reference Manual

TRIOBaSIC COMMaNdS
SERCOS

2-449

FUNCTION = 3:

SYNTAX:
SERCOS(3, slot, slave _ address, axis [, slave _ drive _ type])

DESCRIPTION:
This function links a sercos drive (slave) to an axis.

PARAMETERS:

slot: The module slot in which the sercos is fitted.
slave_address: Slave address of drive to be linked to an axis.
axis: Axis number which will be used to control this drive.
slave_drive_type:

Optional parameter to set the slave drive type. All standard sercos drives require
the GENERIC setting. The other options below are only required when the drive is
using non-standard sercos functions.
0 Generic Drive
1 Sanyo-Denki
3 Yaskawa + Trio P730
4 PacSci
5 Kollmorgen

EXAMPLE:
>> sercos (3, 1, 3, 5, 0) ‘links drive at address 3 to axis 5

FUNCTION = 4:

SYNTAX:
sercos (4, slot, slave _ address, parameter _ ID [, parameter _ size[, element _ type
[, list _ length _ offset, [VR _ start _ index]]])

DESCRIPTION:
This function reads a parameter value from a drive

PARAMETERS:
slot: The module slot in which the sercos is fitted.
slave_address: sercos address of drive to be read.
parameter_ID: sercos parameter IDN

Trio Motion Technology

TRIOBaSIC COMMaNdS
SERCOS

2-450

parameter_size:

Size of parameter data expected:
2 2 byte parameter (default).
4 4 byte parameter
6 list of parameter IDs
7 ASCII string

element_type: sercos element type in the data block:
1 ID number
2 Name
3 Attribute
4 Units
5 Minimum Input value
6 Maximum Input value
7 Operational data (default)

list_length_offset: Optional parameter to offset the list length. For drives that return 2 extra bytes,
use -2.

VR_start_index: Beginning of VR array where list will be stored.

This function returns the value of 2 and 4 byte parameters but prints lists to the terminal in Motion
Perfect unless VR start index is defined.

EXAMPLE:
>> sercos (4, 0, 5, 140, 7)’request “controller type”
>> sercos (4, 0, 5, 129) ‘request manufacturer class 1 diagnostic

FUNCTION = 5:

SYNTAX:
sercos (5, slot , slave _ address, parameter _ ID, parameter _ size, parameter _
value [, parameter _ value …])

DESCRIPTION:
This function writes one or more parameter values to a drive.

PARAMETERS:

slot: The module slot in which the sercos is fitted.
slave_address: sercos address of drive to be written.
parameter_ID: sercos parameter IDN
parameter_size: Size of parameter data to be written. 2, 4, or 6.
parameter_value: Enter one parameter for size 2 and size 4. Enter 2 to 7 parameters for size 6 (list).

Software Reference Manual

TRIOBaSIC COMMaNdS
SERCOS

2-451

EXAMPLE:
>> sercos (5, 1, 7, 2, 2, 1000) ‘set sercos cycle time
>> sercos (5, 0, 2, 16, 6, 51, 130) ‘set IDN 16 position feedback

FUNCTION = 6:

SYNTAX:
sercos (6, slot , slave _ address, parameter _ ID [, timeout,[command _ type]])

DESCRIPTION:
This function runs a sercos procedure on a drive.

PARAMETERS:

slot: The communication slot in which the sercos interface is fitted.

slave_address: sercos address of drive.

parameter_ID: sercos procedure command IDN.

timeout: Optional time out setting (msec).

command_type:

Optional parameter to define the operation:

-1 Run & cancel operation (default value)

0 Cancel command

1 Run command

EXAMPLE:
>> sercos (6, 0, 2, 99) ‘clear drive errors

FUNCTION = 7:

SYNTAX:
sercos (7 , slot , slave _ address)

DESCRIPTION:
This function is used to detect the presence of a drive at a given sercos slave address.

PARAMETERS:
slot: The module slot in which the sercos interface is fitted.
slave_addr: sercos address of drive.

Returns 1 if drive detected, -1 if not detected.

Trio Motion Technology

TRIOBaSIC COMMaNdS
SERCOS

2-452

EXAMPLE:
IF sercos (7, 2, 3) <0 THEN
 PRINT#5, “Drive 3 on slot 2 not detected”
END IF

FUNCTION = 8:

SYNTAX:
sercos (8 , slot , required _ parameter)

DESCRIPTION:
This function is used to print a sercos network parameter.

PARAMETERS:

slot: The module slot in which the sercos is fitted.
required_parameter:

This function will print the required network parameter, where the possible.
0 to print a semi-colon delimited list of ‘slave Id, axis number’ pairs for

the registered network configuration (as defined using function 3). Used in
Phase 1: Returns 1 if a drive is detected, 0 if no drive detected.

1 to print the baud rate (either 2, 4, 6, or 8), and
2 to print the intensity (a number between 0 and 6).

EXAMPLE:
>>? sercos (8,0, 1)

FUNCTION = 10:

SYNTAX:
sercos (10,<slot>)

DESCRIPTION:
This function checks whether the fibre optic loop is closed in phase 0. Return value is 1 if network is closed,
-1 if it is open, and –2 if there is excessive distortion on the network.

PARAMETERS:

slot: The module slot in which the sercos is fitted.

EXAMPLE:
>>? sercos (10, 1)
IF sercos (10, 0) <> 1 THEN

Software Reference Manual

TRIOBaSIC COMMaNdS
SERCOS_PHaSE

2-453

 PRINT “sercos ring is open or distorted”
END IF

SERCOS_PHASE
TYPE:
Slot Parameter

DESCRIPTION:
Sets the phase for the sercos ring in the specified slot.

VALUE:
The sercos phase, range 0-4

EXAMPLES:

EXAMPLE 1:
Set the sercos ring attached to the module in slot 0 to phase 3

SERCOS _ PHASE SLOT(0) = 3

EXAMPLE 2:
If the sercos phase is 4 in slot 2 then turn on the output

IF SERCOS _ PHASE SLOT(2)<>4 THEN
OP(8,ON)
ELSE
 OP(8,OFF)
ENDIF

SERIAL_NUMBER
TYPE:
System Parameter (Read only)

DESCRIPTION:
Returns the unique Serial Number of the controller.

EXAMPLE:
For a controller with serial number 00325:

>>PRINT SERIAL _ NUMBER

Trio Motion Technology

TRIOBaSIC COMMaNdS
SERVO

2-454

325.0000
>>

SERVO
TYPE:
Axis Parameter

DESCRIPTION:
On a servo axis this parameter determines whether the axis runs under servo control or open loop. When
SERVO=OFF the axis hardware will output demand value dependent on the DAC parameter. When SERVO=ON
the axis hardware will output a demand value dependant on the gain settings and the following error.

VALUE:

ON closed loop servo control enabled
OFF closed loop servo control disabled

EXAMPLE:
Enable axis 1 to run under closed loop control and axis 1 as open loop.

SERVO AXIS(0)=ON ‘Axis 0 is under servo control
SERVO AXIS(1)=OFF ‘Axis 1 is run open loop

SERVO_OFFSET
TYPE:
System Parameter (MC _ CONFIG)

DESCRIPTION:
This parameter is a low-level scheduling parameter to allow fine tuning of when the cyclic servo activities
start executing within the firmware in relation to the synchronization pulse received from controller FPGA.

� Modification to the default settings of this parameter may be required for certain systems that require
more time for data to be collected from relatively slow serial encoders for example.

SERVO _ OFFSET is an MC _ CONFIG parameter, if an entry does not exist within the MC _ CONFIG file then
default settings will be used depending upon the selected SERVO _ PERIOD but is approximately 25% of this
time period. The accepted range of values is from 0 to 75% of SERVO _ PERIOD.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
SERVO_PERIOd

2-455

VALUE:
SERVO _ OFFSET is specified in microseconds.

EXAMPLE:
‘ MC _ CONFIG script file
SERVO _ PERIOD=1000 ‘ this value is used for this cycle
SERVO _ OFFSET=400 ‘ this value is used for this cycle

SERVO_PERIOD
TYPE:
System Parameter (MC _ CONFIG / FLASH)

DESCRIPTION:
This parameter allows the controller servo period to be read or specified. This is the cycle time in which the
target position updated and if applicable any positions are read and closed loop calculations performed.

SERVO _ PERIOD is a flash parameter and so should be set using the MC _ CONFIG file.

When the servo period is reduced the maximum number of axes (including virtual) is reduced as per the
following table.

SERVO_PERIOD Maximum axes
125us 8

250us 16

500us 32

1000us 64

2000us 64

VALUE:
SERVO _ PERIOD is specified in microseconds. Only the values 2000, 1000, 500, 250 or 125 usec may be used
and the Motion Coordinator must be reset before the new servo period will be applied.

The axis count will be limited as the SERVO _ PERIOD is reduced. Normally the headline number of
axes can be used when SERVO _ PERIOD is set to 1msec.

EXAMPLES:

EXAMPLE 1:
‘ check controller servo_period on startup

IF SERVO _ PERIOD<>250 THEN
 SERVO _ PERIOD=250

Trio Motion Technology

TRIOBaSIC COMMaNdS
SERVO_REad

2-456

 EX
ENDIF

EXAMPLE 2:
‘ MC _ CONFIG script file
SERVO _ PERIOD=500 ‘ this is the value set on power up

SERVO_READ
TYPE:
Axis Command

SYNTAX:
SERVO _ READ(vr _ start, p0[,p1[,p2[,p3[,p4[,p5[,p6[,p7]]]]]]])

DESCRIPTION:
Provides servo-synchronized access to axis/system parameters. Between 1 and 8 axis/system parameters can
be read synchronously on the next servo cycle for consistent data access when required. The data read is
stored in successive VR memory locations commencing from ‘vr_start’.

The values stored are not scaled by UNITS.

PARAMETERS:
vr_start: base index of VR memory to store data read from parameters
p0..p7: Axis/System parameters to be read

Example:

Read MPOS & FE for axes 0 & 1 and stores in VR locations 100,101,102 & 103.
SERVO _ READ(100, MPOS AXIS(0), FE AXIS(0), MPOS AXIS(1), FE AXIS(1))

SET_BIT
TYPE:
Logical and Bitwise Command

SYNTAX:
SET _ BIT(bit, variable)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
SETCOM

2-457

DESCRIPTION:
SET _ BIT can be used to set the value of a single bit within a VR() variable. All other bits are unchanged.

PARAMETERS:

bit: The bit number to clear, valid range is 0 to 52
variable: The VR which to operate on

EXAMPLE:
Set bit 3 of VR(7)

SET _ BIT(3,7)

SEE ALSO:
READ _ BIT, CLEAR _ BIT

SETCOM
TYPE:
Command

SET PORT PARAMETERS:

SYNTAX:
SETCOM(baudrate,databits,stopbits,parity,port[,mode][,variable][,timeout][,linetype])

DESCRIPTION:
Allows the user to configure the serial port parameters and enable communication protocols.

By default the controller sets the serial ports to 38400 baud, 8 data bits, 1 stop bits and even parity.

PARAMETERS:
baudrate: 1200, 2400, 4800, 9600, 19200, 38400 or 57600
databits: 7 or 8
stopbits: 1 or 2
parity: 0 None

1 Odd
2 Even

port: 1, 2, 50 – 56

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/READ_BIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CLEAR_BIT.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
SETCOM

2-458

mode: 0 XON/XOFF inactive
1 XON/XOFF active
4 MODBUS protocol (16 bit Integer)
5 Hostlink Slave
6 Hostlink Master
7 MODBUS protocol (32 bit IEEE floating point)
8 Reserved mode
9 MODBUS protocol (32bit long word integers)

variable: 0 = Modbus uses VR
1 = Modbus uses TABLE

timeout: Communications timeout (msec). Default is 3
linetype: 0 4 wire RS485 (Modbus only)

1 2 wire RS485 (Modbus only)

Descriptions of the port numbers can be found under the # entry

GET PORT PARAMETERS:

SYNTAX:
SETCOM(port)

DESCRIPTION:
Prints the configuration of the port to the selected output channel (default terminal)

PARAMETERS:
port: 1, 2, 50 - 56

Descriptions of the port numbers can be found under the # entry

EXAMPLES:

EXAMPLE 1:
Set port 1 to 19200 baud, 7 data bits, 2 stop bits even parity and XON/XOFF enabled.

SETCOM(19200,7,2,2,1,1)

EXAMPLE 2:
Set port 2 (RS485) to 9600 baud, 8 data bits, 1 stop bit no parity and no XON/XOFF handshake.

SETCOM(9600,8,1,0,2,0)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/Hash.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/Hash.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
SGN

2-459

EXAMPLE 3:
The Modbus protocol is initialised by setting the mode parameter of the SETCOM instruction to 4. The
ADDRESS parameter must also be set before the Modbus protocol is activated.

ADDRESS=1
SETCOM(19200,8,1,2,2,4)

SGN
TYPE:
Mathematical Function

SYNTAX:
value = SGN(expression)

DESCRIPTION:
The SGN function returns the SIGN of a number.

PARAMETERS:

value:

1 Positive non-zero
0 Zero
-1 Negative

expression: Any valid TrioBASIC expression.

EXAMPLE:
Detect the sign of the number -1.2 using the command line.

>>PRINT SGN(-1.2)
-1.0000
>>

<< Shift Left
TYPE:
Logical and bitwise operator

SYNTAX:
<expression1> << <expression2>

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ADDRESS.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
>> Shift Right

2-460

DESCRIPTION:
The shift left operator, <<, can be used to logically shift left the bits in an integer variable. The value
resulting from expression 1 will be shifted left by the count in expression 2. As the bits are shifted, a 0 will
be inserted in the right-most bits of the value.

PARAMETERS:

Expression1: Any valid TrioBASIC expression
Expression2: Any valid TrioBASIC expression

EXAMPLE:
Shift the bit pattern in VR(23) to the left by 8, thus effecting a multiply by 256.

VR(23) = VR(23)<<8

SEE ALSO:
>> _ Shift _ Right

>> Shift Right
TYPE:
Logical and bitwise operator

SYNTAX:
<expression1> >> <expression2>

DESCRIPTION:
The shift right operator, >>, can be used to logically shift right the bits in an integer variable. The value
resulting from expression 1 will be shifted right by the count in expression 2. As the bits are shifted, a 0 will
be inserted in the left-most bits of the value.

PARAMETERS:

Expression1: Any valid TrioBASIC expression
Expression2: Any valid TrioBASIC expression

EXAMPLE:
Shift the bit pattern in AXISSTATUS to the right by 4, thus putting the “in forward limit” bit in bit 0.

result = AXISSTATUS >> 4
in _ fwd _ limit = result AND 1

SEE ALSO:
<< _ Shift _ Left

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/shift_right.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/shift_left.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
SIN

2-461

SIN
TYPE:
Mathematical Function

SYNTAX:
value = SIN(expression)

DESCRIPTION:
Returns the SINE of an expression. This is valid for any value in expressed in radians.

PARAMETERS:

value: The SINE of the expression in radians
expression: Any valid TrioBASIC expression.

EXAMPLE:
Print the SINE of 0 on the command line

>>PRINT SIN(0)
 0.0000
>>

SLOT
TYPE:
Modifier

SYNTAX:
SLOT(position)

DESCRIPTION:
When expansion modules are used they are assigned a SLOT number depending on their position in the
system. The SLOT modifier can be used to assign ONE command, function or slot parameter operation to a
particular slot

PARAMETERS:

position: -1 Built in feature
0 to max_slot Expansion module

Trio Motion Technology

TRIOBaSIC COMMaNdS
SLOT_NuMBER

2-462

EXAMPLE:
Check for an Anybus-CC module in the holder in slot 1

IF COMMSTYPE SLOT(1) = 62 THEN
 PRINT “No Anybus card present”
ENDIF

SEE ALSO:
COMMSPOSITION

SLOT_NUMBER
TYPE:
Axis Parameter (Read Only)

DESCRIPTION:
Returns the SLOT number where the axis is located. Axis numbers can be allocated to hardware in a flexible
way, so the physical location of the axis cannot be found by the AXIS number alone. SLOT _ NUMBER
returns the value from the BASE axis or if the AXIS(number) modifier is used, it returns the SLOT associated
with that axis.

EXAMPLE:
PRINT SLOT _ NUMBER AXIS(12)

BASE(2)
axis2 _ slot = SLOT _ NUMBER

IF SLOT _ NUMBER AXIS(0)<>-1 THEN
 PRINT “Warning – Built-in axis configuration incorrect”
 PRINT “Axis 0 expected for this application.”
ENDIF

SEE ALSO:
SLOT, AXIS _ OFFSET

SPEED
TYPE:
Axis Parameter

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/COMMSPOSITION.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SLOT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/BASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SLOT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SLOT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_OFFSET.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
SPEEd_SIGN

2-463

DESCRIPTION:
The SPEED axis parameter can be used to set/read back the demand speed axis parameter.

VALUE:
The axis speed in user UNITS

EXAMPLE:
Set the speed and then print it to the user.

SPEED=1000
PRINT “Speed Set=”;SPEED

SPEED_SIGN
TYPE:
Reserved Keyword

SPHERE_CENTRE
TYPE:
Axis Command

SYNTAX:
SPHERE _ CENTRE(tablex, tabley, tablez)

DESCRIPTION:
Returns the co-ordinates of the centre point (x, y, z) of the most recent MSPHERICAL. X, Y and Z are
returned in the TABLE memory area and can be printed to the terminal as required.

PARAMETERS:

tablex: Position in table to store the X coordinate
tabley: Position in table to store the Y coordinate
tablez: Position in table to store the Z coordinate

EXAMPLE:
After a MSPHERICAL completes on axis 0 find the co-ordinates of the centre.

SPHERE _ CENTRE(10, 11, 30) AXIS(0)
PRINT TABLE(10);”, “;TABLE(11);”, “;TABLE(12)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MSPHERICAL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MSPHERICAL.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
SQR

2-464

SQR
TYPE:
Mathematical Function

SYNTAX:
value = SQR(number)

DESCRIPTION:
Returns the square root of a number.

PARAMETERS:

value: The square root of the number
number: Any valid TrioBASIC number or variable.

EXAMPLE:
Calculate the square root of 4 using the command line.

>>PRINT SQR(4)
2.0000
>>

SRAMP
TYPE:
Axis Parameter

DESCRIPTION:
This parameter stores the s-ramp factor. It controls the amount of rounding applied to trapezoidal profiles.
SRAMP should be set, when a move is not in progress, to a maximum of half the ACCEL/DECEL time. The
setting takes a short while to be applied after changes.

VALUE:
Time between 0..250 milliseconds

 M SRAMP MUST BE SET BEFORE A MOVE STARTS. IF FOR EXAMPLE YOU CHANGE THE SRAMP FROM 0 TO 200, THEN
START A MOVE WITHIN 200 MILLISEC THE FULL SRAMP SETTING WILL NOT BE APPLIED.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ACCEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DECEL.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
STaRT_dIR_LaST

2-465

EXAMPLE:
To provide smooth transition into the acceleration, an S-ramp is applied with a time of 50msec.

SPEED = 160000
ACCEL = 1600000
DECEL = 1600000
SRAMP = 50

WA(50)

MOVEABS(100000)
Without the S-ramp factor, the acceleration takes 100 msec to reach the set speed. With SRAMP=50, the
acceleration takes 150 msec but the rate of change of force (torque) is controlled. i.e. Jerk is limited.

START_DIR_LAST
TYPE:
Axis Parameter (Read Only)

DESCRIPTION:
Returns the direction of the start of the last loaded interpolated motion command. START _ DIR _ LAST
will be the same as END _ DIR _ LAST except in the case of circular moves.

This parameter is only available when using SP motion commands such as MOVESP, MOVEABSSP etc.

VALUE:
End direction, in radians between -PI and PI. Value is always positive.

EXAMPLE:
Run two moves the first starting at a direction of 45 degrees and the second 0 degrees.

>>MOVESP(10000,10000)
>>? START _ DIR _ LAST
0.7854
>>MOVESP(0,10000)
>>? START _ DIR _ LAST
0.0000
>>

SEE ALSO:
CHANGE _ DIR _ LAST, END _ DIR _ LAST

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/END_DIR_LAST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVESP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVEABSSP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PI.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PI.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CHANGE_DIR_LAST.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/END_DIR_LAST.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
STaRTMOVE_SPEEd

2-466

STARTMOVE_SPEED
TYPE:
Axis Parameter

DESCRIPTION:
This parameter sets the start speed for a motion command that support the advanced speed control
(commands ending in SP). The VP _ SPEED will decelerate until STARTMOVE _ SPEED is reached for the start
of the motion command.

The lowest value of SPEED, ENDMOVE _ SPEED, FORCE _ SPEED or STARTMOVE _ SPEED will take
priority.

STARTMOVE _ SPEED is loaded into the buffer at the same time as the move so you can set different speeds
for subsequent moves.

In general STARTMOVE _ SPEED is only used by the CORNER _ MODE methods. The user can program all
profiles using only FORCE _ SPEED and ENDMOVE _ SPEED.

VALUE:
The speed at which the SP motion command will start, in user UNITS. (default 0)

SEE ALSO:
FORCE _ SPEED, ENDMOVE _ SPEED, CORNER _ MODE

STEP_RATIO
TYPE:
Axis Command

SYNTAX:
STEP _ RATIO(output _ count, dpos _ count)

DESCRIPTION:
This command sets up an integer ratio for the axis’ stepper output. Every servo-period the number of steps
is passed through the step_ratio function before it goes to the step pulse output.

The STEP _ RATIO function operates before the divide by 16 factor in the stepper axis. This maintains
the good timing resolution of the stepper output circuit.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VP_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENDMOVE_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FORCE_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CORNER_MODE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FORCE_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENDMOVE_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FORCE_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENDMOVE_SPEED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CORNER_MODE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
STEP_RaTIO

2-467

 M STEP _ RATIO DOES NOT REPLACE UNITS. DO NOT USE STEP _ RATIO TO REMOVE THE X16 FACTOR ON THE
STEPPER AXIS AS THIS WILL LEAD TO POOR STEP FREQUENCY CONTROL.

PARAMETERS:
output_count: Number of counts to output for the given dpos_count value. Range: 0 to 16777215.
dpos_count: Change in DPOS value for corresponding output count. Range: 0 to 16777215.

Large ratios should be avoided as they will lead to either loss of resolution or much reduced
smoothness in the motion. The actual physical step size x 16 is the basic resolution of the axis and use
of this command may reduce the ability of the Motion Coordinator to accurately achieve all positions.

EXAMPLES:

EXAMPLE 1:
Two axes are set up as X and Y but the axes’ steps per mm are not the same. Interpolated moves require
identical UNITS values on both axes in order to keep the path speed constant and for MOVECIRC to work
correctly. The axis with the lower resolution is changed to match the higher step resolution axis so as to
maintain the best accuracy for both axes.

‘Axis 0: 500 counts per mm (31.25 steps per mm)
‘Axis 1: 800 counts per mm (50.00 steps per mm)

BASE(0)
STEP _ RATIO(500,800)
UNITS = 800
BASE(1)
UNITS = 800

EXAMPLE 2:
A stepper motor has 400 steps per revolution and the installation requires that it is controlled in degrees. As
there are 360 degrees in one revolution, it would be better from the programmer’s point of view if there are
360 counts per revolution.

BASE(2)
STEP _ RATIO(400, 360)
‘Note: this has reduced resolution of the stepper axis
MOVE(360*16) ‘move 1 revolution

EXAMPLE 3:
Remove the step ratio from an axis.

BASE(0)
STEP _ RATIO(1, 1)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVECIRC.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
STEPLINE

2-468

STEPLINE
TYPE:
System Command

SYNTAX:
STEPLINE [“program” ,[process]]

DESCRIPTION:
Steps one line in a program. This command is used by Motion Perfect to control program stepping. It can
also be entered directly from the command line or as a line in a program with the following parameters.

All copies of this named program will step unless the process number is also specified.

If the program is not running it will step to the first executable line on either the specified process or the
next available process if the next parameter is omitted.

If the program name is not supplied, either the SELECTed program will step (if command line entry) or the
program with the STEPLINE in it will stop running and begin stepping.

PARAMETERS:

program: This specifies the program to be stepped.
process: Specifies the process number.

EXAMPLE:
Start the program conveyor running in the highest available process by stepping into the first executable
line.

>>STEPLINE “conveyor”
OK
%[Process 21:Line 19] – Paused
>>

STICK_READ
TYPE:
System Function

SYNTAX:
value = STICK _ READ(flash _ file, table _ start [,format])

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
STICK_REadVR

2-469

DESCRIPTION:
Read table data from the SD card to the controller.

 M ANY EXISTING TABLE DATA WILL BE OVERWRITTEN.

The Binary format gives the best data precision.

PARAMETERS:
value: TRUE = the function was successful

FALSE = the function was not successful
flash_file: A number which when appended to the characters “SD” will form the data filename.
table_start: The start point in the TABLE where the data values will be transferred to.
format: 0 = Binary 64bit floating point format, BIN file (default)

1 = ASCII comma separated values, CSV file

When storing in format=0 the data is stored in IEEE floating point binary format little-endian, i.e. the
least significant byte first.

EXAMPLE:
Read the ASCII CSV file SD1984.csv from the SD card and copy the data to the table memory starting at
TABLE(16500)

success = STICK _ READ (1984, 16500, 1)
IF success=TRUE THEN
 PRINT #5,”SD card read OK”
ENDIF

SEE ALSO:
STICK _ READVR

STICK_READVR
TYPE:
System Function

SYNTAX:
value = STICK _ READVR(flash _ file, vr _ start [,format])

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STICK_READVR.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
STICK_WRITE

2-470

DESCRIPTION:
Read VR data from the SD card to the controller.

 M ANY EXISTING VR DATA WILL BE OVERWRITTEN.

The Binary format gives the best data precision.

PARAMETERS:
value: TRUE = the function was successful

FALSE = the function was not successful
flash_file: A number which when appended to the characters “SD” will form the data filename.
vr_start: The start point in the VRs where the data values will be transferred to.
format: 0 = Binary 64bit floating point format, BIN file (default)

1 = ASCII comma separated values, CSV file

When storing in format=0 the data is stored in IEEE floating point binary format little-endian, i.e. the
least significant byte first.

EXAMPLE:
Read the binary file SD2012.bin from the SD card and copy the data to the VR memory starting at VR(101)

success = STICK _ READVR(2012, 101, 0)
IF success=TRUE THEN
 PRINT #5,”SD card read OK”
ENDIF

SEE ALSO:
STICK _ READ

STICK_WRITE
TYPE:
System Function

SYNTAX:
value = STICK _ WRITE(flash _ file, table _ start [,length [,format]])

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STICK_READ.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
STICK_WRITEVR

2-471

DESCRIPTION:
Used to store table data to the SD card in one of two formats.

 M IF THIS FILE ALREADY EXISTS, IT IS OVERWRITTEN.

If you want to store the data without losing any precision use the Binary format.

PARAMETERS:
value: TRUE = the function was successful

FALSE = the function was not successful
flash_file: A number which when appended to the characters “SD” will form the data filename.
table_start: The start point in the TABLE where the data values will be transferred from.
length: The number of the table values to be transferred (default 128 values)
format: 0 = Binary 64bit floating point format, BIN file (default)

1 = ASCII comma separated values, CSV file

When storing in format=0 the data is stored in IEEE floating point binary format little-endian, i.e. the
least significant byte first.

EXAMPLE:
Transfer 2000 values starting at TABLE(1000) to the SD Card file ‘called SD1501.BIN

success = STICK _ WRITE (1501, 1000, 2000, 0)

SEE ALSO:
STICK _ WRITEVR

STICK_WRITEVR
TYPE:
System Function

SYNTAX:
value = STICK _ WRITEVR(flash _ file, vr _ start [,length [,format]])

DESCRIPTION:
Used to store VR data to the SD card in one of two formats.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STICK_WRITEVR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
STOP

2-472

 M IF THIS FILE ALREADY EXISTS, IT IS OVERWRITTEN.

If you want to store the data without losing any precision use the Binary format.

PARAMETERS:
value: TRUE = the function was successful

FALSE = the function was not successful
flash_file: A number which when appended to the characters “SD” will form the data filename.
vr_start: The start point in the VRs where the data values will be transferred from.
length: The number of the VR values to be transferred (default 128 values)
format: 0 = Binary 64bit floating point format, BIN file (default)

1 = ASCII comma separated values, CSV file

When storing in format=0 the data is stored in IEEE floating point binary format little-endian, i.e. the
least significant byte first.

EXAMPLE:
Transfer 2000 values starting at VR(1000) to the SD Card file ‘called SD1501.BIN

success = STICK _ WRITEVR (1501, 1000, 2000, 0)

SEE ALSO:
STICK _ WRITE

STOP
TYPE:
Command

SYNTAX:
STOP “progname”,[process _ number]

DESCRIPTION:
Stops one program at its current line. A particular program name may be specified and an optional process
number. The process number is required if there is more than one instance of the program running. If no
name or process number is included then the selected program will be assumed.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRUE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STICK_WRITE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
STOP_aNGLE

2-473

PARAMETERS:

Progname: name of program to be stopped.
process_number: optional process number to be used when multiple instances of the program are

running and only one is to be stopped.

EXAMPLES:

EXAMPLE 1:
Stop a program called “axis_init” from the command line. Note that quotes are optional unless the program
name is also a BASIC keyword.

>>STOP axis _ init

EXAMPLE 2:
Stop the named programs when a digital input goes off.

IF IN(12)=OFF THEN
 STOP “hmi _ handler”
 STOP “motion1”
ENDIF

EXAMPLE 3:
Stop one instance of a named program and leave the other instances running.

proc _ a = VR(45) ‘ process to be stopped is put in the VR by an HMI
STOP “test _ program”,proc _ a ‘ stop the required instance of test _
program

SEE ALSO:
SELECT, RUN

STOP_ANGLE
TYPE:
Axis Parameter

DESCRIPTION:
This parameter is used with CORNER _ MODE, it defines the maximum change in direction of a 2 axis
interpolated move that will be merged at speed. When the change in direction is greater than this angle the
reduced to 0.

VALUE:
The angle to reduce the speed to 0, in radians

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RUN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CORNER_MODE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
STORE

2-474

EXAMPLE:
Reduce the speed to zero on a transition greater than 25 degrees. DECEL _ ANGLE is set to 25 degrees as
well so that there is no reduction of speed below 25 degrees.

CORNER _ MODE=2
STOP _ ANGLE=25 * (PI/180)
DECEL _ ANGLE=STOP _ ANGLE

SEE ALSO:
CORNER _ MODE, DECEL _ ANGLE

STORE
TYPE:
System Command

DESCRIPTION:
Used by Motion Perfect to load Firmware to the controller.

 M REMOVING THE CONTROLLER POWER DURING A STORE SEQUENCE CAN LEAD TO THE CONTROLLER HAVING TO BE
RETURNED TO TRIO FOR RE-INITIALIZATION.

STR
TYPE:
STRING Function

SYNTAX:
STR(value[,precision[,width]])

DESCRIPTION:
Converts a numerical value to a string.

PARAMETERS:

value: Floating-point value to be converted
precision: Number of decimal places to be used (default=5)
width: Width of field to be used (default=0, unlimited)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DECEL_ANGLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CORNER_MODE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DECEL_ANGLE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
STRTOd

2-475

EXAMPLES:

EXAMPLE 1:
Pre-define a variable of type string and use it to store the string conversion of a VR variable:

DIM str1 AS STRING(20)
Str1 = STR(VR(100))

SEE ALSO:
CHR, VAL, LEN, LEFT, RIGHT, MID, LCASE, UCASE, INSTR

STRTOD
TYPE:
Function

SYNTAX:
STRTOD(format, …)

DESCRIPTION:
The STRTOD command reads a sequence of characters and converts them to a numeric value. The conversion
stops at the first non-number character found in the input. The characters may be read from the VR array
or from a TrioBASIC IO channel.

PARAMETERS:
format:

This is a bitwise field that specifies the data source and the number format.

format: description: value:
bit 0 Source 0 = VR array

1 = TrioBASIC IO channel
bit 1..2 Number format 0 = Floating point

1 = Integer. If the number is not an integer then 0 is returned.

2 = The format is auto-selected to provide the best resolution.

SOURCE = 0:

SYNTAX:
value=STRTOD(format, vr _ start, vr _ index)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CHR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VAL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LEN.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LEFT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RIGHT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MID.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LCASE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UCASE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
STRTOd

2-476

DESCRIPTION:
Converts characters in the VR array to a number.

PARAMETERS:

Parameter: Description:
vr_start Position of the first character of the numeric string in the VR array.
vr_index Position in the VR array to store the index of the first non-number character found.

SOURCE = 1:

SYNTAX:
value=STRTOD(format, channel, vr_length, vr_index)

DESCRIPTION:
Converts characters from the TrioBASIC channel to a number.

PARAMETERS:
Parameter: Description:
channel TrioBASIC IO channel to read. This can be any valid TrioBASIC IO channel: standard

communications channel, ANYBUS channel, or file channel.
vr_length Position in the VR array to store the length of the number string that was parsed.
vr_index Position in the VR array to store the index of the first non-number character found.

EXAMPLE 1:
>>OPEN #40 AS “n” FOR OUTPUT(1)
>>PRINT #40,”123.456”
>>CLOSE #40
>>OPEN #40 AS “n” FOR INPUT
>>VR(100)=STRTOD(1,40,101,102)
>>PRINT VR(100),VR(101),VR(102)
123.4560 7.0000 13.0000
>>CLOSE #40
>>DEL “N”

EXAMPLE 2:
>>OPEN #40 AS “n” FOR OUTPUT(1)
>>PRINT #40,”123.456”
>>CLOSE #40
>>OPEN #40 AS “n” FOR INPUT
>>VR(100)=STRTOD(3,40,101,102)

Software Reference Manual

TRIOBaSIC COMMaNdS
- Subtract

2-477

>>PRINT VR(100),VR(101),VR(102)
0.0000 7.0000 13.0000
>>CLOSE #40
>>DEL “N”

EXAMPLE 3:
>>OPEN #40 AS “n” FOR OUTPUT(1)
>>PRINT #40,”123”
>>CLOSE #40
>>OPEN #40 AS “n” FOR INPUT
>>VR(100)=STRTOD(3,40,101,102)
>>PRINT VR(100),VR(101),VR(102)
123.0000 7.0000 13.0000
>>CLOSE #40
>>DEL “N”

- Subtract
TYPE:
Mathematical Operator

SYNTAX:
<expression1> - <expression2>

DESCRIPTION:
Subtracts expression2 from expression1

PARAMETERS:

Expression1: Any valid TrioBASIC expression
Expression2: Any valid TrioBASIC expression

EXAMPLE:
Evaluate 2.1 multiply by 9 and subtract the result from 10, this will then be stored in VR 0. Therefore VR 0
holds the value -8.9

VR(0)=10-(2.1*9)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
SYNC

2-478

SYNC
TYPE:
Axis command

DESCRIPTION:
The SYNC command is used to synchronise one axis with a moving position on another axis. It does this by
linking the DPOS of the slave axis to the MPOS of the master. So both axes must be programed in the same
scale (for example mm). This can be used to synchronise a robot to a point on a conveyor. The user can
define a time to synchronise and de-synchronise.

The synchronising movement on the base axis is the sum of two parts:

1. The conveyor movement from the ‘sync_pos’, this is the movement of the demand point along the
conveyor.

2. The movement to ‘pos1’, this is the position in the current USER_FRAME where the sync_pos was
captured on the slave axis.

When the axis is synchronised it will follow the movements on the ‘sync_axis’. As the SYNC does not fill the
MTYPE buffer you can perform movements while synchronised.

To synchronise to a new USER _ FRAME using SYNC(20) requires the kinematic runtime FEC

 M AS SYNC DOES NOT GET LOADED IN TO THE MOVE BUFFER IT IS NOT CANCELLED BY CANCEL OR RAPIDSTOP,
YOU HAVE TO PERFORM SYNC(4). WHEN A SOFTWARE OR HARDWARE LIMIT IS REACHED THE SYNC IS IMMEDIATELY
STOPPED WITH NO DECELERATION.

� Typically you can use the captured position for example REG _ POS, or a position from a vision system
for the ‘sync_position’. The pos1, pos2 and pos3 are typically the position of the sensor/ vision system
in the current USER _ FRAME.

SYNTAX:
SYNC(control, sync _ time, [sync _ position, sync _ axis, pos1[, pos2 [,pos3]]])

PARAMETERS:

Parameter Description
control: 1 = Start synchronisation, requires minimum first 5 parameters

4 = Stop synchronisation, requires minimum first 2 parameters
10 = Re-synchronise to another axis, requires minimum first 5 parameters
20 = Re-synchronise to USER _ FRAMEB, requires minimum first 5 parameters

sync_time: Time to complete the synchronisation movement in milliseconds

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MTYPE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CANCEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/RAPIDSTOP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/REG_POS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAMEB.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
SYNC

2-479

sync_position: The captured position on the sync_axis.
sync_axis: The axis to synchronise with.
pos1: Absolute position on the first axis on the base array
pos2: Absolute position on the second axis on the base array
pos3: Absolute position on the third axis on the base array

EXAMPLE:
The robot must pick up the components from one conveyor and place them at 100mm pitch on the second.
The registration sensor is at 385mm from the robots origin and the start of the second conveyor is 400mm
from the robots origin.

‘axis(0) - robot axis x
‘axis(1) - robot axis y
‘axis(2) - robot axis z
‘axis(3) - robot wrist rotate
‘These are the actual robot axis, FRAME=14 can be applied to these

‘axis(10) - conveyor axis
‘axis(11) - conveyor axis

Trio Motion Technology

TRIOBaSIC COMMaNdS
SYNC

2-480

‘These are the real conveyors that you wish to link to

 ‘Sensor and conveyor offsets
 sen _ xpos = 385
 conv1 _ yoff = 200
 conv2 _ yoff = -250
 conv2 _ xoff = 40
 place _ pos = 0

 BASE(0,1)
 ‘Move to home position.
 MOVEABS(200,50)
 ‘start conveyors
 DEFPOS(0) AXIS(11) ‘ reset conveyor position for place
 FORWARD AXIS(10)
 FORWARD AXIS(11)
 WAIT IDLE

 WHILE(running)
 REGIST(20,0,0,0,0) AXIS(10)
 WAIT UNTIL MARK AXIS(10)

 SYNC(1, 1000, REG _ POS, 10, sen _ xpos , conv1 _ yoff)
 WAIT UNTIL SYNC _ CONTROL AXIS(0)=3
 ‘Now synchronised
 GOSUB pick

 SYNC(10, 1000, place _ pos, 11, conv2 _ xoff, conv2 _ yoff)
 WAIT UNTIL SYNC _ CONTROL AXIS(0)=3
 ‘Now synchronised
 GOSUB place

 SYNC(4, 500)
 place _ pos = place _ pos + 100
 WEND

SEE ALSO:
SYNC _ CONTROL, SYNC _ TIMER, USER _ FRAME, USER _ FRAMEB

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SYNC_CONTROL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SYNC_TIMER.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAMEB.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
SYNC_CONTROL

2-481

SYNC_CONTROL
TYPE:
Axis parameter (Read Only)

DESCRIPTION:
SYNC _ CONTROL returns the current SYNC state of the axis

VALUE:

0 No synchronisation
1 Starting synchronisation
2 Performing synchronisation movement
3 Synchronised
4 Stopping synchronisation
5 Starting interpolated movement on second or third axis
6 Performing interpolated movement on second or third axis
10 Starting re- synchronisation
11 Performing re- synchronisation
20 Starting re-synchronisation to a different USER _ FRAME
21 Performing re-synchronisation to a different USER _ FRAME

EXAMPLE:
Synchronise to a conveyor linking to a position defined from registration, then wait until synchronisation
before picking a part

‘Set up start position and link to conveyor
 SYNC(10, 500, REG _ POS AXIS(5), 5) AXIS(0)
 WAIT UNTIL SYNC _ CONTROL AXIS(0)= 3
 GOSUB pick _ part

SEE ALSO:
SYNC

SYNC_TIMER
TYPE:
Axis parameter (Read Only)

DESCRIPTION:
SYNC _ TIMER returns the elapsed time of the synchronisation or re-synchronisation phase of SYNC. Once

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SYNC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SYNC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SYNC.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
SYSTEM_ERROR

2-482

the synchronisation is complete the SYNC _ TIMER will return the completed synchronisation time.

VALUE:
The elapsed time of the synchronisation phase in milliseconds

EXAMPLE:
Synchronise to a conveyor linking to a position defined from registration, then wait until synchronisation
before picking a part

‘Set up start position and link to conveyor
 SYNC(10, 500, REG _ POS AXIS(5), 5) AXIS(0)
 WAIT UNTIL SYNC _ TIMER AXIS(0)= 500
 GOSUB pick _ part

SEE ALSO:
SYNC

SYSTEM_ERROR
TYPE:
System Parameter

DESCRIPTION:
The system errors are in blocks based on the following byte masks:
System errors 0x0000ff
Configuration errors 0x00ff00
Unit errors 0xff0000
The following are system errors:
Ram error 0x000001
Battery error 0x000002
Invalid module error 0x000004
The following are configuration errors:
Unit error 0x000100
Station error 0x000200
The following are Unit errors:
Unit Lost 0x010000
Unit Terminator Lost 0x020000
Unit Station Lost 0x040000
Invalid Unit error 0x080000
Unit Station Error 0x100000

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SYNC.docx

TRIOBaSIC COMMaNdS
T_REF

2-483

Software Reference Manual

TT_REF
TYPE:
Axis Parameter

DESCRIPTION:
T _ REF is identical to DAC.

SEE ALSO:
DAC _ OUT

T_REF_OUT
TYPE:
Axis Parameter

DESCRIPTION:
T _ REF _ OUT is identical to DAC _ OUT.

SEE ALSO:
DAC _ OUT

TABLE
TYPE:
System Command

SYNTAX:
value = TABLE(address [, data0..data35])

DESCRIPTION:
The TABLE command can be used to load and read back the internal TABLE values. As the table can be
written to and read from, it may be used to hold information as an alternative to variables.

The table values are floating point and can therefore be fractional.

� You can clear the TABLE using NEW “TABLE”

file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\DAC.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\DAC_OUT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DAC_OUT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DAC_OUT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/NEW.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
TaBLE_POINTER

2-484

PARAMETERS:

value: returns the value stored at the address or -1 if used as part of a write

address: The address of the first point of a write, or the address to read

data0: The data written to the address

data1: The data written to address+1

data2: The data written to address+2

…

data35 The data written to address+35

EXAMPLES:

EXAMPLE 1:
This loads the TABLE with the following values, starting at address 100:

Table Entry: Value:
100 0
101 120
102 250
103 370
104 470
105 530

TABLE(100,0,120,250,370,470,530)

EXAMPLE 2:
Use the command line to read the value stored in address 1000

>>PRINT TABLE(1000)
1234.0000
>>

SEE ALSO:
FLASHVR, NEW, TSIZE

TABLE_POINTER
TYPE:
Axis Parameter (Read Only)

DESCRIPTION:
Using the TABLE _ POINTER command it is possible to determine which TABLE memory location is currently

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FLASHVR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/NEW.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TSIZE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
TaBLE_POINTER

2-485

being used by the CAM or CAMBOX.

TABLE _ POINTER returns the current table location that the CAM function is using. The returned number
contains the table location and divides up the interpolated distance between the current and next TABLE
location to indicate exact location.

� The user can load new CAM data into previously processed TABLE location ready for the next CAM
cycle. This is ideal for allowing a technician to finely tune a complex process, or changing recipes on
the fly whilst running.

VALUE:
The value is returned of type X.Y where X is the current TABLE location and Y represents the interpolated
distance between the start and end location of the current TABLE location.

EXAMPLE:
In this example a CAM profile is loaded into TABLE location 1000 and is setup on axis 0 and is linked to a
master axis 1. A copy of the CAM table is added at location 100. The Analogue input is then read and the
CAM TABLE value is updated when the table pointer is on the next value.

‘CAM Pointer demo
‘store the live table points
TABLE(1000,0,0.8808,6.5485,19.5501,39.001,60.999,80.4499,93.4515)
TABLE(1008,99.1192,100)
‘Store another copy of original points
TABLE(100,0,0.8808,6.5485,19.5501,39.001,60.999,80.4499,93.4515)
TABLE(108,99.1192,100)
‘Initialise axes
BASE(0)
WDOG=ON
SERVO=ON

‘Set up CAM
CAMBOX(1000,1009,10,100,1, 4, 0)

‘Start Master axis
BASE(1)
SERVO=ON
SPEED=10
FORWARD

‘Read Analog input and scale CAM based on input
pointer=0
WHILE 1
‘Read Analog Input (Answer 0-10)
scale=AIN(32)*0.01
‘Detects change in table pointer

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CAM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CAMBOX.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CAM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CAM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CAM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CAM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CAM.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
TaBLEVaLuES

2-486

IF INT(TABLE _ POINTER)<>pointer THEN
 pointer=INT(TABLE _ POINTER)
 ‘First value so update last value
 IF pointer=1000 THEN
 TABLE(1008,(TABLE(108)*scale))
 ‘Second Value, so must update First & Last but 1 value
 ELSEIF pointer=1001 THEN
 TABLE(1000,(TABLE(100)*scale))
 TABLE(1009,(TABLE(109)*scale))
 ‘Update previous value
 ELSE
 TABLE(pointer-1, (TABLE(pointer-901)*scale))
 ENDIF
ENDIF
WEND
STOP

SEE ALSO:
CAM, CAMBOX, TABLE

TABLEVALUES
TYPE:
System Command

SYNTAX:
TABLEVALUES(first, last [,format])

DESCRIPTION:
Returns a list of table values starting at the table address specified. The output is a comma delimited list of
values.

TABLEVALUES is provided for Motion Perfect to allow for fast access to banks of TABLE values.

PARAMETERS:

first: First TABLE address to be returned
last: Last TABLE address to be returned
format: Format for the list.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CAM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/CAMBOX.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
TaN

2-487

0 = Uncompressed comma delimited text (default)

1 = Compressed comma delimited text, repeated values are compressed using a repeat count
before the value (k7,0.0000 representing 7 successive values of 0.0000). Single values do not
have the repeat count;

EXAMPLE:
For a controller containing the values 0.0, 0.1, 0.1, 0.1, 0.2, 0.2, 0.0 in addresses 1 to 7:-

>>TABLEVALUES(1,7,0)
0.0000,0.1000,0.1000,0.1000,0.2000,0.2000,0.0000
>>
>>TABLEVALUES(1,7,1)
0.0000,k3,0.1000,k2 0.2000,0.0000
>>

TAN
TYPE:
Mathematical Function

SYNTAX:
value = TAN(expression)

DESCRIPTION:
Returns the TANGENT of an expression. This is valid for any value expressed in radians.

PARAMETERS:

value: The TANGENT of the expression
expression: Any valid TrioBASIC expression.

EXAMPLE:
Print the tangent of 0.5 using the command line.

>>PRINT TAN(0.5)
 0.5463
>>

Trio Motion Technology

TRIOBaSIC COMMaNdS
TaNG_dIRECTION

2-488

TANG_DIRECTION
TYPE:
Axis Parameter

DESCRIPTION:
When used with a 2 axis X-Y system, this parameter returns the angle in radians that represents the vector
direction of the interpolated axes.

VALUE:
The value returned is between -PI and +PI and is determined by the directions of the interpolated axes.

value X Y
0 0 1
PI/2 1 0
PI/2 (+PI or -PI) 0 -1
-PI/2 -1 0

EXAMPLES:

EXAMPLE1:
Note scale_factor_x MUST be the same as scale_factor_y

UNITS AXIS(4)=scale _ factor _ x
UNITS AXIS(5)=scale _ factor _ y
BASE(4,5)
MOVE(100,50)
angle = TANG _ DIRECTION

EXAMPLE2:
BASE(0,1)
angle _ deg = 180 * TANG _ DIRECTION / PI

TEXT_FILE_LOADER
TYPE:
Command

SYNTAX:
TEXT _ FILE _ LOADER[(function [, parameter[,value]])]

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PI.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PI.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PI.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PI.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PI.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PI.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PI.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
TEXT_FILE_LOadER

2-489

DESCRIPTION:
The TEXT _ FILE _ LOADER command controls the TEXT _ FILE _ LOADER _ PROGRAM on the controller.
This function allows the TEXT _ FILE _ LOADER to be controlled and configured from the BASIC. TEXT _
FILE _ LOADER _ PROC can be set to define which process the TECT _ FILE _ LOADER _ PROGRAM runs on.

The TEXT _ FILE _ LOADER _ PROGRAM is the controller end of the fast file transfer process that
communicates with the file loading functionality of PCMotion.

If no parameters are used then the function is 0.

PARAMETERS:

function: description:
0 Run the TEXT _ FILE _ LOADER program
1 Read a TEXT _ FILE _ LOADER parameter
2 Write a TEXT _ FILE _ LOADER parameter

FUNCTION = 0:

SYNTAX:
TEXT _ FILE _ LOADER

TEXT _ FILE _ LOADER (0)

DESCRIPTION:
Starts up the TEXT _ FILE _ LOADER communication protocol as a program. The TEXT _ FILE _ LOADER
program will take up a user process if it is run automatically or manually.

� The TEXT _ FILE _ LOADER program is normally started automatically when you open a file load
connection. You can call it manually if you wish to specify which process it should run on.

 M IF YOU EXECUTE TEXT _ FILE _ LOADER MANUALLY THE PROGRAM IT RUNS IN WILL SUSPEND AT THE TEXT _
FILE _ LOADER LINE. THE TEXT _ FILE _ LOADER THEREFORE SHOULD BE THE LAST LINE OF THE PROGRAM TO
EXECUTE.

FUNCTION = 1 AND FUNCTION = 2:

SYNTAX:
value = TEXT _ FILE _ LOADER (function, parameter [,value])

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TEXT_FILE_LOADER_PROC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TEXT_FILE_LOADER_PROC.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
TEXT_FILE_LOadER

2-490

DESCRIPTION:
Functions 1 and 2 are used to (1) read and (2) write parameters from the TEXT _ FILE _ LOADER _
PROGRAM.

The default destination for transparent protocol transfers should be set before any transfers occur.

PARAMETERS:

Parameter: Description: Values:
0 Transfer status parameter (read only) 0 = no transfer active

1 = transfer active
1 Default destination for transparent transfers 0 = TEMP file

1 = FIFO file

2 = SDCARD

EXAMPLES:

EXAMPLE 1:
Wait for a transfer to start then process the characters as they arrive at on the controller.

 ‘ wait for a file transfer to start
 WAIT UNTIL TEXT _ FILE _ LOADER(1,0) = 1

 ‘ process this file
 WHILE KEY#fifo _ channel
 GET#fifo _ channel,k
 PRINT #echo _ channel,CHR(k);
 IF k=13 THEN PRINT #echo _ channel, CHR(10);

 IF k>=65 AND k<=90 THEN ‘A to Z
 ltflag=0
 spflag=0
 value=0
 GOTO command _ pro
 ENDIF
 WEND

EXAMPLE 2:
Load a file into a FIFO then configure the FILE to be read back into the BASIC.

‘Set the FIFO as default file location for transparent protocol
TEXT _ FILE _ LOADER(2,1,1)
‘ initialise fifo
OPEN #fifo _ channel AS “TRANSFER _ FILE” FOR FIFO _ WRITE(fifo _ size)
CLOSE #fifo _ channel

Software Reference Manual

TRIOBaSIC COMMaNdS
TEXT_FILE_LOadER_PROC

2-491

‘ open fifo to read
OPEN #fifo _ channel AS “TRANSFER _ FILE” FOR FIFO _ READ

‘ run
WHILE running
 ‘ wait for a file transfer to start
 WAIT UNTIL TEXT _ FILE _ LOADER(1,0)
 WHILE KEY#fifo _ channel
 GET#fifo _ channel,char
 PRINT#5, CHR(char)
 WEND
WEND

SEE ALSO:
TEXT _ FILE _ LOADER _ PROC

TEXT_FILE_LOADER_PROC
TYPE:
System Parameter (MC _ CONFIG)

DESCRIPTION:
When the TrioPC ActiveX starts a text file transfer to the Motion Coordinator, the TEXT _ FILE _ LOADER _
PROGRAM is started on the highest available process. TEXT _ FILE _ LOADER _ PROC can be set to specify a
different process for the TEXT _ FILE _ LOADER _ PROGRAM. If the defined process is in use then the next
lower available process will be used.

TEXT _ FILE _ LOADER _ PROC can be set in the MC _ CONFIG script file.

VALUE:

-1 Use the highest available process (default)
0 to max process Run on defined process

EXAMPLES:

EXAMPLE1:
Set TEXT _ FILE _ LOADER _ PROGRAM to start on process 19 or lower (using the command line terminal).

>> TEXT _ FILE _ LOADER _ PROC=19
>>

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TEXT_FILE_LOADER_PROC.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
TICKS

2-492

EXAMPLE2:
Remove the TEXT _ FILE _ LOADER _ PROC setting so that TEXT _ FILE _ LOADER _ PROGRAM starts on
default process (using MC _ CONFIG).

‘MC _ CONFIG script file
TEXT _ FILE _ LOADER _ PROC = -1 ‘Start on default process on connection

SEE ALSO:
TEXT _ FILE _ LOADER

TICKS
TYPE:
Process Parameter

DESCRIPTION:
The current count of the process clock ticks is stored in this parameter. The process parameter is a 64 bit
counter which is DECREMENTED on each servo cycle. It can therefore be used to measure cycle times, add
time delays, etc. The ticks parameter can be written to and read.

As TICKS is a process parameter each process will have its own counter.

VALUE:
The value of the 64bit counter

EXAMPLE:
With SERVO _ PERIOD set to 1000 use TICKS for a 3 second delay

delay:
 TICKS=3000
 OP(9,ON)
test:
 IF TICKS<=0 THEN OP(9,OFF) ELSE GOTO test

TIME$
TYPE:
System Parameter

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TEXT_FILE_LOADER.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SERVO_PERIOD.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
TIME

2-493

DESCRIPTION:
TIME$ is used as part of a PRINT statement or a STRING variable to write the current time from the real
time clock. The date is printed in the format Hour:Minute:Second.

The TIME$ is set through the TIME command

PARAMETERS:
None.

EXAMPLES

EXAMPLE 1:
Print the current time from the real time clock to the command line.

>>print time$
15:51:06
>>

EXAMPLE 2:
Create an error message to print later in the program

DIM string1 AS STRING(30)
string1 = “Error occurred at “ + TIME$

SEE ALSO:
PRINT, STRING, TIME

TIME
TYPE:
System Parameter

DESCRIPTION:
Allows the user to set and read the time from the real time clock.

VALUE:

Read = the number of seconds since midnight (24:00 hours)
Write = the time in 24hour format hh:mm:ss

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PRINT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DIM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TIME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/PRINT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DIM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TIME.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
TIMER

2-494

EXAMPLES:

EXAMPLE 1:
Sets the real time clock in 24 hour format; hh:mm:ss

‘Set the real time clock
>>TIME = 13:20:00

EXAMPLE 2:
Calculate elapsed time in seconds

time1 = TIME
‘wait for event
time2 = TIME
timeelapsed = time1-time2

SEE ALSO:
TIME$

TIMER
TYPE:
Command

SYNTAX:
TIMER(switch, output, pattern, time[,option])

DESCRIPTION:
The TIMER command allows an output or a selection of outputs to be set or cleared for a predefined
period of time. There are 8 timer slots available, each can be assigned to any outputs. The timer can be
configured to turn the output ON or OFF.

PARAMETERS:

switch: The timer number in the range 0-7
output: Selects the physical output or first output in a group. Range 0-31.
pattern: 1 = for a single output.

Number = If set to a number this represents a binary array of outputs to be turned on. Range
0-65535.

time: The period of operation in milliseconds
option: Inverts the output, set to 1 to turn OFF at start and ON at end.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TIME$.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
TOKENTaBLE

2-495

EXAMPLES:

EXAMPLE1:
Use the TIMER function to flash an output when there is a motion error. The output lamp should flash with a
50% duty cycle at 5Hz.

WAIT UNTIL MOTION _ ERROR
 WHILE MOTION _ ERROR
 TIMER(0,8,1,100) ‘turns ON output 8 for 100milliseconds
 WA(200) ‘Waits 200 milliseconds to complete the 5Hz period
WEND

EXAMPLE2:
Setting outputs 10, 12 and 13 OFF for 70 milliseconds following a registration event. The first output is set
to 10 and the pattern is set to 13 (1 0 1 1 in binary) to enable the three outputs. Output 11 is still available
for normal use. The option value is set to 1 to turn OFF the outputs for the period, they return to an ON
state after the 70 milliseconds has elapsed.

WHILE running
 REGIST(3)
 WAIT UNTIL MARK
 TIMER(1,10,13,70,1)
WEND

EXAMPLE3:
Firing output 10 for 250 milliseconds during the tracking phase of a MOVELINK Profile

WHILE feed=ON
 MOVELINK(30,60,60,0,1)
 MOVELINK(70,100,0,60,1)
 WAIT LOADED ‘Wait until the tracking phase starts
 TIMER(2,10,1,250) ‘Fire the output during the tracking phase
 MOVELINK(-100,200,50,50,1)
WEND

TOKENTABLE
TYPE:
Reserved Keyword

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVELINK.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
TOOL_OFFSET

2-496

TOOL_OFFSET
TYPE:
Axis Command

SYNTAX
TOOL _ OFFSET(identity, x_offset, y_offset, z_offset)

DESCRIPTION:
TOOL _ OFFSET can be used to adjust the position of a coordinate system to align with a tool point. Multiple
tool points can be assigned and the user can switch between points on the fly.

TOOL _ OFFSET requires the kinematic runtime FEC

The default TOOL _ OFFSET has the identity 0 and is equal to the world coordinate system origin, this
cannot be modified. If you wish to disable the TOOL _ OFFSET select TOOL _ OFFSET(0).

TOOL_OFFSETs are applied on the axis FRAME _ GROUP. If no FRAME _ GROUP is defined then a runtime error
will be generated.

Movements are loaded with the selected TOOL _ OFFSET. This means that you can buffer a sequence of
movements on different tools. The active TOOL _ OFFSET is the one associated with the movement in the
MTYPE. If the FRAME _ GROUP is IDLE then the active TOOL _ OFFSET is the selected TOOL _ OFFSET.

� If you wish to check which USER _ FRAME, TOOL _ OFFSET and VOLUME _ LIMIT are active you can
print the details using FRAME _ GROUP(group).

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MTYPE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VOLUME_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
TRIGGER

2-497

PARAMETERS

identity: 0 = default group which is set to the world coordinate system
1 to 31 = Identification number for the user defined tool offset.

x_offset: Offset in the x axis from the world origin to the user origin.
y_offset: Offset in the y axis from the world origin to the user origin.
z_offset: Offset in the z axis from the world origin to the user origin.

EXAMPLE
A tool is rotated 45degrees about the y axis and has an offset of 20mm in the x direction, 30mm in the y
direction and 300mm in the z direction. The programmer wants to move the tool forward on its axis so
a TOOL _ OFFSET is applied to adjust the position to the tool tip, then a USER_FRAMEis applied to allow
programming about the tool axis.

‘Configure USER _ FRAME and TOOL _ OFFSET
FRAME _ GROUP(0,0,0,1,2)
USER _ FRAME(1, 20, 30, 300, 0, PI/4, 0)
TOOL _ OFFSET(1, 20, 30, 300)
‘Select tool and frame and start motion.
USER _ FRAME(1)
TOOL _ OFFSET(1)
BASE(2)
FORWARD

TRIGGER
TYPE:
System Command

DESCRIPTION:
Starts a previously set up SCOPE command. This allows you to start the scope capture at a specific part of
your program.

EXAMPLE:
The Motion Perfect oscilloscope is set to record MPOS and DPOS of axis 0. The settings allow for program
trigger and a repeat trigger. This loop can then be used as part of a PID tuning routine.

WHILE IN(tuning)=ON
DEFPOS(0)
TRIGGER
 WA(5) ’Allow the scope to start
 MOVE(100)
 WAIT IDLE
 WA(100)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SCOPE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
TRIOPCTESTVaRIaB

2-498

 MOVE(-100)
 WA(100)
WEND

TRIOPCTESTVARIAB
TYPE:
Reserved Keyword

TROFF
TYPE:
System Command

SYNTAX:
TROFF [“program”]

DESCRIPTION:
The trace off command resumes execution of the SELECTed or specified program. The command can be
included in a program to resume the execution of that program.

� For de-bugging the Motion Perfect breakpoint tool should be used.

PARAMETERS:

program: The name of the program which you wish to resume

EXAMPLE:
Resume execution of a program names TEST

>>TROFF “TEST”
OK
>>%[Process 21:Program TEST] – Released

SEE ALSO:
HALT, STOP, STEPLINE, TRON

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/HALT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STOP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STEPLINE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TRON.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
TRON

2-499

TRON
TYPE:
System Command

SYNTAX:
TRON [“program”]

DESCRIPTION:
The trace on command pauses the SELECTed or specified program. The command can be included in a
program to pause the execution of that program. The program can then be stepped through a single line,
run or halted.

PARAMETERS:
program: The name of the program which you wish to step

� Motion Perfect highlights lines containing TRON in its editor and debugger. For de-bugging the Motion
Perfect breakpoint tool should be used.

EXAMPLES:

EXAMPLE 1:
Use suspend a program by including TRON. Another program will then use STEPLINE to step through until the
TRON.

TRON
MOVE(0,10)
MOVE(10,0)
TROFF
MOVE(0,-10)
MOVE(-10,0)

EXAMPLE 2:
Start a program by stepping into the first line, then stepping through. The line that is stepped to is displayed

>>SELECT “STARTUP”
STARTUP selected
>>TRON
OK
>>%[Process 20:Line 3] - Paused
TABLE(0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)

STEPLINE
OK

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SELECT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STEPLINE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
TRuE

2-500

>>%[Process 20:Line 4] - Paused
TABLE(10,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)

STEPLINE
OK
>>%[Process 20:Line 5] - Paused
TABLE(20,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)

EXAMPLE 3:
Pause a program called test that is currently running:

TRON “TEST”
OK
>>%[Process 21:Line 6] - Paused
WA(4)

SEE ALSO:
HALT, STOP, STEPLINE, TROFF

TRUE
TYPE:
Constant

DESCRIPTION:
The constant TRUE takes the numerical value of -1.

EXAMPLE:
Checks that the logical result of input 0 and 1 is true

t=IN(0)=ON AND IN(2)=ON
IF t=TRUE THEN
 PRINT “Inputs are on”
ENDIF

TSIZE
TYPE:
System Parameter (Read Only)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/HALT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STOP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STEPLINE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TROFF.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
TSIZE

2-501

DESCRIPTION:
Returns the size of the TABLE.

 M NOT ALL TABLE POSITIONS ARE BATTERY BACKED, SEE YOUR CONTROLLER INFORMATION FOR EXACT VALUES.

VALUE:
The size of the TABLE

EXAMPLE:
Check the size of the table and write to the last position in the table (remember the table starts at position
0).

>>?tsize
500000.0000
>>table(499999,123)
>>

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TABLE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
uCaSE

2-502

TRIOBaSIC COMMaNdS
uCaSE

2-503

Software Reference Manual

UUCASE
TYPE:
STRING Function

SYNTAX:
UCASE(string)

DESCRIPTION:
Returns a new string with the input string converted to all upper case.

PARAMETERS:

string: String to be used

EXAMPLES:

EXAMPLE 1:
Pre-define a variable of type string and later print it in all upper case characters:

DIM str1 AS STRING(32)
str1 = “Trio Motion Technology”
PRINT UCASE(str1)

SEE ALSO:
CHR, STR, VAL, LEFT, RIGHT, MID, LEN, LCASE, INSTR

UNIT_CLEAR
TYPE:
System command

DESCRIPTION:
Clears all the bits in the UNIT _ ERROR system parameter.

VALUE:
This command takes no values

EXAMPLE:
Clear the UNIT _ ERROR bits and then check for which module or modules may be in error.

UNIT _ CLEAR

file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\CHR.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\STR.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\VAL.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\LEFT.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\RIGHT.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\MID.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\LEN.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\LCASE.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\INSTR.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
uNIT_dISPLaY

2-504

WA(10)
PRINT UNIT _ ERROR[0]

SEE ALSO:
SLOT, SYSTEM _ ERROR, UNIT _ ERROR

UNIT_DISPLAY
TYPE:
System Parameter

DESCRIPTION:
Reserved Keyword

UNIT_ERROR
TYPE:
System Parameter (read only)

DESCRIPTION:
The UNIT _ ERROR provides a simple single indicator that at least one module is in error and can indicate
multiple modules that have an error. The value returns details which SLOTs are in error.

VALUE:
A binary sum of the module SLOT numbers for the modules which are in error.

Bit Value SLOT
0 1 0
1 2 1
2 4 2
3 8 3
…

EXAMPLE:
Test for the module in slot 1 having an error which is a ‘Unit station error’. This could indicate a problem
with a drive on the network in slot 1.

IF UNIT _ ERROR=2 AND SYSTEM _ ERROR=1048576 THEN
 ‘Handle Unit station error for slot 1

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SLOT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SYSTEM_ERROR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNIT_ERROR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SLOT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SLOT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SLOT.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
uNIT_SW_VERSION

2-505

 ...
ENDIF

SEE ALSO:
SLOT, SYSTEM _ ERROR, UNIT _ CLEAR

UNIT_SW_VERSION
TYPE:
Reserved Keyword

UNITS
TYPE:
Axis Parameter

DESCRIPTION:
UNITS is a conversion factor that allows the user to scale the edges/ stepper pulses to a more convenient
scale. The motion commands to set speeds, acceleration and moves use the UNITS scalar to allow values to
be entered in more convenient units e.g.: mm for a move or mm/sec for a speed.

� Units may be any positive value but it is recommended to design systems with an integer number of
encoder pulses/user unit. If you need to use a non integer number you should use ENCODER _ RATIO.
STEP _ RATIO can be used for non integer conversion on a stepper axis.

VALUE:
The number of counts per required units.

EXAMPLES:

EXAMPLE 1:
A leadscrew arrangement has a 5mm pitch and a 1000 pulse/rev encoder. The units should be set to allow
moves to be specified in mm.

The 1000 pulses/rev will generate 1000 x 4=4000 edges/rev in the controller. One rev is equal to 5mm
therefore there are 4000/5=800 edges/mm.

>>UNITS=1000*4/5

EXAMPLE 2:
A stepper motor has 180 pulses/rev. There is a built in 16 multiplier so the controller will use 180*16 counts

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SLOT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SYSTEM_ERROR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNIT_CLEAR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENCODER_RATIO.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STEP_RATIO.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
uNOCK

2-506

per revolution.

To program in revolutions the unit conversion factor will be:
>>UNITS=180*16

SEE ALSO:
ENCODER _ RATIO, STEP _ RATIO

UNOCK
TYPE:
System Command (command line only)

SYNTAX:
UNLOCK(code)

DESCRIPTION:
Unlocks a controller than has previously been locked using the LOCK command.

To unlock the Motion Coordinator, the UNLOCK command should be entered using the same security code
number which was used originally to LOCK it.

� You should use Motion Perfect to LOCK and UNLOCK your controller.

PARAMETERS:

code: Any 7 digit integer number

SEE ALSO:
LOCK

USER_FRAME
TYPE:
Axis Command

SYNTAX
USER _ FRAME(identity [, x_offset, y_offset, z_offset [, x_rotation [, y_rotation [, z_rotation]]]])

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ENCODER_RATIO.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/STEP_RATIO.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LOCK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LOCK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LOCK.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LOCK.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
uSER_FRaME

2-507

DESCRIPTION:
The USER _ FRAME allows the user to program in a different coordinate system. The USER _ FRAME can be
defined up to a 3-axis translation and rotation from the world coordinate origin. The rotations are applied
using the Euler ZYX convention. This means that the z rotation is applied first, then the y is applied on the
new coordinate system and finally the x is applied. The coordinate system is defined using the ‘right hand
rule’ and the rotation of the origin is defined using the ‘right hand turn’.

USER _ FRAME requires the kinematic runtime FEC

The default coordinate system has the identity 0 and is equal to the world coordinate system, this cannot be
modified. If you wish to disable the USER _ FRAME select USER _ FRAME(0).

USER _ FRAME s are applied on the axis FRAME _ GROUP. If no FRAME _ GROUP is defined then a runtime
error will be generated.

Movements are loaded with the selected USER _ FRAME. This means that you can buffer a sequence
of movements on different USER _ FRAMES. The active USER _ FRAME is the one associated with the
movement in the MTYPE. If the FRAME _ GROUP is IDLE then the active USER _ FRAME is the selected
USER _ FRAME.

The USER _ FRAME is applied to all the axes in the FRAME _ GROUP. This can be the same group as
used by FRAME. The FRAME _ GROUP does not have to be 3 axis, however the USER _ FRAME will only
process position for the axes in the FRAME _ GROUP. It can be useful in a 2 axes FRAME _ GROUP to
perform a USER _ FRAME rotation about the third axis.

� If you wish to check which USER _ FRAME, TOOL _ OFFSET and VOLUME _ LIMIT are active you can
print the details using FRAME _ GROUP(group).

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MTYPE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/IDLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TOOL_OFFSET.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VOLUME_LIMIT.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
uSER_FRaME

2-508

PARAMETERS

identity: 0 = default group which is set to the world coordinate system
1 to 31 = Identification number for the user defined frame.

x_offset: Offset in the x axis from the world origin to the user origin.
y_offset: Offset in the y axis from the world origin to the user origin.
z_offset: Offset in the z axis from the world origin to the user origin.
x_rot: Rotation about the items x axis in radians.
y_rot: Rotation about the items y axis in radians.
z_rot: Rotation about the items z axis in radians.

EXAMPLES:

EXAMPLE 1:
A conveyors origin is at 45degrees to the world coordinate (robots) origin, as shown in the image. To ease
programming a USER _ FRAME is assigned to align the x axis with the conveyor so that it is possible to
program in the conveyor coordinate system.

FRAME _ GROUP(0,0,0,1,2)
USER _ FRAME(1,0,0,0,PI/4)

EXAMPLE 2
Initialise a user coordinate system then perform a movement on the world coordinate system before starting
a FORWARD on the first user coordinate system.

FRAME _ GROUP(0,0,0,1,2)
BASE(0,1,2)
DEFPOS(10,20,30)
USER _ FRAME(1,10,20,30,PI/2)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FORWARD.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
uSER_FRaME_TRaNS

2-509

USER _ FRAME(0)
MOVEABS(100,100,50)
WAIT IDLE
USER _ FRAME(1)
FORWARD

USER_FRAME_TRANS
TYPE:
Mathematical Function

SYNTAX:
USER _ FRAME _ TRANS(user _ frame _ in, user _ frame _ out, tool _ offset _ in, tool _
offset _ out, table _ in, table _ out, [scale])

DESCRIPTION:
This function enables you to transform a set of positions from one frame to another. This could be used to
take a set of positions from a vision system and transform them so that they are a set of positions relative to
a conveyor.

USER _ FRAME _ TRANS requires the kinematic runtime FEC

It is required to set-up a FRAME _ GROUP and USER _ FRAME to use this function. If you do not wish to set
up a FRAME _ GROUP with real axis you can use virtual.

� The USER _ FRAME calculations are performed on raw position data which are integers. The table data
is scaled by the scale parameter, for optimal resolution scale should be set to the UNITS of the robot.

As all the USER _ FRAME transformations use the same coordinate scale it does not matter if the
positions are supplied as raw positions or scaled by UNITS.

PARAMETERS:

user_frame_in: The USER _ FRAME identity that the points are supplied in
user_frame_out: The USER _ FRAME identity that the points are transformed to
tool_offset_in: The TOOL _ OFFSET identity that the points are supplied in
tool_offset_out: The TOOL _ OFFSET identity that the points are transformed to
table_in: The start of the input positions

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TOOL_OFFSET.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TOOL_OFFSET.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
uSER_FRaMEB

2-510

table_out: The start of the generated positions
scale: This parameter allows you to scale the table values (default 1000)

EXAMPLE:
USER _ FRAME(vision) has been configured to the vision system relative to the robot origin. The conveyor
has been configures in USER _ FRAME(conveyor). To use the vision system positions on the conveyor USER _
FRAME they must be transformed through USER _ FRAME _ TRANS.

USER _ FRAME _ TRANS(vision, conveyor, 0, 0, 200,300)

USER_FRAMEB
TYPE:
Axis Command

SYNTAX
USER _ FRAMEB(identity)

DESCRIPTION:
USER _ FRAMEB is only used with SYNC. It defines the new USER _ FRAME to resynchronise to when
performing the SYNC(20) operation. When the resynchronisation is complete USER _ FRAMEB is the active
USER _ FRAME. USER _ FRAMEB selects one of the defined USER _ FRAME’s.

EXAMPLE:
The robot must pick up the components from one conveyor and place them on a second conveyor which is in
a different USER _ FRAME.

 WHILE(running)
 USER _ FRAMEB(conv1)
 REGIST(20,0,0,0,0) AXIS(10)
 WAIT UNTIL MARK AXIS(10)

 SYNC(1, 1000, REG _ POS, 10, sen _ xpos , conv1 _ yoff)
 WAIT UNTIL SYNC _ CONTROL AXIS(0)=3
 ‘Now synchronised
 GOSUB pick

 USER _ FRAMEB(conv2)
 SYNC(20, 1000, place _ pos, 11, conv2 _ xoff, conv2 _ yoff)
 WAIT UNTIL SYNC _ CONTROL AXIS(0)=3
 ‘Now synchronised
 GOSUB place

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SYNC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SYNC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
uSER_FRaMEB

2-511

 SYNC(4, 500)
 place _ pos = place _ pos + 100
 WEND

SEE ALSO:
SYNC, USER _ FRAME

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SYNC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
VaL

2-512

TRIOBaSIC COMMaNdS
VaL

2-513

Software Reference Manual

VVAL
TYPE:
STRING Function

SYNTAX:
VAL(string)

DESCRIPTION:
Converts a string to a numerical value

PARAMETERS:

string: String to be converted

EXAMPLES:

EXAMPLE 1:
Pre-define a variable of type string and then later, convert its current value to a numerical value stored in a
VR:

DIM str1 AS STRING(20)
…
VR(100)=VAL(str1)

SEE ALSO:
CHR, STR, LEN, LEFT, RIGHT, MID, LCASE, UCASE, INSTR

VECTOR_BUFFERED
TYPE:
Axis Parameter (Read only)

DESCRIPTION:
This holds the total vector length of the buffered moves. It is effectively the amount the VPU can assume is
available for deceleration. It should be executed with respect to the first axis in the group.

VALUE:
The vector length of buffered moves on the axis group.

file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\CHR.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\STR.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\LEN.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\LEFT.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\RIGHT.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\MID.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\LCASE.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\UCASE.docx
file:///\\HYPERION\documents\Manual%207\Source\BASIC%20Commands\INSTR.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
VERIFY

2-514

EXAMPLE:
Return the total vector length for the current buffered moves whose axis group begins with axis(0).

>>BASE(0,1,2)
>>? VECTOR _ BUFFERED AXIS(0)
1245.0000
>>

VERIFY
TYPE:
Reserved Keyword

VERSION
TYPE:
System Parameter (read only)

DESCRIPTION:
Returns the version number of the firmware installed on the Motion Coordinator.

� You can use Motion Perfect to check the firmware version when looking at the controller configuration.

VALUE:
Controllers’ firmware version number.

EXAMPLE:
Check the version of the firmware using the command line

>>? VERSION
2.0100
>>

VFF_GAIN
TYPE:
Axis Parameter

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
VOLuME_LIMIT

2-515

DESCRIPTION:
The velocity feed forward gain is a constant which is multiplied by the change in demand position. Velocity
feed forward gain can be used to decreases the following error during constant speed by increasing the
output proportionally with the speed. For a velocity feed forward Kvff and change in position ΔΡd, the
contribution to the output signal is: 0vff = Kvff x ΔΡd

VALUE:
Velocity feed forward constant (default =0)

EXAMPLE:
Set the VFF _ GAIN on axis 15 to 12

BASE(15)
VFF _ GAIN=12

VOLUME_LIMIT
TYPE:
Axis Function

SYNTAX:
VOLUME _ LIMIT(mode, [,table_offset])

DESCRIPTION:
VOLUME _ LIMIT enables a software limit that restricts the motion into a defined three dimensional shape.
The calculations are performed on DPOS and so it can be used in addition to a FRAME. The limit applies to
axes defined in a FRAME _ GROUP.

VOLUME _ LIMIT requires the kinematic runtime FEC

 M IF NO FRAME _ GROUP IS DEFINED THEN A ‘PARAMETER OUT OF RANGE’ RUN TIME ERROR WILL BE RETURNED WHEN
VOLUME _ LIMIT IS CALLED.

All axes in the FRAME _ GROUP must have the same UNITS

When the limit is active moves on all axes in the FRAME _ GROUP are cancelled and so will stop with the
programmed DECEL or FAST _ DEC. Any active SYNC is also stopped. AXISSTATUS bit 15 is also set. This
means you should set your VOLUME _ LIMIT smaller than the absolute operating limits of the robot.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DECEL.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FASTDEC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/SYNC.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXISSTATUS.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
VOLuME_LIMIT

2-516

PARAMETERS:

mode: 0 VOLUME _ LIMIT is disabled
1 Cylinder with cone base volume

MODE = 1 CYLINDER WITH CONE BASE VOLUME

SYNTAX:
VOLUME _ LIMIT(1, [,table_offset])

DESCRIPTION:
Mode 1 enables a cylinder with a cone base, this is a typical working volume for a delta robot.

The origin for the shape is the centre top . It is possible to align this with your coordinate system using the
X,Y and Z offsets

� If you wish to check which USER _ FRAME, TOOL _ OFFSET and VOLUME _ LIMIT are active you can
print the details using FRAME _ GROUP(group).

PARAMETERS:
mode: 0 VOLUME _ LIMIT is disabled

1 Cylinder with cone base volume
table_offset: The start position in the table to store the VOLUME _ LIMIT configuration

Mode 0 table values, all length values use UNITS from the first axis in the FRAME _ GROUP.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TOOL_OFFSET.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME_GROUP.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
VOLuME_LIMIT

2-517

0 Cylinder Diameter

1 Cone angle in radians

2 Total height

3 Cone height

4 X offset

5 Y offset

6 Z offset

EXAMPLE:
The cylinder with a flat base is typically used with delta robots (FRAME=14), the following example
configures the VOLUME _ LIMIT with this configuration.

 TABLE(100,1100)’ Cylinder diameter
 TABLE(101,(60/360)* 2* PI)’ Cone angle
 TABLE(102,400)’ Total height
 TABLE(103,150)’ Cone height

Trio Motion Technology

TRIOBaSIC COMMaNdS
VP_SPEEd

2-518

 TABLE(104,0)’ X offset
 TABLE(105,0)’ Y offset
 TABLE(106,750)’ Z offset

 VOLUME _ LIMIT(1,100)

VP_SPEED
TYPE:
Axis Parameter (Read Only)

ALTERNATE FORMAT:
VPSPEED

DESCRIPTION:
The velocity profile speed is an internal speed which is ramped up and down as the movement is velocity
profiled.

VALUE:
The velocity profile speed in user UNITS/second.

EXAMPLE:
Wait until command speed is achieved:

MOVE(100)
WAIT UNTIL SPEED=VP _ SPEED

VR
TYPE:
System Command

SYNTAX:
value = VR(expression)

DESCRIPTION:
Recall or assign to a global numbered variable. The variables hold real numbers and can be easily used as an
array or as a number of arrays.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/UNITS.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
VR

2-519

� The numbered variables are globally shared between programs and can be used for communication
between programs. To avoid problems where two processes write unexpectedly to a global variable,
the programs should be written so that only one program writes to the global variables.

PARAMETERS:

value: The value written to or read from the VR
expression: Any valid TrioBASIC expression that produces an integer

EXAMPLES:

EXAMPLE 1:
Put value 1.2555 into VR() variable 15. Note local variable ‘val’ used to give name to global variable:

val=15
VR(val)=1.2555

EXAMPLE 2:
A transfer gantry has 10 put down positions in a row. Each position may at any time be FULL or EMPTY.
VR(101) to VR(110) are used to hold an array of ten1’s or 0’s to signal that the positions are full (1) or
EMPTY (0). The gantry puts the load down in the first free position. Part of the program to achieve this
would be:

movep:
 MOVEABS(115) ‘MOVE TO FIRST PUT DOWN POSITION:
 FOR VR(0)=101 TO 110
 IF VR(VR(0))=0) THEN
 GOSUB load
 ENDIF
 MOVE(200) ‘200 IS SPACING BETWEEN POSITIONS
 NEXT VR(0)
 PRINT “All Positions Are Full”
 WAIT UNTIL IN(3)=ON
 GOTO movep

load:
 ‘PUT LOAD IN POSITION AND MARK ARRAY
 OP(15,OFF)
 VR(VR(0))=1

EXAMPLE 3:
‘Assign VR(65) with the value VR(0) multiplied by Axis 1 measured
position
VR(65)=VR(0)*MPOS AXIS(1)
PRINT VR(65)

Trio Motion Technology

TRIOBaSIC COMMaNdS
VRSTRING

2-520

VRSTRING
TYPE:
String Formatter

SYNTAX:
VRSTRING(variable)

DESCRIPTION:
Combines the contents of an array of VR() variables so that they can be printed as a text string or used as
part of a STRING variable. All printable characters will be output and the string will terminate at the first
null character found. (i.e. VR(n) contains 0)

PARAMETERS:

variable: Number of first VR() in the character array.

EXAMPLES:

EXAMPLE1:
Print a sequence of characters stored in the VR’s starting at position 100.

PRINT #5,VRSTRING(100)

EXAMPLE2:
Store the characters saved in the VR’s into one STRING variable.
DIM string2 AS STRING(11)

string2 = VRSTRING(0)

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DIM.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/VR.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DIM.docx

TRIOBaSIC COMMaNdS
Wa

2-521

Software Reference Manual

WWA
TYPE:
Program Structure

SYNTAX:
WA(time)

DESCRIPTION:
Holds up program execution for the number of milliseconds specified in the parameter.

PARAMETERS:

time: The number of milliseconds to wait for.

EXAMPLE:
Turn output 17 off 2 seconds after switching output 11 off.

OP(11,OFF)
WA(2000)
OP(17,ON)

WAIT
TYPE:
Command

SYNTAX:
WAIT UNTIL expression

DESCRIPTION:
Suspends program execution until the expression is TRUE.

It is very common to use only WAIT IDLE and WAIT LOADED as the expression. In this situation the
UNTIL is optional. When IDLE and LOADED are part of an expression UNTIL is required.

PARAMETERS:

condition: Any valid TrioBASIC expression

Z

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/IDLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LOADED.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/IDLE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/LOADED.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
WdOG

2-522

EXAMPLES:

EXAMPLE 1:
The program waits until the measured position on axis 0 exceeds 150 then starts a movement on axis 7.

WAIT UNTIL MPOS AXIS(0)>150
MOVE(100) AXIS(7)

EXAMPLE 2:
Start a move and then suspend program execution until the move has finished. Note: This does not
necessarily imply that the axis is stationary in a servo motor system.

MOVE(100)
WAIT IDLE
PRINT “Move Done”

EXAMPLE 3:
Switch output 45 ON at start of MOVE(350) and OFF at the end of that move.

MOVE(100)
MOVE(350)
WAIT UNTIL LOADED
OP(45,ON)
MOVE(200)
WAIT UNTIL LOADED
OP(45,OFF)

EXAMPLE 4:
Force the program to wait until either the current move has finished or an input goes ON.

As the expression contains UNTIL and IN(12) the UNTIL is required.

MOVELINK(distance, link _ dist, acceldist, deceldist, linkaxis)
WAIT UNTIL IDLE OR IN(12)=ON

WDOG
TYPE:
System Parameter

DESCRIPTION:
Controls the WDOG relay contact used for enabling external drives. The WDOG=ON command MUST be issued in
a program prior to executing moves. It may then be switched ON and OFF under program control. If however
a following error condition exists on any axis the system software will override the WDOG setting and turn
watchdog contact OFF. When WDOG=OFF, the relay is opened, the analogue outputs are set to 0V, the step/
direction outputs and any digital axis enable functions are disabled.

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/MOVE.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
WHILE .. WENd

2-523

EXAMPLE:
WDOG=ON

WDOG=ON / WDOG=OFF is issued automatically by Motion Perfect when the “Drives Enable” button is
clicked on the control panel

When the DISABLE _ GROUP function is in use, the watchdog relay and WDOG remain on if there is an
axis error. In this case, the digital enable signal is removed from the drives in that group only.

WHILE .. WEND
TYPE:
Program Structure

SYNTAX:
WHILE condition
 Commands
WEND

DESCRIPTION:
The commands contained in the WHILE..WEND loop are continuously executed until the condition becomes
FALSE. Execution then continues after the WEND. If the condition is false when the WHILE is first executed
then the loop will be skipped.

PARAMETERS:

condition: Any valid logical TrioBASIC expression
commands: TrioBASIC statements that you wish to execute

EXAMPLE:
While input 12 is off, move the base axis and flash an LED on output 10

WHILE IN(12)=OFF
 MOVE(200)
 WAIT IDLE
 OP(10,OFF)
 MOVE(-200)
 WAIT IDLE
 OP(10,ON)
WEND

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/ON.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/OFF.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DISABLE_GROUP.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FALSE.docx

Trio Motion Technology

TRIOBaSIC COMMaNdS
WORLd_dPOS

2-524

WORLD_DPOS
TYPE:
Axis Parameter (Read Only)

DESCRIPTION:
The WORLD _ DPOS is the demand position in the FRAME coordinate system. It sits between the DPOS and
AXIS _ DPOS.

With no USER _ FRAME or TOOL _ OFFSET, WORLD _ DPOS is equal to DPOS. With no FRAME, WORLD _
DPOS is equal to AXIS _ DPOS. For some machinery configurations it can be useful to install a frame
transformation which is not 1:1, these are typically machines such as robotic arms or machines with
parasitic motions on the axes. In this situation when FRAME is not zero WORLD _ DPOS returns the demand
position for the programming point of the FRAME.

WORLD _ DPOS can be scaled by UNITS

VALUE:
Demand position in user units of the FRAME programming point.

EXAMPLE:
Read the world demand position for axis 10 in user units

>>PRINT WORLD _ DPOS AXIS(10)
5432
>>

SEE ALSO:
AXIS _ DPOS, DPOS, FRAME, TOOL _ OFFSET, USER _ FRAME

XOR
TYPE:
Logical and bitwise operator

SYNTAX:
<expression1> XOR <expression2>

DESCRIPTION:
This performs and exclusive or function between corresponding bits of the integer part of two valid
TrioBASIC expressions. It may therefore be used as either a bitwise or logical condition.

The XOR function between two values is defined as follows:

file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TOOL_OFFSET.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/AXIS_DPOS.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/FRAME.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/TOOL_OFFSET.docx
file://HYPERION/documents/Manual%207/PRINT/trioBasicMerged/USER_FRAME.docx

Software Reference Manual

TRIOBaSIC COMMaNdS
XOR

2-525

XOR 0 1
0 0 1

1 1 0

PARAMETERS:

expression1: Any valid TrioBASIC expression
expression2: Any valid TrioBASIC expression

EXAMPLE:
a = 10 XOR (2.1*9)

TrioBASIC evaluates the parentheses first giving the value 18.9, but as was specified earlier, only the integer
part of the number is used for the operation, therefore this expression is equivalent to: a=10 XOR 18. The
XOR is a bitwise operator and so the binary action taking place is:

 01010
XOR 10010
 11000

The result is therefore 24.

3IEC 61131-3 MOTION LIBRARY

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY

3-2

Contents

TC_ADDAX3-7
TC_ADDDAC 3-8
TC_BACKLASH3-9
TC_BASE 3-10
TC_CAM 3-12
TC_CAMBOX 3-13
TC_CANCEL 3-15
TC_CONNECT 3-16
TC_DATUM 3-18
TC_DEFINETOOLOFFSET 3-19
TC_DEFINEUSERFRAME............. 3-21
TC_DEFPOS 3-22
TC_DEFPOS1 3-24
TC_DEFPOS2 3-25
TC_DEFPOS3 3-26
TC_DISABLEGROUP 3-28
TC_ENCODERRATIO 3-29
TC_FORWARD 3-30
TC_FRAMEGROUP 3-31
TC_FRAMEGROUP 3-33
TC_FRAMETRANS 3-34
TC_GetFRAME 3-36
TC_IDLE 3-37
TC_MOVE 3-38
TC_MOVE1 3-40
TC_MOVE2 3-41
TC_MOVE3 3-43
TC_MOVEABS 3-45
TC_MOVEABS1 3-46

TC_MOVEABS2 3-48
TC_MOVEABS3 3-50
TC_MOVEABSSP 3-51
TC_MOVEABSSP1 3-53
TC_MOVEABSSP2 3-55
TC_MOVEABSSP3 3-56
TC_MOVECIRC 3-58
TC_MOVECIRCSP 3-60
TC_MOVEHELICAL 3-61
TC_MOVEHELICALSP 3-63
TC_MOVELINK3-64
TC_MOVEMODIFY 3-66
TC_MOVESP 3-68
TC_MOVESP1 3-70
TC_MOVESP2 3-71
TC_MOVESP3 3-73
TC_MOVETANG 3-75
TC_MSPHERICAL 3-76
TC_MSPHERICALSP 3-78
TC_OP 3-81
TC_PSWITCH 3-81
TC_RAPIDSTOP 3-82
TC_READOP 3-83
TC_REVERSE 3-84
TC_SELECTTOOLOFFSET 3-86
TC_SELECTUSERFRAME 3-87
TC_SELECTUSERFRAMEB 3-88
TC_SetFRAME 3-89
TC_STEPRATIO 3-90

TC_SYNC 3-91
TC_ USERFRAMETRANS 3-93
TC_VOLUMELIMIT 3-95
TCR_AxisParameter 3-96
TCR_ErrorID.......................... 3-97
TCR_TABLE 3-98
TCR_TICKS 3-99
TCR_VR3-100
TCR_WDOG3-101
TCW_AxisParameter3-101
TCW_TABLE3-102
TCW_TICKS 3-103
TCW_VR3-104
TCW_WDOG3-105

Software Reference Manual

3-3IEC 61131-3 MOTION LIBRaRY

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY

3-4

Introduction to The IEC Motion Library

MC4xx IEC 61131-3 overview
In addition to the well-established Trio BASIC programming language, the MC4xx range introduces the
possibility to design programs using the international standard IEC 61131-3 language for industrial controls.

Motion Perfect version 3 comes complete with editors for the 4 methods supported; Ladder (LD), Structured
Text (ST), Function Block Diagram (FBD) and
Sequential Function Chart (SFC). The use of
the Motion Perfect v3 editor is covered in
the Motion Perfect section of the manual.
Motion Perfect v3 compiles the IEC 61131-3
programs and loads the compiled code into
the Motion Coordinator. The code is run in
the MC4xx by run-time execution software
which operates in parallel to the Trio BASIC
run-time environment. Therefore, both
programming systems can be used together
within the same project, on the same
Motion Coordinator.

The main functions of the IEC 61131-
3 languages follow the standard. So a
programmer already familiar with IEC
61131-3 will be able to start creating
programs with ease. The only new features
a programmer needs to learn is how to work
within the Motion Perfect v3 environment. The IEC 61131-3 editor and toolbox allows for rapid development
of standard programs. Inputs, Ouputs, VRs and TABLE can all be bound to named IEC 61131-3 named
variables, giving access from any programming method to the MC4xx IO space.

IEC 61131-3 Motion Library
The motion functions provided in the MC4xx range are the many functions which have been developed over
years of putting Motion Coordinators into service on machines of all types. They cover the whole range of
motion from simple point-to-point moves, through multi-axis interpolated motion, gearing and linked moves,
to sophisticated robotics. Application areas include cutting, gluing, packaging machines, printing machines,
pick and place, and production lines of all kinds.

The MC4xx motion library will be immediately recognised by programmers who have used Trio’s BASIC
language. Although it is not a strict match for the PLC Open-Motion part of IEC 61131-3, it does have
many parallel move types which can be used in place of the standard functions. What is more, the MC4xx

Software Reference Manual

3-5IEC 61131-3 MOTION LIBRaRY

motion library has the full set of Trio motion functions which have been proven to enable complex axis
synchronisation to be achieved in a very straight-forward way. Setting up complex, repeatable motion in a
very short time is now available in the IEC 61131-3 languages.

FUNCTION BLOCKS
Each Trio Motion function is available as a function block. The function blocks can be added to any of the 4
supported programming methods, including Ladder (LD). Function blocks run either when an enable input
is set to TRUE, or are triggered by a rising edge on the Execute input. For example, a TC_MOVE1 function
block may be set up with the axis number set on one input and the move distance set on the second input.
The move only starts when the Execute input changes from FALSE to TRUE.

In the IEC 61131-3 programming system, the program is continuously scanned. Therefore it is not possible to
have the equivalent of a WAIT IDLE that is commonly used in BASIC. Each function block therefore has a
number of outputs which can be used to determine whether the move is buffered, running, completed or if
there was an error. The common outputs are:

BUSY:
This BOOL output is TRUE after the Execute input has triggered the function. It goes back to FALSE once the
motion function has completed.

DONE:
This BOOL output goes TRUE after the motion function has been completed normally.

BUFFERED:
This BOOL output is TRUE to show that the motion command is waiting in NTYPE buffer.

ACTIVE:
This BOOL output is TRUE when the motion command is running. i.e. in MTYPE.

ABORTED:
This BOOL output goes TRUE if the motion is terminated due to a CANCEL or reaching an end-limit. It
indicates that the motion did not run to completion.

ERROR:
This BOOL output is set TRUE if a program error is detected. For example if an input value is out of range.

ERRORID:
An UINT value which gives the error number. This value is available when the Error output is TRUE. The
meaning of the ErrorID value is the same as a Trio BASIC run-time error value.

FUNCTION BLOCK DESCRIPTIONS
Each function block is described in the usual format for IEC 61131-3 library components. The details are
limited to those required in order to add the function block to a program. For a full description of the
associated motion command, see the Trio BASIC commands in chapter 2. Function block TC_MOVELINK, for
example, has the same operation as the Trio BASIC MOVELINK command, and the entry in chapter 2 includes
examples of how it may be used.

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY

3-6

Software Reference Manual

3-7IEC 61131-3 MOTION LIBRaRY
TC_addaX

TC_ADDAX
TYPE:
Motion Function.

FUNCTION:
Applies a new ADDAX request for the axis specified by ‘AxisNo’.

INPUTS:

EN : BOOL; Set TRUE to enable the function
AxisNo : USINT; Axis number
AxisToAdd : USINT; Axis number of the axis to add to AxisNo

OUTPUTS:

ENO : BOOL; TRUE if function is enabled
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the EN input is TRUE, the function block applies the ADDAX command to the axis indicated by AxisNo.
The axis number of the axis to add is taken from the AxisToAdd input. If the AxisToAdd is -1, then the Addax
axis connection is terminated.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_ADDAX(EN, AxisNo, AxisToAdd, ENO, Error, ErrorID);

FBD LANGUAGE:

 TC_ADDAX

EN
AxisNo

AxisToAdd

ENO
Error
ErrorID

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_adddaC

3-8

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_ADDDAC
TYPE:
Motion Function.

FUNCTION:
Applies a new ADDDAC request for the axis specified by ‘AxisNo’.

INPUTS:

EN : BOOL; Set TRUE to enable the function
AxisNo : USINT; Axis number
AxisToAdd : USINT; Axis number of the axis to add to AxisNo

OUTPUTS:

ENO : BOOL; TRUE if function is enabled
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the EN input is TRUE, the function block applies the ADDDAC command to the axis indicated by AxisNo.
The axis number of the axis to add is taken from the AxisToAdd input. If the AxisToAdd is -1, then the
AddDAC axis connection is terminated.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_ADDDAC(EN, AxisNo, AxisToAdd, ENO, Error, ErrorID);

 TC_ADDAX

AxisNo
AxisToAdd

Error
ErrorID

EN ENO

Software Reference Manual

3-9IEC 61131-3 MOTION LIBRaRY
TC_BaCKLaSH

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_BACKLASH
TYPE:
Motion Function.

FUNCTION:
Issues a new BACKLASH motion request for the axis specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number
Enable : BOOL; Set TRUE to enable the backlash function
Distance : LINT; Backlash distance to apply on direction change
Speed : LREAL; Speed of backlash correction in Units per Second
Accel : LREAL; Acceleration of backlash correction in Units s^-2

OUTPUTS:

Done : BOOL; TRUE when function has completed normally
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

TC_ADDDAC

EN
AxisNo

AxisToAdd

ENO
Error
ErrorID

TC_ADDDAC

AxisNo
AxisToAdd

Error
ErrorID

EN ENO

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_BaSE

3-10

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block issues the command
for execution in the velocity profile software. If the Enable is TRUE, the function sets up the Backlash
operation using the parameters given. If the Enable is FALSE then the Backlash operation is cancelled on
the axis defined by AxisNo.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_BACKLASH(Execute, AxisNo, Enable, Distance, Speed, Accel,
Done, Error, ErrorID);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_BASE
TYPE:
Motion Function.

TC_
BACKLASH

Execute
AxisNo
Enable

Distance
Speed
Accel

Done
Error
ErrorID

TC_
BACKLASH

AxisNo
Enable

Distance
Speed
Accel

Error
ErrorID

Execute Done

Software Reference Manual

3-11IEC 61131-3 MOTION LIBRaRY
TC_BaSE

FUNCTION:
Applies a new BASE request for the axis or axes specified by ‘AxisNo[]’.

INPUTS:

Execute : BOOL; Rising edge requests execution
Count : USINT; Number of axes specified in the AxisNo array
AxisNo[] : USINT[]; Axis number(s) of the axes to use in move commands

OUTPUTS:

Done : BOOL; TRUE when function has completed normally
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the Execute input changes from FALSE to TRUE (rising edge), the function block issues the command
for execution in the velocity profile software. The axis numbers in the array AxisNo become the axes to be
moved in any profiled move that is executed after the TC_BASE.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_BASE(Execute, Count, AxisNo[], Done, Error, ErrorID);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

 TC_BASE

Execute
Count
AxisNo

Done
Error
ErrorID

 TC_BASE

Count
AxisNo

Error
ErrorID

Execute Done

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_CaM

3-12

TC_CAM
TYPE:
Motion Function.

FUNCTION:
Issues a new CAM motion request for the axis specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number
Start : LINT; Table index for start of Cam data
Stop : LINT; Table index for end of Cam data
Multiplier : LREAL; Output position multiplier
Distance : LREAL; Distance parameter for CAM command

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_CAM(Execute, AxisNo, Start, Stop, Multiplier, Distance,
Busy, Done, Buffered, Active, Aborted, Error, ErrorID);

Software Reference Manual

3-13IEC 61131-3 MOTION LIBRaRY
TC_CaMBOX

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_CAMBOX
TYPE:
Motion Function.

FUNCTION:
Issues a new CAMBOX motion request for the axis specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number
Start : LINT; Table index for start of Cam data
Stop : LINT; Table index for end of Cam data

 TC_CAM

Execute
AxisNo
Start
Stop

Multiplier
Distance

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

 TC_CAM

AxisNo
Start
Stop

Multiplier
Distance

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_CaMBOX

3-14

Multiplier : LREAL; Output position multiplier
LinkAxis : USINT; Link axis number
LinkDistance : LREAL; Link distance
LinkOptions : DINT; Link options, set to 0 for none
LinkPosition : LREAL; Link Position, set to 0 if unused
LinkOffset : LREAL; Link Offset, set to 0 if unused

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_CAMBOX(Execute, AxisNo, Start, Stop, Multiplier, LinkAxis,
LinkDistance, LinkOptions, LinkPosition, LinkOffset, Busy,
Done, Buffered, Active, Aborted, Error, ErrorID);

FBD LANGUAGE:

TC_CAMBOX

Execute
AxisNo
Start
Stop

Multiplier
LinkAxis

LinkOptions
LinkPosition

LinkOffset

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

Software Reference Manual

3-15IEC 61131-3 MOTION LIBRaRY
TC_CaNCEL

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_CANCEL
TYPE:
Motion Function.

FUNCTION:
Issues a new CANCEL motion request for the axis specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number
Mode : BOOL; CANCEL mode

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each

TC_CAMBOX

AxisNo
Start
Stop

Multiplier
LinkAxis

LinkOptions
LinkPosition
LinkOffset

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_CONNECT

3-16

PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_CANCEL(Execute, AxisNo, Mode, Busy, Done, Buffered, Active,
Aborted, Error, ErrorID);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_CONNECT
TYPE:
Motion Function.

TC_CANCEL

Execute
AxisNo
Mode

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

 TC_CANCEL

AxisNo

Mode
Done

Buffered

Active

Aborted

Error

ErrorID

Execute Busy

Software Reference Manual

3-17IEC 61131-3 MOTION LIBRaRY
TC_CONNECT

FUNCTION:
Issues a new CONNECT motion request for the axis specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number
LinkAxis : USINT; Link axis number
Ratio : LREAL; Connect ratio: axis_counts/linkaxis_counts

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_CONNECT(Execute, AxisNo, LinkAxis, Ratio, Busy, Done,
Buffered, Active, Aborted, Error, ErrorID);

FBD LANGUAGE:

TC_CONNECT

Execute
AxisNo

LinkAxis
Ratio

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_daTuM

3-18

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_DATUM
TYPE:
Motion Function.

FUNCTION:
Issues a new DATUM motion request for the axis specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number
Mode : DINT; Datum sequence number

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each

TC_CONNECT

AxisNo
LinkAxis

Ratio

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

Software Reference Manual

3-19IEC 61131-3 MOTION LIBRaRY
TC_dEFINETOOLOFFSET

PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_DATUM(Execute, AxisNo, Mode, Busy, Done, Buffered, Active,
Aborted, Error, ErrorID);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_DEFINETOOLOFFSET
TYPE:
Motion Function.

TC_DATUM

Execute
AxisNo
Mode

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

TC_DATUM

AxisNo
Mode

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_dEFINETOOLOFFSET

3-20

FUNCTION:
Issues a new TOOL_OFFSET definition request for the identity specified by ‘ID’.

INPUTS:

EN : BOOL; TRUE enables the function
ID : USINT; Identification number for the defined tool offset (0 – 31)
XOFF : LREAL; Offset in the x axis from the world origin to the user origin
YOFF : LREAL; Offset in the y axis from the world origin to the user origin
ZOFF : LREAL; Offset in the z axis from the world origin to the user origin

OUTPUTS:

ENO : BOOL; TRUE if function is enabled
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the EN input is TRUE, the function block applies the TOOL_OFFSET command to the identity indicated
by ID. The offsets are applied to the identity, but are not selected until the TC_SELECTTOOLOFFSET is
executed.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_DEFINETOOLOFFSET(EN, ID, XOFF, YOFF, ZOFF, ENO, Error,
ErrorID);

FBD LANGUAGE:

TC_DEFINET
OOLOFFSET

EN
ID

XOFF

ENO
Error
ErrorID

YOFF
ZOFF

Software Reference Manual

3-21IEC 61131-3 MOTION LIBRaRY
TC_dEFINEuSERFRaME

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_DEFINEUSERFRAME
TYPE:
Motion Function.

FUNCTION:
Issues a new USER_FRAME definition request for the identity specified by ‘ID’.

INPUTS:

EN : BOOL; TRUE enables the function
ID : USINT; Identification number for the defined tool offset (0 – 31)
XOFF : LREAL; Offset in the x axis from the world origin to the user origin
YOFF : LREAL; Offset in the y axis from the world origin to the user origin
ZOFF : LREAL; Offset in the z axis from the world origin to the user origin
XROT : LREAL; Rotation about the items x axis in radians
YROT : LREAL; Rotation about the items y axis in radians
ZROT : LREAL; Rotation about the items z axis in radians

OUTPUTS:

ENO : BOOL; TRUE if function is enabled
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the EN input is TRUE, the function block applies the USER_OFFSET command to the identity
indicated by ID. The user frame parameters are applied to the identity, but are not selected until the TC_
SELECTUSERFRAME is executed.

A programming error, such as parameter out of range, will set the Error output and return an error ID

TC_DEFINET
OOLOFFSET

ID
XOFF

Error
 ErrorID

EN ENO

YOFF

ZOFF

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_dEFPOS

3-22

number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_DEFINUSERFRAME(EN, ID, XOFF, YOFF, ZOFF, XROT, YROT, ZROT,
ENO, Error, ErrorID);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_DEFPOS
TYPE:
Motion Function.

TC_DEFINEU
SERFRAME

EN
ID

XOFF

ENO
Error
ErrorID

YOFF
ZOFF
XROT
YROT
ZROT

TC_DEFINEU
SERFRAME

ID
XOFF

Error
 ErrorID

EN ENO

YOFF

ZOFF
XROT
YROT
ZROT

Software Reference Manual

3-23IEC 61131-3 MOTION LIBRaRY
TC_dEFPOS

FUNCTION:
Applies a new DEFPOS request for the axis or axes specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number of the base axis
Count : USINT; Number of values specified in the Positions array
Positions[] : LREAL[]; Array containing the position values to be applied

OUTPUTS:

Done : BOOL; TRUE when function has completed normally
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the Execute input changes from FALSE to TRUE (rising edge), the function block issues the command
for execution in the velocity profile software. The values in the array Positions are applied to Count axes,
starting at axis AxisNo.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_DEFPOS(Execute, AxisNo, Count, Positions[], Done, Error,
ErrorID);

FBD LANGUAGE:

TC_DEFPOS

Execute
AxisNo
Count

Done
Error
ErrorID

Positions

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_dEFPOS1

3-24

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_DEFPOS1
TYPE:
Motion Function.

FUNCTION:
Applies a new DEFPOS request for one axis specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number
Pos : LREAL; Position value to be applied

OUTPUTS:

Done : BOOL; TRUE when function has completed normally
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the Execute input changes from FALSE to TRUE (rising edge), the function block issues the command
for execution in the velocity profile software. The value in Position is applied to the axis given by AxisNo.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC _ DEFPOS1(Execute, AxisNo, Pos, Done, Error, ErrorID);

TC_DEFPOS

AxisNo
 Count

Error
ErrorID

Execute Done

Positions

Software Reference Manual

3-25IEC 61131-3 MOTION LIBRaRY
TC_dEFPOS2

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_DEFPOS2
TYPE:
Motion Function.

FUNCTION:
Applies a new DEFPOS request for two axes specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number
Pos1 : LREAL; Position value to be applied to first axis
Pos2 : LREAL; Position value to be applied to second axis

OUTPUTS:

Done : BOOL; TRUE when function has completed normally
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

TC_DEFPOS1

Execute
AxisNo

Pos

Done
Error
ErrorID

TC_DEFPOS1

AxisNo
 Pos

Error
ErrorID

Execute Done

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_dEFPOS3

3-26

DESCRIPTION:
When the Execute input changes from FALSE to TRUE (rising edge), the function block issues the command
for execution in the velocity profile software. The values in Pos1 and Pos2 are applied to the axes starting
at AxisNo.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC _ DEFPOS2(Execute, AxisNo, Pos1, Pos2, Done, Error,
ErrorID);

FBD LANGUAGE:

LD LANGUAGE:

I L LANGUAGE:
Not available.

TC_DEFPOS3
TYPE:
Motion Function.

FUNCTION:
Applies a new DEFPOS request for three axes specified by ‘AxisNo’.

TC_DEFPOS2

Execute
AxisNo
Pos1

Done
Error
ErrorID

Pos2

TC_DEFPOS2

AxisNo
 Pos1

Error
ErrorID

Execute Done

Pos2

Software Reference Manual

3-27IEC 61131-3 MOTION LIBRaRY
TC_dEFPOS3

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number
Pos1 : LREAL; Position value to be applied to first axis
Pos2 : LREAL; Position value to be applied to second axis
Pos3 : LREAL; Position value to be applied to third axis

OUTPUTS:

Done : BOOL; TRUE when function has completed normally
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the Execute input changes from FALSE to TRUE (rising edge), the function block issues the command
for execution in the velocity profile software. The values in Pos1, Pos2 and Pos3 are applied to the axes
starting at AxisNo.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC _ DEFPOS3(Execute, AxisNo, Pos1, Pos2, Pos3, Done, Error,
ErrorID);

FBD LANGUAGE:

TC_DEFPOS3

Execute
AxisNo
Pos1

Done
Error
ErrorID

Pos2
 Pos3

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_dISaBLEGROuP

3-28

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_DISABLEGROUP
TYPE:
Motion Function.

FUNCTION:
Applies a new DISABLE_GROUP request for the axis or axes specified by ‘AxisNo[]’.

INPUTS:

EN : BOOL; TRUE to enable the function
AxisCount : USINT; Number of axes specified in the Axes array
Axes[] : USINT[]; Axis numbers of the axes to put in the Disable Group

OUTPUTS:

ENO : BOOL; TRUE when function is Enabled
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the EN input is TRUE, the function block applies the command with the axes indicated.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_DISABLEGROUP(EN, AxisCount, Axes[], ENO, Error, ErrorID);

TC_DEFPOS3

AxisNo
 Pos1

Error
ErrorID

Execute Done

Pos2
Pos3

Software Reference Manual

3-29IEC 61131-3 MOTION LIBRaRY
TC_ENCOdERRaTIO

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_ENCODERRATIO
TYPE:
Motion Function.

FUNCTION:
Issues a new ENCODER_RATIO motion request for the axis specified by ‘AxisNo’.

INPUTS:
EN : BOOL; TRUE enables the function
AxisNo : USINT; Axis number
Numerator: LINT; The MPOS count (output of the function)
Denominator: LINT; The input count

OUTPUTS:

ENO : BOOL; TRUE when function is enabled
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the EN input is TRUE, the function block applies the command to the axis indicated.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

TC_DISABLE
GROUP

EN
AxisCount

Axes

ENO
Error
ErrorID

TC_DISABLE
GROUP

AxisCount
Axes

Error
ErrorID

EN ENO

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_FORWaRd

3-30

ST LANGUAGE:
TC_ENCODERRATIO(EN, AxisNo, Numerator, Denominator, ENO, Error,
ErrorID);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_FORWARD
TYPE:
Motion Function.

FUNCTION:
Issues a new FORWARD motion request for the axis specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number

OUTPUTS:

ENO : BOOL; TRUE when function is enabled
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

TC_
ENCODERRAT
IO EN

AxisNo
Numerator

Denominator

ENO
Error
ErrorID

TC_
ENCODERRAT
IO

AxisNo
Numerator

Denominator

Error
ErrorID

EN ENO

Software Reference Manual

3-31IEC 61131-3 MOTION LIBRaRY
TC_FRaMEGROuP

DESCRIPTION:
When the EN input is TRUE, the function block applies the command to the axis group indicated by AxisNo.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_FRAMEGROUP(EN, ID, TableIndex, AxisCount, Axes, ENO, Error,
ErrorID);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_FRAMEGROUP
TYPE:
Motion Function.

TC_FORWARD

Execute
AxisNo

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

TC_FORWARD

AxisNo Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_FRaMEGROuP

3-32

FUNCTION:
Issues a new FRAME_GROUP motion request for the axis specified by ‘AxisNo’.

INPUTS:

EN : BOOL; TRUE to enable the function
ID : USINT; Frame Group Identity number
TableIndex : DINT; Table index points to frame parameters
AxisCount : USINT; Number of axes in Frame Group
Axes[] : USINT[]; Array containing the axis numbers

OUTPUTS:

ENO : BOOL; TRUE when function is enabled
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the EN input is TRUE, the function block applies the command to the axis group indicated by AxisNo.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_FRAMEGROUP(EN, ID, TableIndex, AxisCount, Axes, ENO, Error,
ErrorID);

FBD LANGUAGE:

TC_
FRAMEGROUP

EN
ID

TableIndex
AxisCount

Axes

ENO
Error
ErrorID

Software Reference Manual

3-33IEC 61131-3 MOTION LIBRaRY
TC_FRaMETRaNS

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_FRAMETRANS
TYPE:
Motion Function.

FUNCTION:
Issues a new FRAME_TRANS motion request for the axis specified by ‘AxisNo’.

INPUTS:

EN : BOOL; TRUE to enable the function
Frame : DINT; The FRAME number to run
DataIn : DINT; The start position in the TABLE of the input positions
DataOut : DINT; The start position in the TABLE of the generated positions
Option : DINT; 1 = AXIS_DPOS to DPOS (Forward Kinematics)

0 = DPOS to AXIS_DPOS (Inverse Kinematics)
TableData : DINT; The first position in the table where the frame configuration is located.

OUTPUTS:

ENO : BOOL; TRUE when function is enabled
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the EN input is TRUE, the function block applies the command using the frame number indicated by
Frame.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

TC_
FRAMEGROUP

ID
TableIndex
AxisCount

Axes

Error
ErrorID

EN ENO

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_GetFRaME

3-34

ST LANGUAGE:
TC_FRAMETRANS(EN, Frame, DataIn, DataOut, Option, TableData,
ENO, Error, ErrorID);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_GetFRAME
TYPE:
Motion Function.

FUNCTION:
Fetches the currently active FRAME.

INPUTS:

EN : BOOL; Set TRUE to enable the function
AxisNo : USINT; Axis number

TC_
FRAMETRANS

EN
Frame
DataIn
DataOut
Option

TableData

ENO
Error
ErrorID

TC_
FRAMETRANS

Frame
DataIn
DataOut
Option

TableData

Error
ErrorID

EN ENO

Software Reference Manual

3-35IEC 61131-3 MOTION LIBRaRY
TC_IdLE

OUTPUTS:

ENO : BOOL; TRUE if function is enabled
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number
FRAME: DINT The active Frame

DESCRIPTION:
When the EN input is TRUE, the function block applies the command to the axis indicated by AxisNo.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC _ GetFRAME(EN, AxisNo, ENO, Error, ErrorID, FRAME);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_IDLE
TYPE:
Motion Function.

TC_
GetFRAME

EN
AxisNo

ENO
Error
ErrorID

FRAME

TC_
GetFRAME

AxisNo Error
ErrorID

EN ENO

FRAME

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_IdLE

3-36

FUNCTION:
Evalues whether the axis is IDLE or not.

INPUTS:

EN : BOOL; Set TRUE to enable the function
AxisNo : USINT; Axis number

OUTPUTS:

ENO : BOOL; TRUE if function is enabled
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number
Idle: BOOL TRUE when axis is Idle, FALSE if motion in progress

DESCRIPTION:
When the EN input is TRUE, the function block applies the command to the axis indicated by AxisNo.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_IDLE(EN, AxisNo, ENO, Error, ErrorID, Idle);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_IDLE

EN
AxisNo

ENO
Error
ErrorID

Idle

TC_IDLE

AxisNo Error
ErrorID

EN ENO

Idle

Software Reference Manual

3-37IEC 61131-3 MOTION LIBRaRY
TC_MOVE

TC_MOVE
TYPE:
Motion Function.

FUNCTION:
Issues a new MOVE motion request for the axis specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number of base axis
Count : USINT; Number of axes to be interpolated together
Distances[] : LREAL; Array containing the distances to be moved, one per axis

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_MOVE(Execute, AxisNo, Count, Distances, Busy, Done,
Buffered, Active, Aborted, Error, ErrorID);

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_MOVE1

3-38

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_MOVE1
TYPE:
Motion Function.

FUNCTION:
Issues a new MOVE(Dist) motion request for the axis specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number of base axis
Dist : LREAL; The distance to be moved

 TC_MOVE

Execute
AxisNo
Count

Distances

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

 TC_MOVE

AxisNo
Count

Distances

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

Software Reference Manual

3-39IEC 61131-3 MOTION LIBRaRY
TC_MOVE1

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC _ MOVE1(Execute, AxisNo, Dist, Busy, Done, Buffered,
Active, Aborted, Error, ErrorID);

FBD LANGUAGE:

 TC_MOVE1

Execute
AxisNo
Dist

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_MOVE2

3-40

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_MOVE2
TYPE:
Motion Function.

FUNCTION:
Issues a new MOVE(Dist1, Dist2) motion request for the pair of axes specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number of base axis
Dist1 : LREAL; Distance to be moved on the first axis
Dist2 : LREAL; Distance to be moved on the second axis

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each

 TC_MOVE1

AxisNo
Dist

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

Software Reference Manual

3-41IEC 61131-3 MOTION LIBRaRY
TC_MOVE3

PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC _ MOVE2(Execute, AxisNo, Dist1, Dist2, Busy, Done,
Buffered, Active, Aborted, Error, ErrorID);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_MOVE3
TYPE:
Motion Function.

 TC_MOVE2

Execute
AxisNo
Dist1
Dist2

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

 TC_MOVE2

AxisNo
Dist1
Dist2

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_MOVE3

3-42

FUNCTION:
Issues a new MOVE(Dist1, Dist2, Dist3) motion request for the 3 axes specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number of base axis
Dist1 : LREAL; Distance to be moved on the first axis
Dist2 : LREAL; Distance to be moved on the second axis
Dist3 : LREAL; Distance to be moved on the third axis

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC _ MOVE3(Execute, AxisNo, Dist1, Dist2, Dist3, Busy, Done,
Buffered, Active, Aborted, Error, ErrorID);

Software Reference Manual

3-43IEC 61131-3 MOTION LIBRaRY
TC_MOVEaBS

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_MOVEABS
TYPE:
Motion Function.

FUNCTION:
Issues a new MOVEABS motion request for the axis specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution

 TC_MOVE3

Execute
AxisNo
Dist1
Dist2

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

Dist3

 TC_MOVE3

AxisNo
Dist1
Dist2

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

Dist3

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_MOVEaBS

3-44

AxisNo : USINT; Axis number of base axis
Count : USINT; Number of axes to be interpolated together
Positions[] : LREAL; Array containing the positions to be moved to, one per axis

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_MOVEABS(Execute, AxisNo, Count, Positions, Busy, Done,
Buffered, Active, Aborted, Error, ErrorID);

FBD LANGUAGE:

TC_MOVEABS

Execute
AxisNo
Count

Positions

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

Software Reference Manual

3-45IEC 61131-3 MOTION LIBRaRY
TC_MOVEaBS1

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_MOVEABS1
TYPE:
Motion Function.

FUNCTION:
Issues a new MOVEABS (Pos) motion request for the axis specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number of base axis
Pos : LREAL; The absolute position to be moved to

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each

TC_MOVEABS

AxisNo
Count

Positions

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_MOVEaBS2

3-46

PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC _ MOVEABS1(Execute, AxisNo, Pos, Busy, Done, Buffered,
Active, Aborted, Error, ErrorID);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_MOVEABS2
TYPE:
Motion Function.

TC_
MOVEABS1

Execute
AxisNo

Pos

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

TC_
MOVEABS1

AxisNo
Pos

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

Software Reference Manual

3-47IEC 61131-3 MOTION LIBRaRY
TC_MOVEaBS2

FUNCTION:
Issues a new MOVEABS(Pos1, Pos2) motion request for the pair of axes specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number of base axis
Pos1 : LREAL; Position to be moved to on the first axis
Pos2 : LREAL; Position to be moved to on the second axis

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC _ MOVEABS2(Execute, AxisNo, Pos1, Pos2, Busy, Done,
Buffered, Active, Aborted, Error, ErrorID);

FBD LANGUAGE:

TC_
MOVEABS2

Execute
AxisNo
Pos1
Pos2

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_MOVEaBS3

3-48

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_MOVEABS3
TYPE:
Motion Function.

FUNCTION:
Issues a new MOVEABS(Pos1, Pos2, Pos3) motion request for the 3 axes specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number of base axis
Pos1 : LREAL; Position to be moved to on the first axis
Pos2 : LREAL; Position to be moved to on the second axis
Pos3 : LREAL; Position to be moved to on the third axis

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

TC_
MOVEABS2

AxisNo
Pos1
Pos2

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

Software Reference Manual

3-49IEC 61131-3 MOTION LIBRaRY
TC_MOVEaBS3

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC _ MOVEABS3(Execute, AxisNo, Pos1, Pos2, Pos3, Busy, Done,
Buffered, Active, Aborted, Error, ErrorID);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_
MOVEABS3

Execute
AxisNo
Pos1
Pos2

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

Pos3

TC_
MOVEABS3

AxisNo
Pos1
Pos2

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

Pos3

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_MOVEaBSSP

3-50

TC_MOVEABSSP
TYPE:
Motion Function.

FUNCTION:
Issues a new MOVEABSSP motion request for the axes specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number
Count : USINT; Number of axes to be interpolated together
Positions[] : LREAL[]; Array containing the positions to be moved to, one per axis
ForceSpeed : REAL; FORCE_SPEED value
EndmoveSpeed : REAL; ENDMOVE_SPEED value

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_MOVEABSSP(Execute, AxisNo, Count, Positions, ForceSpeed,
EndmoveSpeed, Busy, Done, Buffered, Active, Aborted, Error,
ErrorID);

Software Reference Manual

3-51IEC 61131-3 MOTION LIBRaRY
TC_MOVEaBSSP1

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_MOVEABSSP1
TYPE:
Motion Function.

FUNCTION:
Issues a new MOVEABSSP(Pos) motion request for the axes specified by ‘AxisNo’.

INPUTS:
Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number
Pos : LREAL; Position to be moved to
ForceSpeed : REAL; FORCE_SPEED value

TC_
MOVEABSSP

Execute
AxisNo
Count

Positions
ForceSpeed

EndmoveSpeed

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

TC_
MOVEABSSP

AxisNo
Count

Positions
ForceSpeed

EndmoveSpeed

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_MOVEaBSSP1

3-52

EndmoveSpeed : REAL; ENDMOVE_SPEED value

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC _ MOVEABSSP2(Execute, AxisNo, Pos, ForceSpeed,
EndmoveSpeed, Busy, Done, Buffered, Active, Aborted, Error,
ErrorID);

FBD LANGUAGE:

TC_
MOVEABSSP1

Execute
AxisNo

Pos
ForceSpeed

EndmoveSpeed

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

Software Reference Manual

3-53IEC 61131-3 MOTION LIBRaRY
TC_MOVEaBSSP2

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_MOVEABSSP2
TYPE:
Motion Function.

FUNCTION:
Issues a new MOVEABSSP(Pos1, Pos2) motion request for the axes specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number
Pos1 : LREAL; Position to be moved to on the first axis
Pos2 : LREAL; Position to be moved to on the second axis
ForceSpeed : REAL; FORCE_SPEED value
EndmoveSpeed : REAL; ENDMOVE_SPEED value

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

TC_
MOVEABSSP1

AxisNo
Pos

ForceSpeed
EndmoveSpeed

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_MOVEaBSSP2

3-54

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC _ MOVEABSSP2(Execute, AxisNo, Pos1, Pos2, ForceSpeed,
EndmoveSpeed, Busy, Done, Buffered, Active, Aborted, Error,
ErrorID);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_
MOVEABSSP2

Execute
AxisNo
Pos1
Pos2

ForceSpeed
EndmoveSpeed

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

TC_
MOVEABSSP2

AxisNo
Pos1
Pos2

ForceSpeed
EndmoveSpeed

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

Software Reference Manual

3-55IEC 61131-3 MOTION LIBRaRY
TC_MOVEaBSSP3

TC_MOVEABSSP3
TYPE:
Motion Function.

FUNCTION:
Issues a new MOVEABSSP(Pos1, Pos2, Pos3) motion request for the axes specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number
Pos1 : LREAL; Position to be moved to on the first axis
Pos2 : LREAL; Position to be moved to on the second axis
Pos3 : LREAL; Position to be moved to on the third axis
ForceSpeed : REAL; FORCE_SPEED value
EndmoveSpeed : REAL; ENDMOVE_SPEED value

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC _ MOVEABSSP3(Execute, AxisNo, Pos1, Pos2, Pos3, ForceSpeed,
EndmoveSpeed, Busy, Done, Buffered, Active, Aborted, Error,
ErrorID);

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_MOVECIRC

3-56

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_MOVECIRC
TYPE:
Motion Function.

FUNCTION:
Issues a new MOVECIRC motion request for the axes specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number
End1 : LREAL; Relative end point X
End2 : LREAL; Relative end point Y

TC_
MOVEABSSP3

Execute
AxisNo
Pos1
Pos2
Pos3

ForceSpeed
EndmoveSpeed

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

TC_
MOVEABSSP3

AxisNo
Pos1
Pos2
Pos3

ForceSpeed
EndmoveSpeed

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

Software Reference Manual

3-57IEC 61131-3 MOTION LIBRaRY
TC_MOVECIRC

Centre1 : LREAL; Relative centre point X
Centre2 : LREAL; Relative centre point Y
Direction : BOOL; Direction of rotation

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_MOVECIRC(Execute, AxisNo, End1, End2, Centre1, Centre2,
Direction, Busy, Done, Buffered, Active, Aborted, Error,
ErrorID);

FBD LANGUAGE:

TC_
MOVECIRCSP

Execute
AxisNo
End1
End2

Centre1
Centre2

Direction

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

ForceSpeed
EndmoveSpeed

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_MOVECIRCSP

3-58

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_MOVECIRCSP
TYPE:
Motion Function.

FUNCTION:
Issues a new MOVECIRCSP motion request for the axes specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number
End1 : LREAL; Relative end point X
End2 : LREAL; Relative end point Y
Centre1 : LREAL; Relative centre point X
Centre2 : LREAL; Relative centre point Y
Direction : BOOL; Direction of rotation
ForceSpeed : REAL; FORCE_SPEED value
EndmoveSpeed : REAL; ENDMOVE_SPEED value

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer

TC_
MOVECIRC

AxisNo
End1
End2

Centre1
Centre2

Direction

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

Software Reference Manual

3-59IEC 61131-3 MOTION LIBRaRY
TC_MOVECIRCSP

Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_MOVECIRCSP(Execute, AxisNo, End1, End2, Centre1, Centre2,
Direction, ForceSpeed, EndmoveSpeed, Busy, Done, Buffered,
Active, Aborted, Error, ErrorID);

FBD LANGUAGE:

TC_
MOVECIRC

Execute
AxisNo
End1
End2

Centre1
Centre2

Direction

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_MOVEHELICaL

3-60

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_MOVEHELICAL
TYPE:
Motion Function.

FUNCTION:
Issues a new MHELICAL motion request for the axes specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number
End1 : LREAL; Relative end point X
End2 : LREAL; Relative end point Y
Centre1 : LREAL; Relative centre point X
Centre2 : LREAL; Relative centre point Y
Direction : BOOL; Direction of rotation
Z : LREAL; Linear distance in Z

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer

TC_
MOVECIRCSP

AxisNo
End1
End2

Centre1
Centre2

Direction

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

ForceSpeed
EndmoveSpeed

Software Reference Manual

3-61IEC 61131-3 MOTION LIBRaRY
TC_MOVEHELICaL

Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_MOVEHELICAL(Execute, AxisNo, End1, End2, Centre1, Centre2,
Direction, z, Busy, Done, Buffered, Active, Aborted, Error,
ErrorID);

FBD LANGUAGE:

TC_MOVE
HELICAL

Execute
AxisNo
End1
End2

Centre1
Centre2

Direction

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

z

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_MOVEHELICaLSP

3-62

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_MOVEHELICALSP
TYPE:
Motion Function.

FUNCTION:
Issues a new MHELICALSP motion request for the axes specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number
End1 : LREAL; Relative end point X
End2 : LREAL; Relative end point Y
Centre1 : LREAL; Relative centre point X
Centre2 : LREAL; Relative centre point Y
Direction : BOOL; Direction of rotation
z : LREAL; Linear distance for Z
ForceSpeed : REAL; FORCE_SPEED value
EndmoveSpeed : REAL; ENDMOVE_SPEED value

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer

TC_MOVE
HELICAL

AxisNo
End1
End2

Centre1
Centre2

Direction

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

z

Software Reference Manual

3-63IEC 61131-3 MOTION LIBRaRY
TC_MOVEHELICaLSP

Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_MOVEHELICALSP(Execute, AxisNo, End1, End2, Centre1, Centre2,
Direction, z, ForceSpeed, EndmoveSpeed, Busy, Done, Buffered,
Active, Aborted, Error, ErrorID);

FBD LANGUAGE:

TC_MOVE
HELICALSP

Execute
AxisNo
End1
End2

Centre1
Centre2

Direction

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

z
ForceSpeed

 EndmoveSpeed

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_MOVELINK

3-64

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_MOVELINK
TYPE:
Motion Function.

FUNCTION:
Issues a new MOVELINK motion request for the axis specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number
Dist : LREAL; Distance to move
LinkAxis : USINT; Link axis number
LinkDist : LREAL; Total distance on link axis
LinkAccDist : USINT; Distance on link axis for acceleration ramp
LinkDecDist : LREAL; Distance on link axis for deceleration ramp
Options : DINT; Link options, set to 0 for none
LinkPos : LREAL; Link Position, set to 0 if unused

OUTPUTS:

Busy : BOOL; TRUE if function is running

TC_MOVE
HELICALSP

AxisNo
End1
End2

Centre1
Centre2

Direction

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

z
ForceSpeed

 EndmoveSpeed

Software Reference Manual

3-65IEC 61131-3 MOTION LIBRaRY
TC_MOVELINK

Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_MOVELINK(Execute, AxisNo, Dist, LinkAxis, LinkDist,
LinkAccDist, LinkDecDist, Options, LinkPos, Busy, Done,
Buffered, Active, Aborted, Error, ErrorID);

FBD LANGUAGE:

TC_
MOVELINK

Execute
AxisNo
Dist

LinkAxis
LinkDist

LinkAccDist
LinkDecDist

Options
LinkPos

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_MOVEMOdIFY

3-66

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_MOVEMODIFY
TYPE:
Motion Function.

FUNCTION:
Issues a new MOVEMODIFY motion request for the axis specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number of base axis
Pos : LREAL; The absolute position to be moved to

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

TC_
MOVELINK

AxisNo
Dist

LinkAxis
LinkDist

LinkAccDist
LinkDecDist

Options
LinkPos

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

Software Reference Manual

3-67IEC 61131-3 MOTION LIBRaRY
TC_MOVEMOdIFY

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_MOVEMODIFY(Execute, AxisNo, Pos, Busy, Done, Buffered,
Active, Aborted, Error, ErrorID);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_
MOVEMODIFY

Execute
AxisNo

Pos

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

TC_
MOVEMODIFY

AxisNo
Pos

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_MOVESP

3-68

TC_MOVESP
TYPE:
Motion Function.

FUNCTION:
Issues a new MOVESP motion request for the axis specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number of base axis
Count : USINT; Number of axes to be interpolated together
Distances[] : LREAL; Array containing the distances to be moved, one per axis
ForceSpeed : REAL; FORCE_SPEED value
EndmoveSpeed : REAL; ENDMOVE_SPEED value

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_MOVESP(Execute, AxisNo, Count, Distances, ForceSpeed,
EndmoveSpeed, Busy, Done, Buffered, Active, Aborted, Error,
ErrorID);

Software Reference Manual

3-69IEC 61131-3 MOTION LIBRaRY
TC_MOVESP1

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:

Not available.

TC_MOVESP1
TYPE:
Motion Function.

FUNCTION:
Issues a new MOVESP(Dist) motion request for the axis specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number of base axis
Dist : LREAL; The distance to be moved

TC_MOVESP

Execute
AxisNo
Count

Distances

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

ForceSpeed
EndmoveSpeed

TC_MOVESP

AxisNo
Count

Distances

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

ForceSpeed
EndmoveSpeed

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_MOVESP1

3-70

ForceSpeed : REAL; FORCE_SPEED value
EndmoveSpeed : REAL; ENDMOVE_SPEED value

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC _ MOVESP1(Execute, AxisNo, Dist, ForceSpeed, EndmoveSpeed,
Busy, Done, Buffered, Active, Aborted, Error, ErrorID);

FBD LANGUAGE:

TC_MOVESP1

Execute
AxisNo
Dist

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

ForceSpeed
EndmoveSpeed

Software Reference Manual

3-71IEC 61131-3 MOTION LIBRaRY
TC_MOVESP2

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_MOVESP2
TYPE:
Motion Function.

FUNCTION:
Issues a new MOVESP(Dist1, Dist2) motion request for the pair of axes specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number of base axis
Dist1 : LREAL; Distance to be moved on the first axis
Dist2 : LREAL; Distance to be moved on the second axis
ForceSpeed : REAL; FORCE_SPEED value
EndmoveSpeed : REAL; ENDMOVE_SPEED value

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

TC_MOVESP1

AxisNo
Dist

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

ForceSpeed
EndmoveSpeed

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_MOVESP2

3-72

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC _ MOVESP2(Execute, AxisNo, Dist1, Dist2, ForceSpeed,
EndmoveSpeed, Busy, Done, Buffered, Active, Aborted, Error,
ErrorID);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_MOVESP2

Execute
AxisNo
Dist1
Dist2

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

ForceSpeed
EndmoveSpeed

TC_MOVESP2

AxisNo
Dist1
Dist2

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

ForceSpeed
EndmoveSpeed

Software Reference Manual

3-73IEC 61131-3 MOTION LIBRaRY
TC_MOVESP3

TC_MOVESP3
TYPE:
Motion Function.

FUNCTION:
Issues a new MOVESP(Dist1, Dist2, Dist3) motion request for the 3 axes specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number of base axis
Dist1 : LREAL; Distance to be moved on the first axis
Dist2 : LREAL; Distance to be moved on the second axis
Dist3 : LREAL; Distance to be moved on the third axis
ForceSpeed : REAL; FORCE_SPEED value
EndmoveSpeed : REAL; ENDMOVE_SPEED value

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC _ MOVESP3(Execute, AxisNo, Dist1, Dist2, Dist3, ForceSpeed,
EndmoveSpeed, Busy, Done, Buffered, Active, Aborted, Error,
ErrorID);

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_MOVETaNG

3-74

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_MOVETANG
TYPE:
Motion Function.

FUNCTION:
Issues a new MOVETANG motion request for the axis specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number of base axis
EndPos : LREAL; Position

TC_MOVESP3

Execute
AxisNo
Dist1
Dist2

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

Dist3
ForceSpeed

EndmoveSpeed

TC_MOVESP3

AxisNo
Dist1
Dist2

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

Dist3
ForceSpeed

EndmoveSpeed

Software Reference Manual

3-75IEC 61131-3 MOTION LIBRaRY
TC_MOVETaNG

LinkAxis : USINT; Base axis number of the axis pair to follow
DisableLinkAxis : BOOL; Operates the disable link axis function

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_MOVETANG(Execute, AxisNo, EndPos, LinkAxis,
DisableLinkAxis, Busy, Done, Buffered, Active, Aborted,
Error, ErrorID);

FBD LANGUAGE:

TC_
MOVETANG

Execute
AxisNo
EndPos

LinkAxis

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

DisableLinkAxis

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_MSPHERICaL

3-76

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_MSPHERICAL
TYPE:
Motion Function.

FUNCTION:
Issues a new MSPHERICAL motion request for the axes specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number
EndX : LREAL; Relative end point X
EndY : LREAL; Relative end point Y
EndZ : LREAL; Relative end point Z
MidX : LREAL; Relative mid-point X
MidY : LREAL; Relative mid- point Y
MidZ : LREAL; Relative mid- point Z
Mode : INT; Mode
GtPI : INT; Direction control

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer

TC_
MOVETANG

AxisNo
EndPos

LinkAxis

Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

DisableLinkAxis

Software Reference Manual

3-77IEC 61131-3 MOTION LIBRaRY
TC_MSPHERICaL

Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_MSPHERICAL(Execute, AxisNo, EndX, EndY, EndZ, MidX, MidY,
MidZ, Mode, GtPI, Busy, Done, Buffered, Active, Aborted,
Error, ErrorID);

FBD LANGUAGE:

TC_
MSPHERICAL

Execute
AxisNo
EndX
EndY
EndZ
MidX
MidY

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

MidZ
Mode
GtPI

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_MSPHERICaLSP

3-78

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_MSPHERICALSP
TYPE:
Motion Function.

FUNCTION:
Issues a new MSPHERICALSP motion request for the axes specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number
EndX : LREAL; Relative end point X
EndY : LREAL; Relative end point Y
EndZ : LREAL; Relative end point Z
MidX : LREAL; Relative mid-point X
MidY : LREAL; Relative mid- point Y
MidZ : LREAL; Relative mid- point Z
Mode : INT; Mode
GtPI : INT; Direction control
ForceSpeed : REAL; FORCE_SPEED value
EndmoveSpeed : REAL; ENDMOVE_SPEED value

TC_
MSPHERICAL

AxisNo Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

EndX
EndY
EndZ
MidX
MidY
MidZ
Mode
GtPI

Software Reference Manual

3-79IEC 61131-3 MOTION LIBRaRY
TC_MSPHERICaLSP

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_MSPHERICALSP(Execute, AxisNo, EndX, EndY, EndZ, MidX, MidY,
MidZ, Mode, GtPI, ForceSpeed, EndmoveSpeed, Busy, Done,
Buffered, Active, Aborted, Error, ErrorID);

FBD LANGUAGE:

TC_
MSPHERICAL
SP Execute

AxisNo
EndX
EndY
EndZ
MidX
MidY

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

MidZ
Mode
GtPI

ForceSpeed
EndmoveSpeed

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_OP

3-80

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_OP
TYPE:
Motion Function.

FUNCTION:
Applies a new OP request for the digital output specified.

INPUTS:

Index : INT; Output number
Value : SINT; Output value

OUTPUTS:

Q : SINT;

DESCRIPTION:
Sets the digital outputs to the binary pattern given in Value.

ST LANGUAGE:
TC_OP(Index, Value, Q);

TC_
MSPHERICAL
SP

AxisNo Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

EndX
EndY
EndZ
MidX
MidY
MidZ
Mode
GtPI

ForceSpeed
EndmoveSpeed

Software Reference Manual

3-81IEC 61131-3 MOTION LIBRaRY
TC_PSWITCH

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_PSWITCH
TYPE:
Motion Function.

FUNCTION:
Issues a new PSWITCH request for the axis specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number
Mode : USINT; PSwitch mode
Switch : USINT; PSwitch number
Output : USINT; Digital output number
OpState : USINT; Output state required when PSwitch is in range
SetPosition : LREAL; Start position where output will assume the defined state
ResetPosition : LREAL; End position where output will go to the opposite state

OUTPUTS:

Done : BOOL; TRUE when function has completed normally
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block runs the command.

 TC_OP
Index
Value

Q

 TC_OP

Index
Value

Q

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_PSWITCH

3-82

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_PSWITCH(Execute, AxisNo, Mode, Switch, Output, OpState,
SetPosition, ResetPosition, Done, Error, ErrorID);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_PSWITCH

Execute
AxisNo
Mode

Switch
Output
OpState

SetPosition
ResetPosition

Done
Error
ErrorID

TC_PSWITCH

AxisNo Error
ErrorID

Execute Done

Mode
Switch
Output
OpState

SetPosition
ResetPosition

Software Reference Manual

3-83IEC 61131-3 MOTION LIBRaRY
TC_RaPIdSTOP

TC_RAPIDSTOP
TYPE:
Motion Function.

FUNCTION:
Issues a new RAPIDSTOP motion request for the axis specified by ‘AxisNo’.

INPUTS:

Execute : BOOL; Rising edge requests execution
Mode : USINT; RAPIDSTOP mode

OUTPUTS:

Done : BOOL; TRUE when function has completed normally

DESCRIPTION:
When the Execute input changes from FALSE to TRUE (rising edge), the function block loads the motion
command.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_RAPIDSTOP(Execute, Mode, Done);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_
RAPIDSTOP

Execute
Mode

Done

TC_
RAPIDSTOP

Mode

Execute Done

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_REadOP

3-84

TC_READOP
TYPE:
Motion Function.

FUNCTION:
Applies a new READ_OP request for the digital output specified.

INPUTS:

Index : INT; Output number

OUTPUTS:

Q : SINT; Output state

DESCRIPTION:
Sets the digital outputs to the binary pattern given in Value.

ST LANGUAGE:
TC_READOP(Index, Q);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_REVERSE
TYPE:
Motion Function.

FUNCTION:
Issues a new REVERSE motion request for the axis specified by ‘AxisNo’.

TC_READOP
Index Q

 TC_OP

Index
Value

Q

Software Reference Manual

3-85IEC 61131-3 MOTION LIBRaRY
TC_REVERSE

INPUTS:

Execute : BOOL; Rising edge requests execution
AxisNo : USINT; Axis number

OUTPUTS:

Busy : BOOL; TRUE if function is running
Done : BOOL; TRUE when function has completed normally
Buffered : BOOL; TRUE when motion command is in NTYPE buffer
Active : BOOL; TRUE when motion command is in MTYPE buffer
Aborted : BOOL; TRUE if function terminates due to CANCEL
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the execute input changes from FALSE to TRUE (rising edge), the function block attempts to load the
motion command into the required axis buffer. If the buffer is unavailable, the function re-tries on each
PLC scan. Once the motion command has been loaded, the appropriate outputs will indicate the state of
the motion; in NTYPE, MTYPE, aborted (Cancelled) or done.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_REVERSE(Execute, AxisNo, Busy, Done, Buffered, Active,
Aborted, Error, ErrorID);

FBD LANGUAGE:

TC_REVERSE

Execute
AxisNo

Busy
Done
Buffered
Active
Aborted
Error
ErrorID

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_SELECTTOOLOFFSET

3-86

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_SELECTTOOLOFFSET
TYPE:
Motion Function.

FUNCTION:
Selects a previously defined TOOL_OFFSET to become active.

INPUTS:

EN : BOOL; Set TRUE to enable the function
AxisNo : USINT; Axis number
ID : USINT; Tool offset identity number

OUTPUTS:

ENO : BOOL; TRUE if function is enabled
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the EN input is TRUE, the function block applies the command to the axis indicated by AxisNo.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_SELECTTOOLOFFSET(EN, AxisNo, ID, ENO, Error, ErrorID);

TC_REVERSE

AxisNo Done
Buffered
Active
Aborted
Error
ErrorID

Execute Busy

Software Reference Manual

3-87IEC 61131-3 MOTION LIBRaRY
TC_SELECTuSERFRaME

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_SELECTUSERFRAME
TYPE:
Motion Function.

FUNCTION:
Selects a previously defined USER_FRAME to become active.

INPUTS:

EN : BOOL; Set TRUE to enable the function
AxisNo : USINT; Axis number
ID : USINT; Tool offset identity number

OUTPUTS:

ENO : BOOL; TRUE if function is enabled
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the EN input is TRUE, the function block applies the command to the axis indicated by AxisNo.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

TC_SELECT
TOOLOFFSET

EN
AxisNo

ID

ENO
Error
ErrorID

TC_SELECT
TOOLOFFSET

AxisNo
ID

Error
ErrorID

EN ENO

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_SELECTuSERFRaMEB

3-88

ST LANGUAGE:
TC_SELECTUSERFRAME(EN, AxisNo, ID, ENO, Error, ErrorID);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_SELECTUSERFRAMEB
TYPE:
Motion Function.

FUNCTION:
Selects a secondary USER_FRAME to be used when SYNC mode 20 is activated.

INPUTS:

EN : BOOL; Set TRUE to enable the function
AxisNo : USINT; Axis number
ID : USINT; Tool offset identity number

OUTPUTS:

ENO : BOOL; TRUE if function is enabled
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the EN input is TRUE, the function block applies the command to the axis indicated by AxisNo.

TC_SELECT
USERFRAME

EN
AxisNo

ID

ENO
Error
ErrorID

 TC_SELECT
USERFRAME

AxisNo

ID

Error
ErrorID

EN ENO

Software Reference Manual

3-89IEC 61131-3 MOTION LIBRaRY
TC_SetFRaME

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_SELECTUSERFRAMEB(EN, AxisNo, ID, ENO, Error, ErrorID);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_SetFRAME
TYPE:
Motion Function.

FUNCTION:
Applies a new FRAME request for the axis specified by ‘AxisNo’.

INPUTS:

EN : BOOL; Set TRUE to enable the function
AxisNo : USINT; Axis number
FRAME : USINT; Frame number to apply

OUTPUTS:
ENO : BOOL; TRUE if function is enabled
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

TC_SELECT
USERFRAMEB

EN
AxisNo

ID

ENO
Error
ErrorID

TC_SELECT
USERFRAMEB

AxisNo
ID

Error
ErrorID

EN ENO

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_STEPRaTIO

3-90

DESCRIPTION:
When the EN input is TRUE, the function block applies the command to the axis indicated by AxisNo.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC _ SetFRAME(EN, AxisNo, FRAME, ENO, Error, ErrorID);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_STEPRATIO
TYPE:
Motion Function.

FUNCTION:
Issues a new STEP_RATIO motion request for the axis specified by ‘AxisNo’.

INPUTS:

EN : BOOL; TRUE enables the function
AxisNo : USINT; Axis number
Numerator: LINT; The output count
Denominator: LINT; The DPOS count (input of the function)

TC_
SetFRAME

EN
AxisNo
FRAME

ENO
Error
ErrorID

TC_
SetFRAME

AxisNo
FRAME

Error
ErrorID

EN ENO

Software Reference Manual

3-91IEC 61131-3 MOTION LIBRaRY
TC_SYNC

OUTPUTS:

ENO : BOOL; TRUE when function is enabled
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the EN input is TRUE, the function block applies the command to the axis indicated.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_STEPRATIO(EN, AxisNo, Numerator, Denominator, ENO, Error,
ErrorID);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_SYNC
TYPE:
Motion Function.

FUNCTION:
Issues a new SYNC motion request for the axes specified by ‘AxisNo’.

TC_
STEPRATIO

EN
AxisNo

Numerator
Denominator

ENO
Error
ErrorID

TC_
STEPRATIO

AxisNo
Numerator

Denominator

Error
ErrorID

EN ENO

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_SYNC

3-92

INPUTS:

EN : BOOL; Set TRUE to enable the function
AxisNo : USINT; Axis number
Control : USINT; Control value
SyncPos : LINT; Sync Position
SyncAxis : USINT; Master axis to follow
SyncTime : DINT; Time duration for axes to become synchronised
SyncPosX : LINT; Synchronisation position X
SyncPosY : LINT; Synchronisation position Y
SyncPosZ : LINT; Synchronisation position Z

OUTPUTS:

EN : BOOL; TRUE if function is enabled
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the EN input is TRUE, the function block applies the command to the axis indicated by AxisNo.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_SYNC(EN, AxisNo, Control, SyncPos, SyncAxis, SyncTime,
SyncPosX, SyncPosY, SyncPosZ, ENO, Error, ErrorID);

FBD LANGUAGE:

 TC_SYNC

EN
AxisNo
Control
SyncPos

 SyncAxis
SyncTime
SyncPosX

ENO
Error
ErrorID

SyncPosY
SyncPosZ

Software Reference Manual

3-93IEC 61131-3 MOTION LIBRaRY
TC_ uSERFRaMETRaNS

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_ USERFRAMETRANS
TYPE:
Motion Function.

FUNCTION:
Executes a single USER_FRAME_TRANS on the specified table data.

INPUTS:

EN : BOOL; Set TRUE to enable the function
UF1 : USINT; User Frame In; The USER_FRAME identity that the points are supplied in
UF2 : USINT; User Frame Out; The USER_FRAME identity that the points are

transformed to
TO1 : USINT; Tool Offset In; The TOOL_OFFSET identity that the points are supplied in
TO2 : USINT; Tool Offset Out; The TOOL_OFFSET identity that the points are

transformed to
DataIn : DINT; The table index for the input positions
DataOut : LINT; The table index for the start of the generated positions
Scale : LREAL; Scale factor for the table values (default 1000)

OUTPUTS:

EN : BOOL; TRUE if function is enabled

 TC_SYNC

AxisNo Error
ErrorID

EN ENO

Control
SyncPos
SyncAxis
SyncTime
SyncPosX
SyncPosY
SyncPosZ

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TC_ uSERFRaMETRaNS

3-94

Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the EN input is TRUE, the function block applies the command.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_USERFRAMETRANS(EN, UF1, UF2, TO1, TO2, DataIn, DataOut,
Scale, ENO, Error, ErrorID);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TC_ USER
FRAMETRANS

Execute
UF1
UF2

 TO1
TO2

DataIn

ENO
Error
ErrorID

DataOut
Scale

TC_ USER
FRAMETRANS

UF1 Error
ErrorID

Execute ENO

UF2
TO1
TO2

DataIn
DataOut
Scale

Software Reference Manual

3-95IEC 61131-3 MOTION LIBRaRY
TC_VOLuMELIMIT

TC_VOLUMELIMIT
TYPE:
Motion Function.

FUNCTION:
Configures a new 3D VOLUME_LIMIT.

INPUTS:

EN : BOOL; Set TRUE to enable the function
AxisNo : USINT; Axis number
Mode : USINT; VOLUME_LIMIT mode
TableIndex : DINT Location of table data for VOLUME_LIMIT

OUTPUTS:

ENO : BOOL; TRUE if function is enabled
Error : BOOL; TRUE if a program error is detected
ErrorID : UINT; Returned error number

DESCRIPTION:
When the EN input is TRUE, the function block applies the command to the axis indicated by AxisNo.

A programming error, such as parameter out of range, will set the Error output and return an error ID
number. For the Error ID reference, see the Trio Programming error list.

ST LANGUAGE:
TC_VOLUMELIMIT(EN, AxisNo, Mode, TableIndex, ENO, Error,
ErrorID);

FBD LANGUAGE:

TC_ VOLUME
LIMIT

EN
AxisNo
Mode

ENO
Error
ErrorID

TableIndex

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TCR_axisParameter

3-96

LD LANGUAGE:

IL LANGUAGE:
Not available.

TCR_AxisParameter
TYPE:
Axis Parameter.

FUNCTION:
Reads from the named axis parameter.

INPUTS:

AxisNo : USINT; Axis number

OUTPUTS:

ParamValue : Various; Parameter value

DESCRIPTION:
Reads the value of AxisParameter. Value is returned in ParamValue. See the function block tooltips in the
Motion Perfect v3 editor for parameter names and data sizes.

ST LANGUAGE:
TCR _ AxisParameter(AxisNo, ParamValue);

FBD LANGUAGE:

TC_ VOLUME
LIMIT

AxisNo
Mode

Error
ErrorID

EN ENO

TableIndex

TCR_Axis
Parameter

AxisNo ParamValue

Software Reference Manual

3-97IEC 61131-3 MOTION LIBRaRY
TCR_ErrorId

LD LANGUAGE:

IL LANGUAGE:
Not available.

TCR_ErrorID
TYPE:
System Parameter.

FUNCTION:
Reads the latest error produced by any of the TCR/TCW functions.

INPUTS:

None

OUTPUTS:

ErrorID : UINT; Error ID value

DESCRIPTION:
Reads the Error ID value caused by the most recent TCR or TCW function to be processed.

ST LANGUAGE:
TCR _ ErrorID(ErrorID);

FBD LANGUAGE:

TCR_Axis
Parameter

AxisNo ParamValue

TCR_
ErrorID

ErrorID

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TCR_TaBLE

3-98

LD LANGUAGE:

IL LANGUAGE:
Not available.

TCR_TABLE
TYPE:
Motion Parameter.

FUNCTION:
Reads from a TABLE entry.

INPUTS:

Index : INT; TABLE Index number

OUTPUTS:

Q : LREAL; TABLE value

DESCRIPTION:
Reads from the TABLE variable number indicated in Index. Value is returned in Q.

ST LANGUAGE:
TCR_TABLE(Index, Q);

FBD LANGUAGE:

TCR_
ErrorID

ErrorID

TCR_TABLE

Index Q

Software Reference Manual

3-99IEC 61131-3 MOTION LIBRaRY
TCR_TICKS

LD LANGUAGE:

IL LANGUAGE:
Not available.

TCR_TICKS
TYPE:
Motion Parameter.

FUNCTION:
Reads from the process TICKS value.

INPUTS:

None

OUTPUTS:

TICKS : LINT; TICKS value

DESCRIPTION:
Reads from the TICKS value associated with the current process. Value is returned in TICKS.

ST LANGUAGE:
TCR_TICKS(TICKS);

FBD LANGUAGE:

TCR_TABLE

Index Q

TCR_TICKS

TICKS

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TCR_VR

3-100

LD LANGUAGE:

IL LANGUAGE:
Not available.

TCR_VR
TYPE:
Motion Parameter.

FUNCTION:
Reads from a VR variable.

INPUTS:

Index : INT; VR Index number

OUTPUTS:

Q : LREAL; VR value

DESCRIPTION:
Reads from the VR variable number indicated in Index. Value is returned in Q.

ST LANGUAGE:
TCR_VR(Index, Q);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TCR_TICKS

TICKS

 TCW_VR
Index
Value

Q

TCR_VR

Index Q

Software Reference Manual

3-101IEC 61131-3 MOTION LIBRaRY
TCR_WdOG

TCR_WDOG
TYPE:
System Parameter.

FUNCTION:
Reads the state of the WDOG system variable.

INPUTS:

None

OUTPUTS:

WDOG : DINT; WDOG state

DESCRIPTION:
Reads the current WDOG state.

ST LANGUAGE:
TCR_WDOG(WDOG);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TCW_AxisParameter
TYPE:
Axis Parameter.

FUNCTION:
Writes to the named axis parameter.

TCR_WDOG
WDOG

TCR_WDOG

WDOG

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TCW_TaBLE

3-102

INPUTS:

AxisNo : USINT; Axis number
ParamValue : Various; Parameter value

OUTPUTS:

ErrorID : UINT; Error ID number

DESCRIPTION:
Writes the specified value to the AxisParameter. See the function block tooltips in the Motion Perfect v3
editor for parameter names and data sizes.

ST LANGUAGE:
TCW _ AxisParameter(AxisNo, ParamValue, ErrorID);

FBD LANGUAGE:

LD LANGUAGE:

ILL LANGUAGE:
Not available.

TCW_TABLE
TYPE:
Parameter Function.

FUNCTION:
Writes to a TABLE location.

INPUTS:

Index : INT; TABLE index number
Value : LREAL; TABLE value

TCW_Axis
Parameter AxisNo ErrorID

ParamValue

TCW_Axis
Parameter

AxisNo ErrorID
ParamValue

Software Reference Manual

3-103IEC 61131-3 MOTION LIBRaRY
TCW_TICKS

OUTPUTS:

Q : SINT;

DESCRIPTION:
Sets the VR at VR(index) to the given Value.

ST LANGUAGE:
TCW_TABLE(Index, Value, Q);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TCW_TICKS
TYPE:
Parameter Function.

FUNCTION:
Writes to the process TICKS value.

INPUTS:

TICKS : LINT; TICKS value

OUTPUTS:

Q : DINT;

DESCRIPTION:
Sets the TICKS value in the current process.

TCW_TABLE

Index
Value

Q

TCW_TABLE

Index
Value

Q

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TCW_VR

3-104

ST LANGUAGE:
TCW_TICKS(TICKS, Q);

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TCW_VR
TYPE:
Parameter Function.

FUNCTION:
Writes to a VR variable.

INPUTS:

Index : INT; VR number
Value : LREAL; VR value

OUTPUTS:

Q : SINT;

DESCRIPTION:
Sets the VR at VR(index) to the given Value.

ST LANGUAGE:
TCW_VR(Index, Value, Q);

TCW_TICKS

TICKS Q

TCW_TICKS

TICKS Q

Software Reference Manual

3-105IEC 61131-3 MOTION LIBRaRY
TCW_WdOG

FBD LANGUAGE:

LD LANGUAGE:

IL LANGUAGE:
Not available.

TCW_WDOG
TYPE:
Parameter Function.

FUNCTION:
Writes to the WDOG parameter.

INPUTS:

WDOG : DINT; WDOG state

OUTPUTS:

Q : DINT;

DESCRIPTION:
Sets the WDOG state.

ST LANGUAGE:
TCW_WDOG(WDOG, Q);

FBD LANGUAGE:

 TCW_VR
Index
Value

Q

 TCW_VR

Index
Value

Q

TCW_WDOG
WDOG Q

Trio Motion Technology

IEC 61131-3 MOTION LIBRaRY
TCW_WdOG

3-106

LD LANGUAGE:

IL LANGUAGE:
Not available.

TCW_WDOG

WDOG Q

Software Reference Manual

3-107IEC 61131-3 MOTION LIBRaRY

4MOTION PERFECT V3

Trio Motion Technology

MOTION PERFECT V3

4-2

Software Reference Manual

4-3MOTION PERFECT V3

Introduction to Motion Perfect 3

Motion Perfect 3 is an Microsoft Windows™ based application for the PC, designed to be used in conjunction
with Trio Motion Technology’s Series 4 Motion Coordinator range of multi-tasking motion controllers.

Motion Perfect 3 provides the user with an easy to use Windows based interface for controller configuration,
rapid application development, and run-time diagnostics of processes running on the Motion Coordinator.

Trio Motion Technology

MOTION PERFECT V3
System Requirements

4-4

System Requirements

PC
A PC with the following specifications is required to run Motion Perfect 3:

Minimum Recommended
Operating System Windows XP, SP 3 Windows 7

.NET Library 3.5 3.5

Processor

RAM 2MBytes 4MBytes

Hard Disk Space 50MBytes + space for projects 200MBytes

Due to limitations in some of the third party libraries used, Motion Perfect 3 is only available as a 32
bit application. This will however run on 64 bit Microsoft Windows™.

It is recommended that your copy of Microsoft Windows™ has all current service packs and updates
applied.

CONTROLLER
The requirements for a controller are different depending on the mode of connection.

DIRECT MODE
To connect in Direct Mode the controller can be almost any Trio series 2, 3 or 4 Motion Coordinator.

TOOL MODE / SYNC MODE
To connect in Tool Mode or Sync Mode the controller must be a Trio series 4 Motion Coordinator running
system firmware version 2.0177 or later.

Operating Modes
Motion Perfect 3 has four operating modes:

• Disconnected

• Direct

• Tool Mode

• Sync Mode

The current connection mode is displayed on the right of the status bar at the bottom of Motion Perfect’s
main window.

Software Reference Manual

4-5MOTION PERFECT V3
Operating Modes

 DISCONNECTED
Not connected to a controller. All tools are closed and no communications ports are open.

 DIRECT MODE
A direct connection is made to a controller allowing a Terminal tool to be used for direct interaction with
the command line on the controller.

 TOOL MODE
A multichannel connection is made to a controller allowing the monitoring tools within Motion Perfect to be
used. This mode allows the user to see a list of the programs on the controller (so that they can be started
and stopped) but does not allow editing of any of the programs.

 SYNC MODE
A multichannel connection is made to a controller and a local project on the PC is opened. The contents
of the controller and the project are synchronized so that the local copy of all programs matches those on
the controller. All of Motion Perfect’s tools are available and programs can be edited. The synchronization
process can involve deleting programs or copying them from the controller to the PC of vice versa.

A connection (direct or multichannel) to a controller consists of a single TCP/IP socket connection over Ethernet.

Trio Motion Technology

MOTION PERFECT V3
Main Window

4-6

Main Window
The “Main Window” is the main user interface of Motion Perfect 3. It acts as a desktop for displaying all
controls needed to interact with a single controller.

Because the tools available to the user are different for each operating mode the Main Window tends to take
on a different appearance for each mode.

In all operation modes the user has access to the Main Menu and Main Toolbar for commands, although the
commands available will depend on the operation mode.

Disconnected Mode Direct Mode

Tool Mode Sync Mode

file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\OperatingModes.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\MainMenu.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\MainToolbar.docx

Software Reference Manual

4-7MOTION PERFECT V3
Main Menu

Main Menu
The Main Menu has a set of sub-menus which splits the menu commands into functional groups as follows

PROJECT

New Create a new project and erase any controller content

Load Load an existing project onto the controller

Change Change to a different project and reconcile with the existing controller
contents

Create from Controller Create a new project from the existing controller contents

Save Save the current project (flushes all changes to disk)

Save As Save the current project under a different name

Export Export the project in a different format

Project Check Check the current project against the controller contents

Create Backup Create a backup copy of the current project

Backup Open the “Backup Manager” tool to create or manage project backups

Close Close the current project (this results in the connection changing to Tool
Mode)

Modify STARTUP program Modifies the STARTUP program

Recent Projects Allows easy working with recently used projects

Solution Manager Opens the solution manager to allow working with more than one controller

Print Prints the current active editing session

Exit Exits from the application

CONTROLLER

Connect in Sync Mode Connect to the controller in Sync Mode

Connect in Tool Mode Connect to the controller in Tool Mode

Connect In Direct Mode Connect to the controller in Direct Mode

Disconnect Disconnect from the controller

Connection Settings Change the connections settings used for the communicating with the controller

Reset Controller Reset the controller by performing a warm restart

CANIO status View the CANIO status (not implemented)

Interfaces Open the sub-menu which allows the configuration of all communications
interfaces on the controller.

Enable Features Enable and disable soft features

file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\BackupManager.docx

Trio Motion Technology

MOTION PERFECT V3
Main Menu

4-8

Memory Card Open the “Memory Card Manager” to manipulate the contents of the memory
card in the controller.

Load Firmware Load new system firmware

Directory Shows an extended directory listing of the programs on the controller

Processes Shows a list of all user processes currently running on the controller

Lock Controller Lock the controller using a locking code

Unlock Controller Unlock a locked controller

Date and Time Sets the real-time clock on the controller using the “Date and Time” tool

EDIT

Undo Undo the last editing operation

Redo Redo the last undone editing operation

Cut Cut the currently selected text into the clipboard

Copy Copy the currently selected text into the clipboard

Paste Paste test from the clipboard

Select All Select all text in the document

Select None Deselect the current selection

Delete Delete the currently selected text

TrioBASIC Open the TrioBASIC sub-menu which gives access to reformatting and auto-commenting
operations.

SEARCH
All search commands apply to the current active editing session

Find Search for a text string

Find Next Find the next occurrence of the last search string

Find Prev Find the previous occurrence of the last search string

Find Next Occurrence Current Selection Find the next occurrence of the currently selected text string

Find Prev Occurrence Current Selection Find the previous occurrence of the currently selected text string

Replace Replace one text string with another

Toggle Bookmark Toggle a bookmark on the current line

Goto Next Bookmark Go to the next bookmark

Goto Prev Bookmark Go to the previous bookmark

Goto Line/Label Go to a line or label

file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\MemoryCardManager.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\DateAndTime.docx

Software Reference Manual

4-9MOTION PERFECT V3
Main Menu

Match Scope Go to the end / beginning of the scope started / ended on the
current line

PROGRAM

New Create a new empty program (see “Creating a New Program”)

Load Load an existing program and add to the current project

Edit Edit a program in the current project

Debug Debug a program in the current project

Save Save current program to disk (only available if there are unsaved changes).

Copy Copy a program in the current project

Rename Rename a program in the current project

Delete Delete a program in the current project

Delete All Delete all programs in the current project

Compile All Compile all programs in the current project

Set Autorun Set the Autorun process of a program in the current project

Run Autorun programs Run all programs set to autorun

Stop All (Halt) Stop all running programs

IEC 61131-3

BUILD/RUN
The commands I n this sub-menu operate on the program open in the current active editing session.

Compile Compile the program (any changes are saved first)

Run Run the program

Step Step the program

Step In Step program into a function or subroutine

Step Out Step program out of a function or subroutine

Pause Pause program execution

Stop Stop program execution

Toggle Breakpoint Toggle breakpoint on the current line

Enable/Disable Breakpoint Toggles the enabled state of the breakpoint on the current line

Breakpoints Opens a dialog to display all current breakpoints

Watch Variable Add a watch for the currently selected variable

Set Autorun Set the Autorun process number

file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\NewProgram.docx

Trio Motion Technology

MOTION PERFECT V3
Main Menu

4-10

The availability of the commands in the Build/Run sub-menu depends on the type or program being
edited and the run state of the program.

TOOLS
Axis Parameters View and modify axis parameters using the “Axis Parameters” tool

Intelligent Drives Configure intelligent drives attached to the controller. This is to be implemented using
add-ons (at present none are available).

Oscilloscope A software Oscilloscope tool which can be used to show traces of how parameters vary
with time

Digital I/O View the states of digital inputs and outputs and change the state of digital outputs
using the “Digital I/O Viewer” tool

Jog Axes Manually jog axis positions using the “Jog Axes” tool

Table Viewer View and change table data values using the “Table Viewer” tool

VR viewer View and change VR variable data values using the “VR Viewer” tool

Watch Variables View and change the values of local and global variables whilst debugging using the
“Variable Watch” tool

Analogue Inputs View the status of analogue inputs using the “Analogue I/O Viewer” tool

Terminal Open a Terminal Tool to interact with the controller

Diagnostics Configure Diagnostics for fault finding

Options Change the Options for Motion Perfect and its tools

WINDOW
Toolbar Show / hide the main toolbar

Status Bar Show hide the application status bar

Output Window Show / hide the Output Window

Controller Tree Window Show / hide the Controller Tree Window

Project Tree Window Show / hide the Project Tree Window

Toolbox Show / hide the Toolbox

Show Recent Work Show the Recent Work dialog

Clear Output Window Clear the Output Window

Close Window Close the current window

Reset Window Layout Reset the window layout to the default layout

HELP
Motion Perfect v3 Help Displays Motion Perfect help

file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\AxisParameters.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\IntelligentDrives.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\Oscilloscope.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\DigitalIOViewer.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\JogAxes.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\TableViewer.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\VRViewer.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\WatchVariables.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\AnalogueIOViewer.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\Terminal.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\Diagnostics.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\Options.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\MainToolbar.docx

Software Reference Manual

4-11MOTION PERFECT V3
Main Toolbar

TrioBASIC Help Displays TrioBASIC language help

About Motion Perfect v3 Displays the Motion Perfect About Box which shows software versions.

Main Toolbar

The Main Toolbar gives the user quick access to Motion Perfect’s main tools and functions.

Icon Command Operation
Open Project Opens a project and synchronizes with the controller contents

Save Project Saves the current project to disk (Sync Mode only)

Connect Opens up a sub-menu with options to connect in Sync Mode, Tool Mode or
Direct Mode

Disconnect Disconnects

Recent Work Opens the “Recent Work dialog” Which allows reconnection to recently used
connections or opening of recently used projects.

Terminal (channel
0)

Opens a Terminal tool on Channel 0 if in Tool or Sync Mode or directly
connected to the command line if connected in Direct Mode

Terminal Opens a Terminal on a user selectable channel when connected in Tool or
Sync Mode

Axis Parameters Opens the Axis Parameters Tool (Tool and Sync Modes only)

Intelligent Drives Allows the user to configure Intelligent Drives (Sync Mode only, depends on
installed add-ons)

Jog Axes Opens the Jog Axis Tool (Tool and Sync Modes only)

Oscilloscope Opens the Oscilloscope Tool (Tool and Sync Modes only)

Digital I/O Opens the Digital I/O Viewer Tool (Tool and Sync Modes only)

file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\RecentWorkDialog.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\Terminal.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\Terminal.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\AxisParameters.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\IntelligentDrives.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\JogAxes.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\Oscilloscope.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\DigitalIOViewer.docx

Trio Motion Technology

MOTION PERFECT V3
Controller Tree

4-12

Icon Command Operation
Analogue I/O Opens the Analogue Input Viewer Tool (Tool and Sync Modes only)

TABLE Viewer Opens the TABLE Viewer Tool (Tool and Sync Modes only)

VR Viewer Opens the VR Viewer Tool (Tool and Sync Modes only)

Variable Watch Opens the Variable Watch Tool (Tool and Sync Modes only)

Options Opens the main Options dialog

Motion Perfect Help Displays help for Motion Perfect

TrioBASIC Help Displays help for the TrioBASIC language

IEC 61131-3 Help Displays help foe IEC 61131-3 programming

Controller Tree
The controller tree can be displayed when Motion Perfect is operating in “Tool Mode” or in “Sync Mode”. It
contains information about the controller connected to Motion Perfect and its contents.

The tree consists of a header section and the tree body.

TREE HEADER
The tree header contains basic information about the controller plus some important controls. The top
of the header contains a pictorial representation of the controller, the controller model (MC464 in the
case above), the system software version number and an “Axis Status” control. The bottom of the header

file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\AnalogueIOViewer.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\TableViewer.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\VRViewer.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\WatchVariables.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\Options.docx

Software Reference Manual

4-13MOTION PERFECT V3
Controller Tree

contains three button controls: “Motion Stop”, “Drive Enable” and “Halt Programs”

CONTROLLER INFORMATION
The controller is shown as an icon to the left of the header. The controller model and system software
version are displayed towards the top of the header. If the mouse cursor is moved over the icon a tooltip is
displayed giving some basic information about the controller.

“AXIS STATUS” CONTROL
This control shows the error status of the controller. It is a passive control when there is no error and is
coloured green. When an error occurs the control becomes coloured red and then acts as a button which,
when clicked, will clear the error on the controller.

� Some errors, notably hardware errors, cannot be cleared by clicking the “Axis Status” button.

“MOTION STOP” BUTTON
Clicking on the “Motion Stop” button stops all currently running programs and empties all the move buffers
on the controller causing all motion to stop. Its action is similar to an “Emergency Stop” button but, as it is
implemented in software, it is less reliable that a properly implemented hardware emergency stop.

 M IT IS IMPORTANT THAT A PROPER HARDWARE EMERGENCY STOP IS IMPLEMENTED ON ANY SYSTEM. THIS BUTTON MUST
NOT BE USED AS A SUBSTITUTE.

“DRIVE ENABLE” BUTTON
Clicking on this button toggles the state of the drive enable (watchdog output) on the controller. When
drives are enabled the background of the button is coloured yellow.

“HALT PROGRAMS” BUTTON
Clicking on this button halts all currently running programs but does not stop and current or buffered moves.

Use the “Motion Stop” button if you want to stop the motion as well as the programs.

Trio Motion Technology

MOTION PERFECT V3
Controller Tree

4-14

TREE BODY
The body of the tree contains information in several expandable sections:

Section Name Contents

Programs Programs and files stored on the controller.

Axes: (Max Axes) A list if the Axes defined as visible.

Memory Memory related information.

Modules Interface modules connected to the controller.

Configuration Controller configuration information.

PROGRAMS
These are the programs and files stored on the controller. The following types of item can be stored on the
controller:

• TrioBASIC program

• Text file

• MC _ CONFIG program (one only)

• HMI project (not available on all controllers) containing one or more HMI page definitions.

• IEC 61131-3 project (not available on all controllers) containing one or more programs in one or
more of the IEC 61131-3 defined program types.

The “Programs” item in the tree has a context menu to allow creation of programs and some operations on
all programs as follows:

Menu Entry Operation
New Create a new empty program (see “Creating a New Program”)

Import… Import a program

Compile all Compile all compilable programs

Stop all (Halt) Stop all running programs

Delete all programs Delete all programs

The program entries in the tree allow the user to run, pause, stop and compile the program by means of a
set if icons after each program entry.

When a program is running it has an extra entry in the tree representing the running instance, showing the
process number.

file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\NewProgram.docx

Software Reference Manual

4-15MOTION PERFECT V3
Controller Tree

Icon Operation Notes
Run Run the program. Also run a paused instance from its current (paused)

position.

Run another instance Run another instance of a program on a different process from currently
running instance(s)

Pause Pause running program or step non-running program to first line

Step Step program onto next line

Stop Only available when program is running

Compile Icon shows that the program is not compiled.

Compile Icon shows that the program is already compiled.
Not available when program is running

AXES: (MAX AXES)
The value of Max Axes is the total number of axes available on the controller, both real
and virtual.

When expanded the list of axes shown is that specified by the user. To specify which
axes are to be shown, right click on axes and select “Shaw/Hide Axes…” to display the
“Show/Hide Axes” dialog and select which axes to display.

MEMORY
This shows various memory related items as follows:

VR
The maximum number of VR variables allowed. Double clicking on this launches the VR
Viewer tool.

TABLE
The size (in values) of the TABLE memory area. Double clicking on this launches the Table Viewer Tool.

LOCAL VARIABLES
Double clicking on this launcher the variable viewer tool.

GLOBALS
Currently not used.

FREE PROGRAM SPACE
The number of bytes of unused memory available for storing programs in.

Trio Motion Technology

MOTION PERFECT V3
Project Tree

4-16

MODULES
This give a list of the modules connected to a controller. Currently this only supports the local modules of a
modular controller such as the MC464.

CONFIGURATION
Shows the current controller configuration and allows the user to change some user configurable features.

Project Tree
The project tree can be displayed when Motion Perfect is operating in “Sync Mode”. It contains information
about the current project Motion Perfect.

The tree consists of a header section and the tree body.

TREE HEADER
The tree header contains basic information about the project plus some important controls. The header
contains a project icon, the project name, a “New Program” button and a “Delete Item” button.

“MOTION STOP” BUTTON
Clicking on the “Motion Stop” button stops all currently running programs and empties all the move buffers
on the controller causing all motion to stop. Its action is similar to an “Emergency Stop” button but, as it is
implemented in software, it is less reliable that a properly implemented hardware emergency stop.

 M IT IS IMPORTANT THAT A PROPER HARDWARE EMERGENCY STOP IS IMPLEMENTED ON ANY SYSTEM. THIS BUTTON MUST
NOT BE USED AS A SUBSTITUTE.

Software Reference Manual

4-17MOTION PERFECT V3
Output Window

“NEW PROGRAM” BUTTON
Clicking on this button creates a new program in the project. (See “Creating a New Program”)

“DELETE ITEM” BUTTON
Clicking on this button deletes the currently selected program.

TREE BODY
The body of the tree contains information in several expandable sections:

Section Name Contents
Programs Programs and files stored in the project.

Backup Automatically and manually created backups of the project.

Settings User changeable settings of the project.

PROGRAMS
This section duplicates the functionality of the “Programs” section in the “Controller Tree”

BACKUPS
Every time Motion Perfect synchronizes with a project a backup of the project is made before and after the
synchronization operation (the backup after is only made if synchronization has been successful). The tree
contains a list of the backups currently stored on the PC.

The “Backups” item in the tree has a context menu as follows:

Entry Description
Create Backup Create a backup of the current state of the project

Delete All Backups Delete all the stored backups

Manage Start the “Backup Manager” tool

Each backup entry also has a context menu as follows:

Entry Description
Revert to Selected Backup Reverts the project to the state saved in the selected backup

Set Name Allows the user to give the backup a meaningful name

Delete Backup Deletes the backup entry

Output Window
The “Output Window” displays the status messages received from the controller.

file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\NewProgram.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\ControllerTree.docx
file:///\\HYPERION\documents\Manual%207\Source\Motion%20Perfect%203\BackupManager.docx

Trio Motion Technology

MOTION PERFECT V3
Solutions

4-18

Solutions
In order to handle systems which contain more than one controller Motion Perfect uses a “Solution” to
manage the connections to more than one controller and their associated projects. The solution defines
a list of controllers included in the solution. For each controller it also defines a connection used to
communicate with the controller and a project associated with it. No two controllers can be associated with
the same project. The user can create and edit a solution using the Solution Manager.

SOLUTION MANAGER

The Solution Manager is used to manage a collection of projects (solution) which are used for applications
containing multiple controllers. In single applications which contain only one project, Motion Perfect uses a
default solution so that the user does not need to use the solution manager.

The default solution cannot contain more than one project.

CONTROLS

LOAD ON STARTUP CHECKBOX
If checked, the solution manager and the current solution will be loaded when Motion Perfect is started.

CHANGE SOLUTION BUTTON
Change to a different solution.

SAVE SOLUTION AS BUTTON
Save the current solution under a new name

ADD CONTROLLER BUTTON
Add a controller (connection) to the solution.

file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/SolutionManager.docx

Software Reference Manual

4-19MOTION PERFECT V3
Solutions

REMOVE CONTROLLER BUTTON
Remove the currently selected controller (connection) from the solution

OPEN WINDOW BUTTON
Open a window for the currently selected controller

CLOSE WINDOW BUTTON
Close the open window for the currently selected controller

CLOSE BUTTON
Close the “Solution Manager” window

CREATING A SOLUTION
• Create a project for one controller as normal.

• Open the “Solution Manager” from the Project section of the main menu. This will display the
existing project as part of the “Default Solution”.

• Click on the “Add” button. A warning about multiple controllers will be displayed.

• Clicking on the “OK” button will cause the “Connection Dialog” to be displayed. Configure an
appropriate connection for another controller. On closing the “Connection Dialog” you will be
prompted to save the solution. A desktop window will appear for the connection to the new
controller.

• To associate a project with the new controller, attempt to connect to it in Sync Mode (this may
happen automatically depending on the stored state of the connection). The “Controller Project
Dialog” will be displayed to allow this.

file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/ConnectionDialog.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/ControllerProjectDialog.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/ControllerProjectDialog.docx

Trio Motion Technology

MOTION PERFECT V3
Project

4-20

Project
A Motion Perfect project contains a set of programs and settings which represents the contents of the
controller for a given application. Al files relating to a project are stored in a single directory on the PC this
is known as the project directory.

PROJECT DIRECTORY
The files contained in the project directory will depend on the programs used in the project. There are
three main files in the project directory which all have the same name as the project directory but have
different file extensions.

PROJECT FILE (EXTENSION “MPV3PRJ”)
This contains a definition of the contents of the project (programs) and any customization such as axis
names.

DESKTOP FILE (EXTENSION “MPV3DSK”)
This contains the desktop layout used when Motion Perfect is connected in sync mode to the controller.

TOOL INTERNAL CONDITIONS (EXTENSION “MPV3IC”)
This contains the internal state of each open tool window when Motion Perfect is connected in sync mode to
the controller.

PROGRAM FILES
Program files are also stored in the project directory. The type of each file can be determined by its file
extension the most important being .BAS which is used for TioBASIC programs. Each TrioBASIC program may
also have a .PRG file of the same name which specifies editor/debugger settings for the program. Some
complex types of program (usually handled by an add-in) can have sub-directories which contain their data
as well as one or more files in the project directory.

There is also a “Backup” sub-directory in which backups of the project are stored.

WARNING

 M ALTHOUGH MANY OF THE FILES WHICH FORM PART OF THE PROJECT ARE TEXT FILES THE USER SHOULD NOT EDIT
THEM DIRECTLY USING A TEXT EDITOR AS THIS MAY CAUSE COMPATIBILITY PROBLEMS BETWEEN THE PROJECT AND
THE CONTROLLER. ALL CHANGES SHOULD BE MADE USING MOTION PERFECT.

Project Check
A project check is performed every time Motion Perfect connects in “Sync Mode” and if the user initiates a
project check from the main menu. The programs in the project are checked against those on the controller
and if there are any differences the “Resolve Program Differences” dialog is displayed so the user can
resolve the differences.

Software Reference Manual

4-21MOTION PERFECT V3
Project Check

RESOLVING DIFFERENCES
The “Resolve Program Differences” dialog can perform several different operations to resolve differences.

Icon Operation

Change the project

Create a new empty project

Make the contents of the project the same as that in the controller

Make the contents of the controller the same as that in the project

Copy a program from the controller to the project

Copy a program from the project to the controller

Delete a program (from the project or controller or both)

Use a “Resolve Differences” tool to examine the differences between the copy of a program
on the controller and the one in the project and optionally to make changes to the file in the
project (which will then be loaded onto the controller).

The synchronization operation is carried out when the user clicks on the “Synchronize” button which is only
enabled

Once a set of operations has been selected which will resolve all differences.

file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/Options_ProjectSync.docx

Trio Motion Technology

MOTION PERFECT V3
Project Check

4-22

The synchronization operations available depend on the types of program in the project and on the
controller.

 M IT IS POSSIBLE THAT A PROGRAM COPIED FROM THE PROJECT ONTO THE CONTROLLER WILL STILL CAUSE A PROJECT
CHECK FAILURE IF THE CONTROLLER SUPPORTS DIFFERENT KEYWORDS TO THOSE SUPPORTED BY THE CONTROLLER
ON WHICH THE PROGRAM WAS WRITTEN. THIS PROBLEM CAN BE RESOLVED BY SAVING THE COPY ON THE
CONTROLLER INTO THE PROJECT OR MANUALLY RESOLVING THE DIFFERENCES.

PROBLEMS LOADING PROGRAMS
Even though it appears that differences can be resolved by loading the project or some of its programs onto
the controller it is still possible to get a mismatch between the controller and the project. This is usually
due to different TrioBASIC keywords being supported on the controller to those supported on the controller
on which the program was written. This can cause variables to become keywords, keywords to become
variables or keywords to change.

All the letters in a keyword are always upper case whereas all the letters in a variable name are
always lower case.

When this occurs a warning dialog will be displayed to show that the controller has made changes to the
program.

The user now has the choice of resolving the differences using
the program modifications dialog or cancelling. If you cancel
it is then possible to resolve differences by doing another
project check and manually resolving the differences using the
“Resolve Differences” tool.

MODIFICATIONS DIALOG

This shows the original program source (on the PC) on the left and the changes made to it on the right. The
user can resolve the differences by either using the controller version of the program or by clicking on the
“Resolve” button which steps through the differences to allow the used to make a decision for each one
using the “Resolve” dialog.

Software Reference Manual

4-23MOTION PERFECT V3
Program Types

 RESOLVE DIALOG

The new value for the word to resolve is automatically filled in using the value obtained from the controller.
The user can type any valid keyword, variable name, or number to replace the word in the source file.
Clicking on “OK” makes the change and clicking on “Cancel” cancels the whole resolution process.

Program Types
Motion Perfect supports several different program types as follows:

Icon Type Note
TrioBASIC

Encrypted TrioBASIC This type of file can only be written to a controller, it cannot be read. It
is produced by encrypting an normal TrioBASIC program.

Text This is textural information stored on the controller and does not
represent a runnable program.

IEC Task Consists of one or more of the EIC program types below.

IEC Ladder Diagram

IEC Structured Text

IEC Function Block
Diagram

IEC Sequential Function
Chart

Creating a New Program
A new program can be created by Selecting “Program / New” from the main menu or by selecting “New”
from the “Programs” item in the controller menu.

The “New Program” dialog is launched. This allows the user to select the type of program required and enter
a name. Clicking on “OK” will create the new program.

Trio Motion Technology

MOTION PERFECT V3
Program Editor

4-24

This is only available while connected in Sync Mode.

Program Editor
The Program Editor is used to edit TrioBASIC program files and text files which form part of a Motion Perfect
project and to provide debugging facilities for TrioBASIC programs.

Editing a TrioBASIC program

Software Reference Manual

4-25MOTION PERFECT V3
Program Editor

Editing a text file

The editor performs in a similar way to most modern text editors. Editing functions are available for all
supported program/file types, debugging functions and special formatting functions are only available when
editing a TrioBASIC program.

EDITING FUNCTIONS
Editing functions are available from the Edit Toolbar:

The available editing functions are as follows and apply to the current program/file being edited:

 Save to disk

 Print

 Cut selected text to clipboard

 Copy selected text to clipboard

 Paste text from clipboard

 Undo last operation

 Redo last undone operation

 Go to line or label

 Find text

 Replace text

 Toggle bookmark on current line

 Go to previous bookmark

 Go to next bookmark

 Clear all bookmarks

Some editing functions are available on the Editor Context Menu.

DEBUGGING FUNCTIONS
Debugging functions are available from the Debug Toolbar.

Trio Motion Technology

MOTION PERFECT V3
Program Editor

4-26

The available debugging functions are as follows and apply to the current program being edited:

 Run

 Pause/Step

 Stop

 Go to current execution line (when stepping program)

 Toggle breakpoint on current line

 Show all breakpoints

 Remove all breakpoints

 Watch variable

 Compile program

 Auto-format text

 Comment out selected lines

 Un-comment selected lines

 Go to end/start of scope (program structure) which starts/ends on the current line

Some debugging functions are available on the Editor Context Menu.

OPERATION
Although the editor appears to work like any other text editor it has one main difference. Each line of text is
sent to the connected controller as it is entered or edited. This means that the controller is always kept up
to date with changes. The controller is used to perform syntax checking when editing a TrioBASIC program,
removing any possibility that the syntax is checked against out of date rules. All compiling and debugging
operations are also carried out on the actual controller.

The general appearance of the editor can be customized using the Program Editor pages in the main Options
Dialog.

WATCHING VARIABLES
The values of variables can be watched while a program is running or being stepped. This is done using the
“Watch Variables” tool, which can be used to monitor both local and VR variables.

To add a variable to the watch list, select the variable name (including index if a VR) in the editor, then
select “Watch Variable” from the context menu or click on the icon in the editor toolbar. Alternatively,
if the “Watch Variables” tool is open, select the variable name then drag and drop it into the “Watch
Variables” tool.

file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/Options.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/Options.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/WatchVariables.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/WatchVariables.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/WatchVariables.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/WatchVariables.docx

Software Reference Manual

4-27MOTION PERFECT V3
Connection dialogue

Connection Dialogue

The connection dialog allows the user to configure a communications
interface in order to connect to a controller. Ethernet, Serial, PCI
and USB interfaces are supported by Motion Perfect. It is possible
to select a communications interface and configure it manually or
choose from recently used connections.

RECENT CONNECTIONS
To choose a recent connection, click on the “Recent” button and
choose a connection from the drop-down list.

ETHERNET

It is possible to change the server IP address (IP address of the controller) and the IP port on which it
communicates.

By default a controller will expect a connection from Motion Perfect to be made on port 23.

Trio Motion Technology

MOTION PERFECT V3
Connection dialogue

4-28

SERIAL

It is possible to select the COM interface and the configuration (serial link parameters) from a choice of
Slow (9600,e,7,2) and Fast (38400,e,8,1), these being the default settings for series 2 & 3 Trio Motion
Coordinators.

PCI

It is possible to select the board number. Board numbers are allocated when the PC is started up and is
enumerated between 0 and the one less than the number of Trio PCI cards connected.

Software Reference Manual

4-29MOTION PERFECT V3
Initial Connection

USB

It is possible to select the device number. Device numbers are allocated when the PC is started up and when
devices are added or removed. It is normally enumerated between 0 and the one less than the number of
Trio USB devices connected. Because of the nature of the internal scanning process which enumerates USB
devices and the possibility that devices are added or removed after the initial scan has completed, a given
device may not always have the same device number.

� It is recommended that only one Trio USB device be connected to a PC at any one time.

Initial Connection
To make the initial connection to a controller:

1. Make sure that your controller is powered up and connected to the computer

2. Start Motion Perfect 3. Once it has started up the initial screen should be displayed.

3. Select “ Connect in Direct mode” from the “Controller” menu. As Motion Perfect has not been
connected before the “Connection Error” dialog will be displayed.

Trio Motion Technology

MOTION PERFECT V3
Initial Connection

4-30

4. Click on the “OK” button. The “Connection” dialog will then be displayed.

5. Select the communications interface used by your controller (this will usualyl be Ethernet), then enter it’s
parameters. For an Ethernet connection this will be the IP address (defailt 192.168.0.250) and the TCP port
(default 23).

6. Click on the “Apply & Connect” button. The “Connect” will close and Motion Perfect will go into Direct Mode
with an active Terminal tool.

Software Reference Manual

4-31MOTION PERFECT V3
Recent Work dialogue

•

Motion Perfect will remember the last used connection parameters and will automatically try and use
them when reconnecting in Direct Mode in the future.

Recent Work Dialogue
The “Recent Work Dialog” lists recently used projects and connections to allow the user to quickly switch to
a different, recently used, project or connection. When a project is
selected the “Details” pane on the right of the dialog shows the
contents of the project, otherwise, if a connection is selected it
shows connection details. Clicking on the load button will load the
selected project or connect using the selected connection.

Tools
Motion Perfect 3 has several tools which are used to monitor the controller and interact with it. Some tools
are built into Motion Perfect, others are implemented as add-ons. The add-on mechanism allows the easy
addition of extra tools in the future. Most tools are available in both “Tool Mode” and “Sync Mode”.

BUILT-IN TOOLS

 Terminal – direct interaction with the controller’s command line and character I/O

 Axis Parameters – view and change the control parameters for each axis

file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/Terminal.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/AxisParameters.docx

Trio Motion Technology

MOTION PERFECT V3
Terminal

4-32

 Digital I/O Viewer – view and change digital I/O values

 Analogue I/O Viewer – view and change analogue I/O values

 Table Viewer – view and change values in TABLE memory

 VR Viewer – view and change global VR variables

 Variable Watch – view and change program internal variables

Options – change the configuration options for Motion Perfect

Diagnostics – enable and disable diagnostic functions

 Jog Axes – manually jog the control axes

ADD-ON TOOLS

 Oscilloscope – capture and view parameters graphically

 Intelligent Drives – configure intelligent drives

Terminal
The “Terminal” tool allows the user to interact directly with the controller, either with the command line
(channel 0) or with user programs (channel 5, 6 or 7). Characters typed on
the keyboard are sent to the controller and characters output by the
controller are displayed in the terminal window.

TERMINAL MENU
The menu controls terminal logging and scripting.

TERMINAL LOGGING
When logging is active all the data displayed on the terminal is also written to
a file. The name of the log file is displayed in the status bar at the bottom of
the terminal window.

TERMINAL SCRIPTING (ONLY AVAILABLE ON CHANNEL 0)

INTRODUCTION
Motion Perfect has built in support for simple terminal scripting. This allows the user to write files of
commands and then send the file contents to the controller in a single operation. In addition to the
commands to be sent to the controller there are some extra commands which are used by Motion Perfect to
control the running of the script.

INTERACTION WITH THE CONTROLLER
Command lines are sent to the controller one at a time in sequence. Motion Perfect sends a command then
waits to receive a prompt (>>) before sending the next one.

To not wait for a prompt put the two character sequence \& on the end of the line. These extra characters

file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/DigitalIOViewer.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/AnalogueIOViewer.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/TableViewer.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/VRViewer.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/WatchVariables.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/Options.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/Diagnostics.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/JogAxes.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/Oscilloscope.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/IntelligentDrives.docx

Software Reference Manual

4-33MOTION PERFECT V3
Terminal

are not sent to the controller.

SCRIPT COMMANDS
Script commands control the running of the script. All script commands start with two colons. The following
commands are valid:

Command Parameter Description
::Timeout timeout in seconds Changes the time Motion Perfect waits for a prompt to be returned.

The default value is 10 seconds.

::Wait wait time in
seconds

Wait and do nothing for the given time

e.g.:
::Timeout 55

sets the timeout to 55 seconds

TESTS
Special support has been added in order to enable the use of scripts for testing purposes. The response from
a command can be tested by Motion Perfect and the results written to a log file. A test is written on the
line after the one whose response is to be tested and consists of a single ^ character followed by a list of
alternative responses separated by single | characters. The comparison is done as a string comparison after
all leading and training spaces have been removed.

e.g.:
^12.0000|13.0000

gives a PASS if the returned string is “12.0000” or “13.0000”, otherwise a FAIL.

The PASS or FAIL state of each test is logged in the log file and a summary of passes and failures is given at
the end.

EDITING SCRIPTS
To edit or write a new script, select “Script / Edit” from the terminal window menu.

RUNNING SCRIPTS
To run a script normally, select “Script / Run” from the terminal window menu. This does not produce a log
of what has happened.

To run a script with full logging, select “Script/Run logged” from the terminal window menu. The log will
contain a full log of what has happened including test results.

To run a script in test mode, select “Script/Run Test” from the terminal window menu. This will produce a
log containing only test failures and a PASS/FAIL summary.

CONTEXT MENU
Entries allow the user to clear the terminal display, and copy and paste text in the terminal window.

Trio Motion Technology

MOTION PERFECT V3
axis Parameters

4-34

MACRO BUTTONS
There are a row of user configurable macro buttons above the
status bar at the bottom of the terminal window. The user can
configure these to send often used strings (commands) to the
controller. To configure these buttons click on the icon at
the right of the macro button bar. This will cause the “Terminal
Macro Buttons” dialog to be displayed.

The “Add” button will add an entry in the button list and the
“Remove” button will remove the selected entry. The title
of is the text which is displayed in the button in the terminal
window. The command is the string of characters sent to the
controller. A carriage return character will be appended to the
string when it is sent.

Axis Parameters

The Axis Parameters window enables the user to monitor and change the motion parameters for any axis
on the controller. The display is made up of collapsible groups of parameters. This is done to make locating
a parameter in the display easer and also allows the hiding of whole groups of parameters so that only
parameters of interest are shown. It is also possible to individually show or hide individual parameters.

Parameters which can be edited have the normal edit box background and those which are read-only have a
greyed-out background.

Software Reference Manual

4-35MOTION PERFECT V3
digital I/O Viewer

VIEWS
There are two main views; filtered view which shows selected parameters (see above) and all parameter
view which allows the selection of individual parameters for the filtered view. Normally the filtered view is
used. The view is selected by using the “all parameters” toggle button on the left of the window’s toolbar.

The “all parameters” view has a check box next to each parameter and group. If the box is checked then the
corresponding parameter or group is displayed in the filtered view, otherwise it is hidden.

EDITING A PARAMETER
To enter a new value foe a parameter:

1. select its cell in the grid

2. type a new value

To edit a parameter:

1. double click on its cell in the grid

Digital I/O Viewer
The digital I/O viewer is used to show the states of the digital inputs and outputs of the controller (both
local and remote).

Trio Motion Technology

MOTION PERFECT V3
digital I/O Viewer

4-36

The display divides the I/O address space up into blocks of 8 lines. Usually all the lines in a block are the
same type. The types available and their associated colours are shown in the table below:

Type Colour
Input Green
Output Orange
Input/Output Yellow
Virtual Input/Output Cyan

It is possible to change which banks are displayed by clicking on the “Configuration” button which then
displays the configuration dialog.

Using this dialog the user can select which banks of I/O lines to display.

Each i/0 line can be given a description. The description can be shown or hidden by clicking on the “Show/
Hide Descriptions” button or .

Software Reference Manual

4-37MOTION PERFECT V3
analogue I/O Viewer

Analogue I/O Viewer
The analogue input viewer is used to show the values measured on the analogue inputs of the controller
(both local and remote).

The tool normally displays inputs selected by the user. This defaults to
showing all inputs until the user has selected which inputs to show. The
value shown for each input is the raw value decoded by the hardware.

Clicking on the “Show All Inputs” button in the toolbar toggles the
display between the normal (filtered) display and the “All Inputs” display.

In “All Inputs” display mode there is a check box for each input to
determine which inputs are displayed in normal mode. When in normal
mode only the inputs which are checked will be displayed.

Trio Motion Technology

MOTION PERFECT V3
Table Viewer

4-38

Table Viewer

The Table Viewer tool allows the user to view and edit ranges of TABLE memory.

VIEWING A RANGE
To add a range of TABLE values to the display click on the “New Range” button in the toolbar. This will bring
up the “Select Range” dialog to allow the user to specify the range required.

After a range has been added to the viewer it can be edited by clicking on the
corresponding range display in the tree (blue numbers), collapsed or expanded
by clicking on the corresponding arrow in the tree, or deleted by on the
corresponding red cross in the tree.

EDITING A VALUE
A value can be overwritten by clicking on it and entering a new value. A value can be edited by double
clicking on it. In both of these cases the value is written to the controller when the “Enter” key is pressed.
Pressing the “Esc” key will abort the edit. Changes can be made whilst programs are running.

REFRESHING THE VALUES DISPLAYED
The displayed valued can be updated automatically using periodic polling of the controller or manually when
the user clicks on the refresh button . Automatic refresh is controlled by the “Periodic update” button.
Clicking on the periodic update button changes its state from “Polling” to “Not Polling” . The update
rate can be changes on the “General” tab of the main application options dialog.

Software Reference Manual

4-39MOTION PERFECT V3
VR Viewer

VR Viewer

The VR Viewer tool allows the user to view and edit ranges of VR values.

VIEWING A RANGE
To add a range of VRs to the display click on the “New Range” button in the
toolbar. This will bring up the “Select Range” dialog to allow the user to
specify the range required.

After a range has been added to the viewer it can be edited by clicking on the
corresponding range display in the tree (blue numbers), collapsed or expanded
by clicking on the corresponding arrow in the tree, or deleted by on the
corresponding red cross in the tree.

EDITING A VALUE
A value can be overwritten by clicking on it and entering a new value. A value can be edited by double
clicking on it. In both of these cases the value is written to the controller when the “Enter” key is pressed.
Pressing the “Esc” key will abort the edit. Changes can be made whilst programs are running.

REFRESHING THE VALUES DISPLAYED
The displayed valued can be updated automatically using periodic polling of the controller or manually when
the user clicks on the refresh button . Automatic refresh is controlled by the “Periodic update” button.
Clicking on the periodic update button changes its state from “Polling” to “Not Polling” . The update
rate can be changes on the “General” tab of the main application options dialogue.

Trio Motion Technology

MOTION PERFECT V3
Watch Variables

4-40

Watch Variables
The “Watch Variables” tool allows the user to look at the values of program internal variables and global
variables while a program is running or stepping.

ADDING VARIABLES
The methods of adding variables to be watched is covered in the “Program Editor”
section under “Watching Variables”.

VARIABLE INFORMATION
The entry for each variable contains the name of the variable, its present value
(blank if not yet read) and its context. The context is either “VR” denoting a global VR variable or the
program name and the process on which it is running.

UPDATING
The displayed values can be automatically updated periodically. Periodic updating enabled or disabled by
clicking on the “Toggle Periodic Updating” button (when enabled, when disabled).

Clicking on the refresh button will cause the values to be updated regardless of the state of periodic
updating.

CHANGING VALUES
Values can be edited by double clicking on the value in the grid and pressing the “Return” key. The act of
pressing the “Return” key sends the value to the controller.

Options Dialogue
The options dialog has several pages of options for various tools in Motion Perfect. The page displayed is
controlled by a tree control on the left of the dialog.

The following can be selected from the tree:

• General

• Program editor

• Language

• Project synchronization

• Diagnostics

• Axis Parameters Tool

• Plug-ins

Plugin options pages. These depend on which plugins are installed but may include:

• Oscilloscope

• IEC61131-3 Editing

• HMI Editing

file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/Options_General.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/Options_ProgramEditor.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/Options_Language.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/Options_ProjectSync.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/Options_Diagnostics.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/Options_AxisParameters.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/Options_Plugins.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/Options_Oscilloscope.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/Options_IEC61131.docx

Software Reference Manual

4-41MOTION PERFECT V3
Options – axis Parameters Tool

Options – Axis Parameters Tool

AXISSTATUS VISUALIZATION
This controls how the AXISSTATUS parameter is displayed in the parameter grid. The parameter can be
displayed in one of three ways:

•	 Legacy Format – This is the same as Motion Perfect 2 and shows each known status bit as an alphabetic
character, lower case green for clear, upper case red for set.

•	 Numeric Set Flag Format – This shows all known set status bits as their bit number. No clear bits are shown.

•	 Mixed Set Flag Format – This shows all known set bits as an alphabetic character and all unknown set bits as
their bit number. No clear bits are shown.

Unknown flag bits can occur when new features are added to a controller.

Options - Diagnostics

Trio Motion Technology

MOTION PERFECT V3
Options – General

4-42

This page give options for diagnostics functions used to aid Trio Motion Technology in finding and rectifying
faults in Motion Perfect.

 M DIAGNOSTIC FUNCTIONS SHOULD ONLY BE ENABLED ON INSTRUCTION FROM TRIO MOTION TECHNOLOGY AS THEY
REDUCE THE APPLICATION’S PERFORMANCE AND CAN LEAD TO THE APPLICATION BEING LESS RELIABLE.

Options – General
Options are available for the following:

TOKEN TABLE CACHING
When “Cache TOKENTABLE response locally” is checked, token
table data for each controller type and system version used is
stored on the PC. The token data is used by Motion Perfect to
check that certain TrioBASIC commands are supported on the
controller. If the token table data is not cached locally then it
has to be read from the controller every time Motion Perfect
connects in Tool Mode or Sync Mode.

Token table caching should be left enabled in order to speed
up the connection process. The only time when it may need to
be disabled is if special versions of controller system software
(provided by Trio Motion Technology) are used on a controller.

DISPLAY CONFIGURATION ON OPENING EMPTY AXIS TOOL
When checked, opening a tool which displays axis date will open an axis selection dialog if no axes have
been previously selected.

REFRESH RATES
This allows the user to select the update rates used by various tools and monitoring processes. If a tool is set
to update too frequently it may interfere with the operation of other tools due to the limited bandwidth of
the communications link,

Software Reference Manual

4-43MOTION PERFECT V3
Options – IEC 61131 Editing

Options – IEC 61131 Editing

This allows the user to select options for the IEC61131-3 program editors. Some sections are common to all
IEC61131-3 editors, others specific to the IEC61131-3 program type.

Options - Language

This allows the user to choose which of the available languages will be used by Motion Perfect to display
text in the user interface. English (UK) will always be available, the availability of other languages may vary
with application version.

Trio Motion Technology

MOTION PERFECT V3
Options – Oscilloscope

4-44

Options – Oscilloscope

This allows the user to change the display parameters used by the oscilloscope including:

• Background colour

• Grid colour and line thickness

• Trace colour, line thickness and data point size

• Cursor colour and line thickness

• Font used to display text

• Scale matching for X/Y plots

• Data set buffering for X/Y plots

Software Reference Manual

4-45MOTION PERFECT V3
Options – Plug-ins

Options – Plug-ins

This page lists all the installed plug-ins and allows the user to enable or disable each one by means of a
check box.

Options – Program Editor
The program editor options are controlled using three different pages:

PROGRAM EDITOR – GENERAL PAGE

This page specifies the options for automatic assistance whilst editing:

Tab width – the number of spaces to use for tabs

Code start column – the start column for line of TrioBASIC code when auto-formatting (label definition lines
always start in column 0).

Trio Motion Technology

MOTION PERFECT V3
Options – Program Editor

4-46

Auto-tab on enter – When checked enters spaces at the start of the new line to match the start column of
the current line.

Long variable names warning – if checked the user is warned if a variable name is longer than the unique
name size supported by the controller.

Variable names can be longer than the unique name size but the controller only checks the first
“unique name size” characters for uniqueness.

Keyword assist – If checked the user is presented with a list of possible keywords as a keyword (or variable
name) is being typed in.

Command template – If checked, when the user types a command which has parameters in brackets, a
template is displayed to remind the user of the parameters.

PROGRAM EDITOR – FONTS PAGE

This page allows the user to specify which font is to be used in the editor (including its weight and size). It
also specifies the colours used for editing and debugging including syntax highlighting of TrioBASIC programs.

Software Reference Manual

4-47MOTION PERFECT V3
Options – Project Synchronization

PROGRAM EDITOR – PRINTING PAGE

This page controls how program listings are printed.

PRINT IN COLOUR
If this is checked then the printout is coloured using the same syntax highlighting colouring scheme as the
editor screen display. Otherwise the printout is done in monochrome.

Options – Project Synchronization

This allows the user to select a program to use to compare the difference between the copy a program on
the controller and the one in the project. I allows the user to configure any program which can compare text
files. A list of common text file comparison programs is given in the drop down list.

Trio Motion Technology

MOTION PERFECT V3
diagnostics

4-48

Clicking on the “Custom” button will display the “Program Compare custom tool” dialog which allows the
user to specify any suitable program already installed on the PC and which command line arguments are to
be used.

� If you do not have a suitable text file compare program installed on your computer, WinMerge can be
downloaded free of charge from winmerge.org

Diagnostics
Motion Perfect has some built-in diagnostics which are designed to provide useful information in diagnosing
some communications problems and possibly problems with Motion Perfect functionality. Diagnostic
functions should not be used unless requested to do so by Trio Motion Technology, as enabling diagnostics
increases the load on the application and can, in some cases, lead to unreliability.

See “Options – Diagnostics”

Jog Axes
The Jog Axes tool allows the user to move the axes on the Motion Coordinator.

file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/Options_Diagnostics.docx

Software Reference Manual

4-49MOTION PERFECT V3
Jog axes

This tool takes advantage of the bi-directional I/O channels on the Motion Coordinator to set the jog inputs.
The forward, reverse and fast jog inputs are identified by writing to the corresponding axis parameters and
are expected to be connected to NC switches. This means that when the input is on (+24V applied) then the
corresponding jog function is DISABLED and when the input is off (0V) then the jog function is ENABLED.

The jog functions implemented here disable the fast jog function, which means that the speed at which the
jog will be performed is set by the JOGSPEED axis parameter. What is more this window limits the jog speed
to the range 0..demand_speed, where the demand_speed is given by the SPEED axis parameter.

Before allowing a jog to be initiated, the jog window checks that all the data set in the jog window and on
the Motion Coordinator is valid for a jog to be performed.

 JOG REVERSE
This button will initiate a reverse jog. In order to do this, the following check sequence is performed:

• If this is a SERVO or RESOLVER axis and the servo is off then set the warning message

• If this axis has a daughter board and the WatchDog is off then set the warning message

• If the jog speed is 0 the set the warning message

• If the acceleration rate on this axis is 0 then set the warning message

• If the deceleration rate on this axis is 0 then set the warning message

• If the reverse jog input is out of range then set the warning message

• If there is already a move being performed on this axis that is not a jog move then set the warning
message

If there were no warnings set, then the message “Reverse jog set on axis?” is set in the warnings window,
the FAST _ JOG input is invalidated for this axis, the CREEP is set to the value given in the jog speed control
and finally the JOG _ REV output is turned off, thus enabling the reverse jog function.

 JOG FORWARD
This button will initiate a forward jog. In order to do this, a check sequence identical to that used for Jog

Trio Motion Technology

MOTION PERFECT V3
Jog axes

4-50

Reverse is performed.

JOG SPEED

This is the speed at which the jog will be performed. This window limits this value
to the range from zero to the demand speed for this axis, where the demand
speed is given by the SPEED axis parameter. This value can be changed by writing
directly to this control or using the jog speed control. The scroll bar changes the jog speed up or down in
increments of 1 unit per second

JOG INPUTS

These are the inputs which will be associated with the forward / reverse jog functions.

They must be in the range 8 to the total number of inputs in the system as the input
channels 0 to 7 are not bi-directional and so the state of the input cannot be set by the
corresponding output. Both real and virtual I/O lines can be used for jogging. The value -1
is shown when no input has been allocated for jogging.

The jog function depends on the state of the jog inputs as follows:

Jog - Jog + Function
OFF OFF Not defined

OFF ON Reverse Jog

ON OFF Forward Jog

ON ON No jog

WARNINGS

This shows the status of the last jog request. For example, the screen below shows axis 0 with IO channel 7
selected. This is an Input-only channel and therefore cannot be used in the jog screen.

Software Reference Manual

4-51MOTION PERFECT V3
Oscilloscope

AXES

This displays an axis selector box which enables the user to select the axis to include in the jog axes display.
By default, the physical axes fitted to the controller will be displayed.

Oscilloscope

The software oscilloscope can be used to trace axis and motion parameters, aiding program development
and machine commissioning.

There are four channels, each capable of recording at up to 1000 samples/sec, with manual cycling or
program linked triggering.

The controller records the data at the selected frequency, and then uploads the information to the

Trio Motion Technology

MOTION PERFECT V3
Oscilloscope

4-52

oscilloscope to be displayed. If a larger time base value is used, the data is retrieved in sections, and the
trace is seen to be plotted in sections across the display. Exactly when the controller starts to record the
required data depends upon whether it is in manual or program trigger mode. In program mode, it starts to
record data when it encounters a TRIGGER instruction in a program running on the controller. However, in
manual mode it starts recording data immediately.

CONTROLS
There are four groups of controls, one for each of the oscilloscope’s four channels, a group of horizontal
function controls and a group to control up to four cursors.

OSCILLOSCOPE CHANNEL CONTROLS

The controls for each of the four channels are grouped together and are
surrounded by a coloured rectangle if the channel is ON, or a coloured bar
to the left of the group if the channel is OFF. The colour is the same as the
trace for that channel.

The group contains controls for channel operating mode, parameter selection and scaling.

PARAMETER

The parameters which the oscilloscope can record and display are selected
using the pull-down list box in the upper left hand corner of each channel
control block. Depending upon the parameter chosen, the next label
switches between `axis’ or `ch’ (channel). This leads to the second pull-
down list box which enables the user to select the required axis for a
motion parameter, or channel for a digital input/output or analogue input parameter. It is also possible to
plot the points held in the controller table directly, by selecting the `TABLE’ parameter, followed by the
number of a channel whose first/last points have been configured using the advanced options dialog. If the
channel is not required then `NONE’ should be selected in the parameter list box.

AXIS / CHANNEL NUMBER

A pull-down list box which enables the user to select the required axis for a motion parameter, or channel
for a digital input/output or analogue input parameter. The list box label
switches between being blank if the oscilloscope channel is not in use,
`axis’ if an axis parameter has been selected, or `ch’ if a channel
parameter has been selected.

OPERATING MODE

The channel operating mode controls how the trace is displayed and scaled

Software Reference Manual

4-53MOTION PERFECT V3
Oscilloscope

Trace off - no data gathered, trace not displayed

Automatic Scaling - data gathered - trace automatically scaled to fit display

Manual Scaling - data gathered - trace manually scaled

Frozen - no data gathered - trace displayed as it was when frozen

VERTICAL SCALING

In automatic mode the oscilloscope calculates the most appropriate scale when it has finished recording,
prior to displaying the trace. The value shown is the value calculated by
the oscilloscope.

In manual mode the user selects the scale per grid division.

The vertical scale is changed by pressing the up/down scale buttons on
the left side of the current scale text box.

CHANNEL TRACE VERTICAL OFFSET

There are three controls which control the vertical offset of the trace:

The Vertical Offset buttons are used to move a trace vertically on the display. This control is of
particular use when two or more traces are identical, in which case they overlay each other and only
the uppermost trace will be seen on the display.

The Zero Offset button clears the vertical offset.

The auto-zero button, when active (in the down position), applies automatic vertical offset to the
channel. The vertical offset and Zero Offset buttons are disabled (greyed out). This is equivalent to
AC coupling on a conventional oscilloscope.

When not active the vertical offset manually set using the Vertical Offset buttons is applied. The
vertical offset and Zero Offset buttons are enabled.

OSCILLOSCOPE HORIZONTAL CONTROLS

The oscilloscope horizontal controls appear towards the bottom of the oscilloscope control panel. From here
you can control such aspect as the timebase, triggering modes and memory
used for the captured data.

Trio Motion Technology

MOTION PERFECT V3
Oscilloscope

4-54

TIMEBASE

The required time base is selected using the up/down scale buttons on the left side of the current time base
scale text box. The value selected is the time per grid division on the
display.

If the time base is greater than a predefined value, then the data is
retrieved from the controller in sections (as opposed to retrieving a
compete trace of data at one time.) These sections of data are plotted on
the display as they are received, and the last point plotted is seen as a white spot.

After the oscilloscope has finished running and a trace has been displayed, the time base scale may be
changed to view the trace with respect to different horizontal time scales. If the time base scale is reduced,
a section of the trace can be viewed in greater detail, with access provided to the complete trace by moving
the horizontal scrollbar.

HORIZONTAL SCROLLBAR

Once the oscilloscope has finished running and displayed the trace of the recorded data, if the time base is
changed to a faster value, only part of the trace is displayed. The
remainder can be viewed by moving the thumb box on the horizontal
scrollbar.

Additionally, if the oscilloscope is configured to record both motion
parameters and plot table data, then the number of points plotted across
the display can be determined by the motion parameter. If there are additional table points not visible,
these can be brought into view by scrolling the table trace using the horizontal scrollbar. The motion
parameter trace does not move.

HORIZONTAL DISPLAY MODE

Button up = x/t (timebase) mode.

This is the normal operation mode for an oscilloscope where each set of
gathered data is plotted against time.

Button down = x/y mode.

Channels are grouped in pairs and the values form one channel are plotted against the values of the other
one in the pair.

ONE SHOT / REPEAT TRIGGER MODE

Button up = One Shot Trigger Mode.

In one-shot mode, the oscilloscope runs until it has been triggered and one
set of data recorded by the controller, retrieved and displayed.

Button down = Continuous (Auto-repeat) Trigger Mode.

In continuous mode the oscilloscope continues running and retrieving data from the controller each time it is

Software Reference Manual

4-55MOTION PERFECT V3
Oscilloscope

re-triggered and new data is recorded. The oscilloscope continues to run until the trigger button is pressed
for a second time.

MANUAL/PROGRAM TRIGGER MODE

The manual/program trigger mode button toggles between these two
modes. When pressed, the oscilloscope is set to trigger in the program
mode, and two program listings can be seen on the button. When raised,
the oscilloscope is set to the manual trigger mode, and a pointing hand can
be seen on the button.

Button up = Manual Trigger Mode:

In manual mode, the controller is triggered, and starts to record data immediately the oscilloscope trigger
button is pressed.

Button down = Program Trigger Mode:

In program mode the oscilloscope starts running when the trigger button is pressed, but the controller does
not start to record data until a TRIGGER instruction is executed by a program running on the controller.
After the trigger instruction is executed by the program, and the controller has recorded the required data.
The required data is retrieved by the oscilloscope and displayed.

The oscilloscope stops running if in one-shot mode, or it waits for the next trigger on the controller if in
continuous mode

TRIGGER BUTTON

When the trigger button is pressed the oscilloscope is enabled. If it is
manual mode the controller immediately commences recording data. If it
is in program mode then it waits until it encounters a trigger command in a
running program.

After the trigger button has been pressed, it changes to (stop) whilst the oscilloscope is running. If the
oscilloscope is in the one-shot mode, then after the data has been recorded and plotted on the display, the
trigger button returns to indicating that the operation has been completed. The oscilloscope can be halted
at any time when it is running by pressing the button.

CONFIG. BUTTON

Clicking in the Config. button causes Motion Perfect to display the Capture
Configuration Dialog.

OSCILLOSCOPE CURSORS

The cursor bars are enabled/disabled by clicking on one of the cursor
buttons which shows/hides the corresponding cursor. A cursor can be
moved by positioning the mouse cursor over the required bar, holding down

Trio Motion Technology

MOTION PERFECT V3
Oscilloscope

4-56

the left mouse button, and dragging the bar to the required position. Cursors are automatically allocated to
the first channel currently enabled. To allocate a cursor to a different channel, right click on its button and
choose the desired channel from the pop-up menu. When a cursor is active a coloured bar representing the
channel to which the cursor has been allocated is displayed under the cursor’s button.

The cursor (right click) menu allows the user to assign the cursor to a
channel and also contains Reset which resets the cursor position to a
position close to the start of the display and Go To which scrolls the display
so that the cursor is visible (only if zoomed in).

If the Show numeric display box is checked then the numeric display is
enabled, this shows maximum and minimum values for all enabled traces
at the bottom of the oscilloscope display and the positions of the active
cursors at the top.

CAPTURE CONFIGURATION
When the Config button is pressed the oscilloscope capture configuration dialog is displayed, as shown
below. Click the mouse button over the various controls to reveal further information.

Software Reference Manual

4-57MOTION PERFECT V3
Oscilloscope

SAMPLES PER DIVISION
The oscilloscope defaults to recording five points per horizontal (time base) grid division. This value can be
adjusted using the adjacent scrollbar.

To achieve the fastest possible sample rate it is necessary to reduce the number of samples per grid division
to 1, and increase the time base scale to its fastest value (1 servo period per grid division).

It should be noted that the trace might not be plotted completely to the right hand side of the display,
depending upon the time base scale and number of samples per grid division.

OSCILLOSCOPE TABLE VALUES
The controller records the required parameter data values in the controller as table data prior to uploading
these values to the scope. By default, the lowest oscilloscope table value used is zero. However, if this
conflicts with programs running on the controller which might also require this section of the table, then the
lower table value can be reset.

The lower table value is adjusted by setting focus to this text box and typing in the new value. The upper
oscilloscope table value is subsequently automatically updated (this value cannot be changed by the user),
based on the number of channels in use and the number of samples per grid division. If an attempt is made
to enter a lower table value which causes the upper table value to exceed the maximum permitted value on
the controller, then the original value is used by the oscilloscope.

TABLE DATA GRAPH
It is possible to plot controller table values directly, in which case the table limit text boxes enable the user
to enter up to four sets of first/last table indices.

PARAMETER CHECKS
If analogue inputs are being recorded, then the fastest oscilloscope resolution (sample rate) is the number
of analogue channels in milliseconds (i.e. 2 analogue inputs infers the fastest sample rate is 2msec). The

Trio Motion Technology

MOTION PERFECT V3
General Oscilloscope Information

4-58

resolution is calculated by dividing the time base scale value by the number of samples per grid division.

It is not possible to enter table channel values in excess of the controllers maximum TABLE size, nor to
enter a lower oscilloscope table value. Increasing the samples per grid division to a value which causes the
upper oscilloscope table value to exceed the controller maximum table value is also not permitted.

If the number of samples per grid division is increased, and subsequently the time base scale is set to a
faster value which causes an unobtainable resolution, the oscilloscope automatically resets the number of
samples per grid division.

Before the oscilloscope is triggered a sample quantization check is done to make sure that it is possible to
gather the data at the sample interval requested. This may cause the number of samples per division to be
adjusted so that the controller is able to gather the data at a sample period which is a whole number of
servo cycles.

OPTIONS

The oscilloscope options are used to control the visual look of the oscilloscope display. Most colours and line
thicknesses can be set, allowing the user to set up the oscilloscope to their own preference.

The X/Y mode only settings control the matching of the two channels used to capture X/Y data and the
number of data sets buffered (and displayed) when in X/Y mode.

General Oscilloscope Information

DISPLAYING CONTROLLER TABLE POINTS
If the oscilloscope is configured for both table and motion parameters, then the number of points plotted
across the display is determined by the time base (and samples per division). If the number of points to
be plotted for the table parameter is greater than the number of points for the motion parameter, the
additional table points are not displayed, but can be viewed by scrolling the table trace using the horizontal
scrollbar.

DATA UPLOAD FROM THE CONTROLLER TO THE OSCILLOSCOPE
If the overall time base is greater than a predefined value, then the data is retrieved from the controller in
blocks, hence the display can be seen to be updated in sections. The last point plotted in the current section
is seen as a white spot.

If the oscilloscope is configured to record both motion parameters, and also to plot table data, then the
table data is read back in one complete block, and then the motion parameters are read either continuously
or in blocks (depending upon the time base).

Even if the oscilloscope is in continuous mode, the table data is not re-read, only the motion parameters are
continuously read back from the controller.

ENABLING/DISABLING OF OSCILLOSCOPE CONTROLS
Whilst the oscilloscope is running all the oscilloscope controls except the trigger button are disabled. Hence,
if it is necessary to change the time base or vertical scale, the oscilloscope must be halted and re-started.

Software Reference Manual

4-59MOTION PERFECT V3
Intelligent drives

DISPLAY ACCURACY
The controller records the parameter values at the required sample rate in the table, and then passes
the information to the oscilloscope. Hence the trace displayed is accurate with respect to the selected
time base. However, there is a delay between when the data is recorded by the controller and when it is
displayed on the oscilloscope due to the time taken to upload the data via the communications link.

Intelligent Drives
Intelligent drive are drives which contain built-in control loops and are controlled via a digital interface,
often over a data bus. Motion Perfect supports the configuration but means of add-ins. The following add-ins
are currently available:

Add-in Drives Supported

Controller Project Dialogue

The “Controller Project Dialog” is displayed when the user first attempts a Sync Mode connection to a
controller. The options available are explained on the dialog.

Trio Motion Technology

MOTION PERFECT V3
Controller Tools

4-60

Controller Tools
Motion Perfect 3 has several tools which are used to configure the controller and interact with it. Most of
these tools are available from the “Controller” section of the Main Menu.

Tool Description
Connection Settings Settings for the communications interface on the PC used by Motion Perfect to

communicate with the controller

Reset Controller Performs a soft reset on the controller

Interfaces Settings for the communications interfaces on the controller

Enable Features Enable or disable software configurable features on the controller

Memory Card Manipulate files stored on the memory card in the controller

Load Firmware Load system firmware onto the controller

Directory Show a full directory listing of the programs on the controller

Processes Show details of the processes currently running on the controller

Lock / Unlock Controller Lock or unlock the controller

Date And Time View or change the real-time clock on the controller.

Feature Configuration
Some Motion Coordinators have features which can be enabled by the user. The features are enabled using
the “Feature Configuration” tool.

file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/MainMenu.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/ConnectionDialog.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/FeatureConfiguration.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/MemoryCardManager.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/LoadSystem.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/DirectoryViewer.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/ProcessViewer.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/Lock_UnlockController.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/DateAndTime.docx

Software Reference Manual

4-61MOTION PERFECT V3
Load System Firmware

FEATURE CODES
The features are made available by purchasing feature enable codes from Trio Motion Technology Ltd, each
feature having a unique code, the codes also being different for every controller. Feature codes are stored
on the computer in a special file on the computer which holds all feature codes entered. This file (default
“FeatureCodes.tfc”) is normally located in the “TrioMotion \ MotionPerfectV3” sub directory of the current
user’s local application data directory. The file used can be changed to another in a different location by
clicking on “Manage” button and selecting “ Change from the drop-down list. It is also possible to import
values from another Feature Code file by selecting “Import” from the same drop-down list.

To manually enter a new code select the appropriate “Enable” Code” cell in the feature grid and enter
the code, being careful to get the case of the characters correct. If the code is entered correctly then the
“Enabled” check box for the feature should become enabled and allow the user to enable and disable the
feature.

When purchasing feature codes you will need to supply the Security code for your controller to ensure that
you get the correct codes.

 M FEATURE CODES ARE BASED ON THREE FACTORS: THE FEATURE NUMBER, AN INTERNAL DEVICE CODE HELD IN THE
CONTROLLER, AND THE SERIAL NUMBER OF THE CONTROLLER. EACH CODE IS UNIQUE, SO IT IS VITAL THAT THE
CORRECT SECURITY CODE AND FEATURE NUMBER (OR PRODUCT CODE) ARE USED WHEN ORDERING A FEATURE CODE.

Load System Firmware
Motion Coordinators feature a flash EPROM for storage of both user programs and the system firmware. Using

Trio Motion Technology

MOTION PERFECT V3
Load System Firmware

4-62

Motion Perfect it is possible to upgrade the system firmware to a newer version using a system file supplied
by Trio.

We do not advise that you load a new version of the system firmware unless you are specifically
advised to do so by your distributor or by Trio.

 M THE PROCESS OF LOADING NEW SYSTEM FIRMWARE WILL ERASE ALL PROGRAMS STORED ON THE CONTROLLER. SO
MAKE SURE THAT THEY ARE BACKED UP (IN A PROJECT ON THE PC) BEFORE STARTING.

When you select the ‘Load Firmware’ option from the controller menu, you will first be presented with a
warning dialog to ensure you have saved your project and are sure you wish to continue.

if you click on OK you will then be warned that the operation will delete all programs on the controller. This
must be done because the programs are stored on the controller in a tokenized form and loading new system
code may change the token list, consequently changing the commands in the programs.

When you click on Yes you will be presented with the standard Windows file selector to choose the file you
wish to load.

Software Reference Manual

4-63MOTION PERFECT V3
Load System Firmware

Each Motion Coordinator controller has its own system file, identified by the first characters of the file
name.

System Code File Name File Type Controller Type
MC403*.OUT COFF MC403

MC405*.OUT COFF MC405

MC464*.OUT COFF MC464

You must ensure that you load only software designed for your specific controller, other versions will not
work and will probably make the controller unusable.

When you have chosen the appropriate file you will be prompted once again to check that you wish to
continue. Click on Yes to start the download process.

Downloading may take several minutes, depending on the speed of your PC, the controller and the
communications link being used. During the download, you should see the names of each section displayed
in the Output Window as they are loaded.

When the download is complete, a checksum check is performed to ensure that the download process was
successful. If it passes the check you will be presented with a confirmation screen and asked if you wish to
store the firmware into EPROM.

file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/OutputWindow.docx

Trio Motion Technology

MOTION PERFECT V3
Lock / unlock Controller

4-64

When you click on Yes a further warning dialog is displayed.

It will take a short time to fix the project into the EPROM and reconnect to the controller. You can then click
on Yes and continue using Motion Perfect in the normal way.

� It is advisable to check the controller configuration to confirm the new firmware version.

Lock / Unlock Controller
Locking the controller will prevent any unauthorised user from viewing or modifying the programs in
memory, and also prevent Motion Perfect from connecting in Sync mode.

LOCKING
To Lock the currently connected controller, select “Controller / Lock Controller”
from the main menu.

In the “Controller Lock” dialog, enter a numeric code (up to 7 digits) as a lock
code. This value will be encoded by the system and used to lock the directory
structure. The lock code is held in encrypted form in the flash memory of the

Software Reference Manual

4-65MOTION PERFECT V3
Memory Card Manager

controller.

 M IF YOU FORGET THE LOCK CODE THERE IS NO WAY TO UNLOCK THE CONTROLLER. YOU WILL NEED TO RETURN IT TO
TRIO OR A DISTRIBUTOR TO HAVE THE LOCK REMOVED.

When the controller is locked the controller icon in the “Controller Tree” will have a lock symbol overlaid on
it,

a message will be shown at the bottom of the controller tree,

and the controller name in the “Status Bar” will have a lock symbol next to it.

UNLOCKING
To Unlock the currently connected controller, select “Controller / Unlock Controller” from the main menu
(only available when the controller is locked).

Enter the lock code with which the controller was previously locked. After the lock code has been accepted
full access to the contents of the controller will be restored.

Memory Card Manager
The “Memory Card Manager” allows the user to manage the contents of the memory card in the controller. It
is started by selecting “Controller / Memory Card” from the Main Menu.

If there is no memory card present a warning dialog is displayed.

Trio Motion Technology

MOTION PERFECT V3
Memory Card Manager

4-66

If a memory card is present the Memory Card Manager dialog is displayed.

The panel on the left of the dialog shows the directory structure on the memory card and the panel on the
right shows the files (not directories) in the currently selected directory.

The following operations are available:

Icon Operation Description
New folder Creates a new sub-folder in the selected folder

Delete folder Deletes the selected folder

Save Project Saves the project from the controller into the selected folder

Save to Card Saves one or more programs from the controller into the selected folder on the
memory card

Load from Card Loads the selected program file onto the controller from the memory card

Delete Deletes the selected program

Load Project Loads the selected project onto the controller. This option is only available
when a project file (extension .mpv3prj) is selected

Software Reference Manual

4-67MOTION PERFECT V3
directory Viewer

Directory Viewer

The Directory Viewer shows a more detailed directory view to that available in the “Controller Tree”. The
information in the grid is as follows:

Column Description
Program Program name

Type Program type

Storage Storage location (Normally internal)

Source Source code size in bytes

Code Object code size in bytes

Run Run method: Manual or Auto-run process number

Edit Edit the program by clicking on the icon. If the icon is greyed-out then the program is not
editable (running programs are not editable and some programs may be locked against
editing for other reasons).

Process Viewer

The Process Viewer shows information about all currently running user processes on the controller. The
information in the grid is as follows:

file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/ControllerTree.docx

Trio Motion Technology

MOTION PERFECT V3
date and Time Tool

4-68

Column Description
Proc. Process number

Program Program name

Type Program type (See “Program Types”)

Status Run status (usually RUNNING or PAUSED)

Line Current execution line in the program (if PAUSED)

Date And Time Tool

The Date and Time tool is used to monitor and set the real-time clock on the controller.

SETTING THE DATE AND TIME
The date and time can be set in two ways:

MANUAL SETTING
To set the date and time manually, click on the combo box to display a date and time selector dialog.

Select the date and time in the dialog then click outside it. The date and time selector dialog will close.
Then click on the Set button in the Date and Time tool to update the controller.

file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/ProgramTypes.docx

Software Reference Manual

4-69MOTION PERFECT V3
STaRTuP Program

AUTOMATIC SETTING FROM THE LOCAL PC CLOCK
To set the date and time on the controller to same time as the local PC clock, click on the “Synchronize with
PC Clock” button.

STARTUP Program
The STARTUP program is an automatically generated program designed to be run at system start to initialize
the system. The STARTUP program is a standard TrioBASIC program which needs to be run as a user specified
auto-run program (unlike the MC _ CONFIG program which always run at power-up).

 M THE STARTUP PROGRAM SHOULD NOT BE EDITED MANUALLY AS DOING SO MAY RESULT IN THE MANUAL ADDITIONS
BEING LOST WHEN THE PROGRAM IS REGENERATED OR WRONG VALUES BEING GENERATED IF CODE USED BY THE
AUTOMATIC GENERATION PROCESS IS CHANGED.

The file is divided up into sections each section being generated by a different tool. Some add-ins will
generate a section in the STARTUP file for the configuration of external devices (such as intelligent drives).

Modify STARTUP Program
The STARTUP program is a user run TrioBASIC program used to initialize the system on power-up. It is
commonly used to set up Axis Parameters, TABLE areas, VR Variables and Drive Parameters (when intelligent
drive support is available).

file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/MC_CONFIG_Program.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/STARTUP_Program.docx

Trio Motion Technology

MOTION PERFECT V3
Modify STaRTuP Program

4-70

The “Modify STARTUP Program” tool allows the user to save Axis Parameters, VR Variables and TABLE data in
the STARTUP file so that it can be used to initialize the system. The storing of each type of data in enabled
using a check box (check to enable).

AXES
The axes whose parameters need to be stored should be selected in the axis table. After doing this click on
the “Axis Parameters” button to display the “Axis Parameters Selection Dialog” which allows the user to
select which parameters should be stored. The same parameters are stored for all selected axes.

Software Reference Manual

4-71MOTION PERFECT V3
MC_CONFIG Program

VARIABLES
VR variables can be stored by specifying variable numbers and ranges of variable numbers.

e.g. 1,4,6-9,12-23 will store VR(1), VR(4), VR(6) to VR(9) and VR(12) to VR(23)

TABLE DATA
TABLE values can be stored by specifying table indices and ranges of table indices.

e.g. 1,4,6-9,12-23 will store TABLE(1), TABLE(4), TABLE (6) to TABLE (9) and TABLE (12) to TABLE (23)

MC_CONFIG Program
The MC _ CONFIG program is a special program which can contain a small subset of TrioBASIC commands. It
is automatically run at power-up and is used to set some basic configuration parameters on the controller.

MC _ CONFIG, if present, is always run at power-up and does not need to be specified as an auto-run
program. It is always run before user specified auto-run programs.

If a parameter is not set in MC _ CONFIG then the value in the controller’s flash EPROM memory is used.

The following system parameters can be written in the MC _ CONFIG program. No other BASIC commands
or parameters are allowed. If an illegal parameter is put in the MC _ CONFIG program then it will cause a
compiler error.

Parameter Name Parameter Stored in
AUTO _ ETHERCAT RAM

AXIS _ OFFSET Flash EPROM

CANIO _ ADDRESS Flash EPROM

CANIO _ MODE Flash EPROM

IP _ ADDRESS Flash EPROM

IP _ GATEWAY Flash EPROM

IP _ NETMASK Flash EPROM

MODULE _ IO _ MODE Flash EPROM

REMOTE _ PROC Flash EPROM

SCHEDULE _ TYPE Flash EPROM

SERVO _ PERIOD Flash EPROM

IP _ MEMORY _ CONFIG RAM

IP _ PROTOCOL _ CONFIG RAM

Parameter modifiers; SLOT and AXIS are allowed where appropriate.

Trio Motion Technology

MOTION PERFECT V3
MC_CONFIG Program

4-72

PARAMETER DESCRIPTION

AUTO_ETHERCAT
Select the startup mode of EtherCAT. (Default: ON)

AUTO _ ETHERCAT = OFF ‘ do not start EtherCAT network on power up

AXIS_OFFSET
Set the start address of an MC464 axis module. (Default: 0)

AXIS _ OFFSET SLOT(1)=16 ‘ set start axis of module in slot 1

CANIO_ADDRESS
Set the operating mode of the built-in CAN port. (Default: 32)

CANIO _ ADDRESS=40 ‘ set the CANIO _ ADDRESS to use CANopen IO

CANIO_MODE
Determines the mode used with CANIO modules P317 (output), P318 (input) and P327 (relay).

Set to 0 to use the “up to 512” IO point mode. Set to 1 to use the mode compatible with MC2xx Motion
Coordinators. (Default: 0)

CANIO _ MODE=1 ‘ set the CANIO to compatibility mode

IP_ADDRESS
Set the network IP address of the main Ethernet port. (Default: 192.168.0.250)

IP _ ADDRESS = 192.168.0.110

IP_GATEWAY
Set the default gateway of the main Ethernet port. (Default: 192.168.0.255)

IP _ GATEWAY = 192.168.0.103

IP_NETMASK
Set the subnet mask of the main Ethernet port. (Default: 255.255.255.0)

IP _ NETMASK = 255.255.240.0

MODULE_IO_MODE
Define the operation and position of the axis module digital IO. (Default: 1)

MODULE _ IO _ MODE = 2 ‘ set so that module IO is after CAN IO

REMOTE_PROC
For use in systems with the TrioPC ActiveX. When the programmer needs to allocate the ActiveX synchronous
connection to use a certain process number, set this value. (Default: -1)

REMOTE _ PROC = 10 ‘ set the ActiveX to use process 10

SCHEDULE_TYPE
Alters the MC464 multi-tasking scheduler. See MC4xx Technical Reference Manual. (Default: 0)

SCHEDULE _ TYPE = 0 ‘ WA() commands release their process for
 ‘ other programs to use.

Software Reference Manual

4-73MOTION PERFECT V3
Backup Manager

SCHEDULE _ TYPE = 1 ‘ WA() commands use up all their process time

SERVO_PERIOD
Set the scan period of the servo loops and motion in microseconds. (Default: 1000)

SERVO _ PERIOD = 500 ‘ set to half millisecond servo period.

IP_MEMORY_CONFIG
Set the Ethernet processor memory allocation. Buffer sizes can be increased to allow better processing of
Ethernet Packets on a busy network. There is a trade-off between buffer size and the number of available
protocols that can be connected. The default buffers are 2 for Tx and 2 for Rx. This allows all protocols to
be used.

 M INCREASING THE BUFFERS SIZES MUST BE DONE ACCORDING TO INSTRUCTIONS FROM TRIO MOTION TECHNOLOGY,
OTHERWISE AN UNSTABLE CONFIGURATION MAY RESULT.

IP_PROTOCOL_CONFIG
Set the available protocols ON or OFF. By default all protocols are available.

 M THIS SHOULD ONLY BE USED UNDER AFTER TAKING ADVICE FROM TRIO MOTION TECHNOLOGY.

Backup Manager

Trio Motion Technology

MOTION PERFECT V3
Backup Manager

4-74

The “Backup Manager” is used to manage the backups automatically created before and after every
synchronization operation.

As Motion Perfect is used the number of stored backups can become excessively large. The “Backup
Manager” gives the user a way to limit these backups or to easily delete multiple backups if automatic
limiting is not in use.

AUTOMATIC LIMITING
To automatically limit the number of backups stored check the “Limit Project Backups” check box and enter
the number of entries you would like to keep. The backups kept are always the most recent ones. Although
automatic limiting is good for saving disk space it is not good for keeping backup for any length of time.

MANUAL LIMITING
If the “Limit Project Backups” check box is not checked then no backups are deleted automatically. This
means that the user should use the backup manager to remove unwanted backups in order to stop the
number of stored backups growing excessively. Buttons allow the selection and deletion of individual and
ranges of backups as well as the deletion of all backups.

It is possible to set the automatic limit to a high number to give an overall limit but to manage the
backups manually.

REVERTING
To revert the project back to a given backup; Select the backup and click on the “Revert to Selected
Backup” button.

Software Reference Manual

4-75MOTION PERFECT V3

5IEC 61131-3 PROGRAMMING

Trio Motion Technology

IEC 61131 PROGRaMMING

5-2

Software Reference Manual

5-3IEC 61131 PROGRaMMING
Controller and Project Trees

Introduction to IEC 61131-3

This help file covers program using IEC 61131 languages using Trio Motion Technology’s Motion Perfect v3
application when used in conjunction with a compatible Trio 4 range of Motion Coordinator. The system
supports several of the IEC 61131-3 defined languages providing both editing and debugging support.

Controller and Project Trees
IEC 61131 tasks are shown in the Controller and Project trees on the same level as a TrioBASIC program. This
is because each represents an executable item which runs on a single controller process. All programs and
spy lists in a task are shown as sub-items to the task in the tree.

The tree items have context menus to allow the user to perform associated operations.

CONTEXT MENUS

IEC TASK

Menu Item Description
Add New IEC Program Displays a dialog where the user can enter the new IEC program name, the IEC

language and program run type

Add new spy list Adds a new spy list to the IEC task

Open IEC variables Opens the IEC variables editor tool

Open IEC types Opens the IEC custom types editor tool

Compile IEC 61131-3
programs

Compiles all the IEC programs in the IEC task and creates an executable. The
IEC Build results tool window is automatically shown

Run Starts execution of the IEC task

Run on process Displays a dialog where the IEC task can be started on a particular process

file:///\\HYPERION\documents\Manual%207\Source\IEC%20Programming%20(MPv3)\Languages.docx

Trio Motion Technology

IEC 61131 PROGRaMMING
Languages

5-4

Menu Item Description
Stop Stops execution of the IEC task

Executable info Displays information about executable – timestamps and version

Set AUTORUN Displays a dialog where AUTORUN properties of the task can be specified

Delete Deletes this IEC task

IEC 61131-3 settings Displays IEC task settings window, where the user can modify different
properties of the IEC task

IEC PROGRAM

Menu Item Description
Edit Opens the selected program for editing

Open local IEC
variables

Opens an editor for local program variables

Open IEC variables Opens the IEC variables editor tool, with the selected program variables grouped
first

Open IEC types Opens the IEC custom types editor tool

Rename Opens a dialog, where a new name for the selected program can be specified. The
program must not be open for editing in order to be renamed

Delete Deletes the selected program from the IEC task

IEC SPY LIST

Menu
Item

Description

Edit Opens the selected spy list

Rename Opens a dialog, where a new name for the selected spy list can be specified. The spy list
must not be open for editing in order to be renamed

Delete Deletes the selected spy list from the IEC task

DOUBLE CLICK ACTION
Double clicking on any IEC program or Spy List in the tree will open it for viewing or editing.

Languages
Motion Perfect v3 supports the following IEC 61131-3 defined languages:

•	 Ladder Diagram (LD)

•	 Structured Text (ST)

Software Reference Manual

5-5IEC 61131 PROGRaMMING
The IEC 61131 Environment

•	 Function Block Diagram (SFD)

•	 Sequential Function Chart (SFC)

Each of the languages has its own editor and can interact with the IEC 61131 environment shared between
all programs running on the sane IEC 61131 task.

The IEC 61131 Environment
TASKS
Trio 4 range of Motion Coordinators run programs in a pre-emptive multitasking environment with a limited
number of processes. Normally IEC 61131 programs run on a single process (called a task) although it is
possible to run more than one task in which case one process per task is used. Each task has its own IEC
environment which holds “Task Variables” for that task.

VARIABLES
IEC variables are defined as “Local” which only apply to a single program or “Task” which apply to all the
variables in a task.

“Task Variables” are not shared between different tasks. IEC 61131 programs which need to share
“Task Variables” must all be run in the same task.

� Run all IEC 61131 programs should be run in the same task unless there is a compelling reason to do
otherwise.

During debugging variables can be monitored using task based “Spy Lists”, more than one of which can be
defined for the each task.

COMPILATION
When an IEC 61131 program is compiled, all the programs in that task are compiled into a single executable
entity which can be executed on the controller and controlled using the usual Motion Perfect RUN/STOP/
AUTORUN etc. functionality.

Adding a New IEC 61131 Program

ADDING VIA THE “ADD NEW PROGRAM” MENU
A new IEC 61131 program can be added to a Motion Perfect project in one of two ways:

1. From the context menu associated with the “Programs” item in the Controller or Project tree,
select “New...”

1. From Program main menu, select “New Program...”

The “Add New Program” dialog will be displayed.

file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/IEC_61131_Environment.docx

Trio Motion Technology

IEC 61131 PROGRaMMING
adding a New IEC 61131 Program

5-6

If IEC 61131 task is selected, this will add a new empty IEC task to the project.

If one of the IEC 61131 program types is selected the “Select Task” dialog is displayed.

This allows the user to create the program on an existing task (by selecting the task from the list) or a new
one (by clicking the “Add New” button).

After selecting a task an closing the dialog the “Add Program” dialog will be displayed.

Software Reference Manual

5-7IEC 61131 PROGRaMMING
adding a New IEC 61131 Program

The fields and options in this dialog are as follows:

Field / Option Description
Name The name of the new IEC program

Description Optional. Description of the new IEC program

Execution
type

Main program The program will be called on each cycle during IEC execution

Sub-program The program will be called by other programs in the IEC task.
This type of execution is not allowed for SFC programs.

User defined
function block

The program will be custom “User defined function block”

Open variables editor when this
dialog is closed

When checked, displays an editor for local variables for the new
program. This editor is also available from the context menus of
the program

ADDING TO AN EXISTING IEC 61131 TASK
To add a program to an existing IEC task right click on the task in the Controller or Project tree. This will
display the “Add Program” dialog.

Trio Motion Technology

IEC 61131 PROGRaMMING
Editing Programs

5-8

The fields and options in this dialog are as follows:

Field / Option Description
Name The name of the new IEC program

Description Optional. Description of the new IEC program

Language The IEC 61131 language used for the program

Execution
type

Main program The program will be called on each cycle during IEC execution

Sub-program The program will be called by other programs in the IEC task.
This type of execution is not allowed for SFC programs.

User defined
function block

The program will be custom “User defined function block”

Open variables editor when this
dialog is closed

When checked, displays an editor for local variables for the new
program. This editor is also available from the context menus of
the program

Editing Programs
To Edit an IEC program; double click on its entry in the Controller or Project Tree.

All IEC editors support standard edit operations, like CUT,COPY and PASTE. All of the editors support
printing, which is available from the toolbar buttons.

When editing a larger program, it is sometimes useful to mark some pieces of code, so the user can easily
navigate through the program. For this purpose, all IEC editors support Bookmarks.

Software Reference Manual

5-9IEC 61131 PROGRaMMING
Editing Ld Programs

All editors also support Find and Replace functionality. Find and replace window is accessible by pressing the
“Ctrl+F” key combination on the keyboard.

All of the editors support drag and drop operations(from other IEC editors, from the variables tool and from
spy lists). All of the editors, except SFC editor, support drag and drop of function blocks from the toolbox.

For information on editing a specific type of IEC program see one of the following:

• Editing ST Programs

• Editing LD Programs

• Editing FBD Programs

• Editing SFC Programs

Editing LD Programs
IEC 61131-3 LD language is a graphical programming language. Ladder logic is a programming language that
represents a program by a graphical diagram based on the circuit diagrams of relay logic hardware.

The language itself can be seen as a set of connections between logical checkers (contacts) and actuators
(coils). If a path can be traced between the left side of the rung and the output, through asserted (true or
“closed”) contacts, the rung is true and the output coil storage bit is asserted (1) or true. If no path can be
traced, then the output is false (0) and the “coil” by analogy to electro-mechanical relays is considered “de-
energized”.

Ladder logic has contacts that make or break circuits to control coils.

Each rung of ladder language typically has one coil at the far right.

—()— A regular coil, energized whenever its rung is closed.

—[]— A regular contact, closed whenever its corresponding coil or an input which controls it

The “coil” (output of a rung) may represent a physical output which operates some device connected to the
controller, or may represent an internal storage bit for use elsewhere in the program.

Double-clicking on a contact or a coil displays a dialog for selecting the input/output for the element.

Double-clicking on a function/function block displays a dialog for selecting the function/functional block for
the element.

The editor contents can be zoomed in and out via the toolbar buttons, or using the shortcut combinations
“Ctrl +” for zoom in and “Ctrl -” for zoom out.

The LD editor context menu has the following functionality:

Menu Item Action
Select variable Displays a dialog for inserting/selecting a variable

Select function Displays a dialog for inserting/selecting function block

Open IEC 61131-3
variables

Open the IEC variables tool

Open IEC 61131-3 types Open the IEC types tool

file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/EditingSTPrograms.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/EditingLDPrograms.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/EditingFBDPrograms.docx
file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/EditingSFCPrograms.docx

Trio Motion Technology

IEC 61131 PROGRaMMING
Editing Ld Programs

5-10

Menu Item Action
Edit local program
variables

Open local variables editor

Breakpoints Open breakpoints manager window

Toolbox Open toolbox control, from where using drag and drop functions and function
blocks can be added to the program

Align coils Align the coils in program

Insert contact before Inserts a contact before the selection

Insert contact after Inserts a contact after the selection

Insert contact parallel Inserts a contact parallel to the selection

Insert coil Inserts new coil

Insert FB before Inserts a new function block before selection

Insert FB after Inserts a new function block after selection

Insert FB parallel Inserts a new function block parallel to selection

Insert Jump Inserts a new jump

Insert Rung Inserts a new rung

Insert comment Inserts a new comment

Insert horizontal line Inserts a new horizontal line

Software Reference Manual

5-11IEC 61131 PROGRaMMING
Editing ST Programs

Editing ST Programs
IEC 61131-3 ST language is a text-based programming language. It supports most of the traditional
procedural programming language paradigms. t is a high level language that is block structured and
syntactically resembles Pascal. All of the languages share IEC 61131 Common Elements. The variables and
function calls are defined by the common elements so different languages can be used in the same program.

Complex statements and nested instructions are supported:

•	 Iteration loops (REPEAT-UNTIL; WHILE-DO)

•	 Conditional execution (IF-THEN-ELSE; CASE)

•	 Functions (SQRT(), SIN())

The ST editor’s context menu has the following commands:

Menu Entry Action
Select variable Displays a dialog for inserting/selecting a variable

Select function Displays a dialog for inserting/selecting function block

Open IEC 61131-3
variables

Open the IEC variables tool

Open IEC 61131-3 types Open the IEC types tool

Edit local program
variables

Open local variables editor

Breakpoints Open breakpoints manager window

Toolbox Open toolbox control, from where using drag and drop functions and function
blocks can be added to the program

Trio Motion Technology

IEC 61131 PROGRaMMING
Editing FBd Programs

5-12

Editing FBD Programs
IEC 61131-3 FBD language is a graphical programming language. The FBD editor is a powerful graphical tool
that enables you to enter and manages Function Block Diagrams according to the IEC 61131-3 standard.
The editor supports advanced graphic features such as drag and drop, object resizing and connection lines
routing features, so that you can rapidly and freely arrange the elements of your diagram. It also enables
you to insert in a FBD diagram graphic elements of the LD (Ladder Diagram) language such as contacts and
coils

A functional block diagram is a block diagram that describes a function between input variables and output
variables. A function is described as a set of elementary blocks. Input and output variables are connected to
blocks by connection lines. An output of a block may also be connected to an input of another block: Inputs
and outputs of the blocks are wired together with connection lines, or links. Single lines may be used to
connect two logical points of the diagram:

An input variable and an input of a block

An output of a block and an input of another block

An output of a block and an output variable

The connection is oriented, meaning that the line carries associated data from the left end to the right end.
The left and right ends of the connection line must be of the same type.

Double-clicking on a contact or a coil displays a dialog for selecting the input/output for the element.

Double-clicking on a function/function block displays a dialog for selecting the function/functional block for
the element.

The editor contents can be zoomed in and out via the toolbar buttons, or using the shortcut combinations
“Ctrl +” for zoom in and “Ctrl -” for zoom out.

The FBD editor context menu has the following functionality:

Menu Entry Action
Select variable Displays a dialog for inserting/selecting a variable

Select function Displays a dialog for inserting/selecting function block

Open IEC 61131-3 variables Open the IEC variables tool

Open IEC 61131-3 types Open the IEC types tool

Edit local program variables Open local variables editor

Breakpoints Open breakpoints manager window

Toolbox Open toolbox control, from where using drag and drop functions and
function blocks can be added to the program

Select Enters in selection mode

Add function block Enters in add function block mode

Add variable Enters in add variable mode

Add comment Enters in add comment mode

Add arc Enters in add arc mode

Add corner Enters in add corner mode

Software Reference Manual

5-13IEC 61131 PROGRaMMING
Editing SFC Programs

Menu Entry Action
Add break Enters in add break mode

Add label Enters in add label mode

Add jump Enters in add jump mode

Add left rail Enters in add left rail mode

Add contact Enters in add contact mode

Add OR Enters in add OR mode

Add coil Enters in add coil mode

Add right rail Enters in add right rail mode

Add rule Enters in add rule mode

Editing SFC Programs
IEC 61131-3 SFC language is a graphical programming language. Main components of SFC are:

•	 Steps with associated actions

•	 Transitions with associated logic conditions

•	 Directed links between steps and transitions

Steps in an SFC diagram can be active or inactive. Actions are only executed for active steps. A step can be

Trio Motion Technology

IEC 61131 PROGRaMMING
Editing SFC Programs

5-14

active for one of two motives: (1) It is an initial step as specified by the programmer (2) It was activated
during a scan cycle and not deactivated since

The editor contents can be zoomed in and out via the toolbar buttons, or using the shortcut combinations
“Ctrl +” for zoom in and “Ctrl -” for zoom out.

The SFC editor context menu has the following functionality:

Menu Entry Action
Open IEC 61131-3 variables Open the IEC variables tool

Open IEC 61131-3 types Open the IEC types tool

Edit local program variables Open local variables editor

Breakpoints Open breakpoints manager window

Insert step Inserts a new step in the program

Insert transition Inserts a new transition element in the program

Insert init step Inserts an initialization step

Insert jump Inserts a jump element in the program

Renumber Renumbers the steps and transitions, starting from the selected one

Next item Navigates to the next logical element of the program

SFC programs are divided into 2 levels:

LEVEL 1
level 1 is the main SFC chart, which describes the steps and transitions and is edited by the SFC editor.

A step represents a stable state. It is drawn as a square box in the SFC chart. At runtime a step can be either
active or inactive. All actions linked to the steps are executed depending on the activity of the step. Initial
steps represent the initial situation of the chart when program is started. There must be at least one initial
step in each SFC chart.They are marked with a double line.

Transitions represent a condition the changes the program activity from one step to another. It is marked
by a small horizontal line that crosses a link drawn between the two steps. The condition must be a BOOL
expression. Transitions define the dynamic behaviour of the SFC chart, according to the following rules:

A transition in crossed if:

• its condition is TRUE.

• and if all steps linked to the top of the transition (before) are active.

When a transition is crossed:

• all steps linked to the top of the transition (before) are de-activated.

• all steps linked to the bottom of the transition (after) are activated.

DIVERGENCES
It is possible to link a step to several transitions and thus create a divergence. The divergence is represented
by a horizontal line. Transitions after the divergence represent several possible changes in the situation of
the program.

Software Reference Manual

5-15IEC 61131 PROGRaMMING
Editing SFC Programs

All conditions are considered as exclusive, according to a left to right priority order. It means that a
transition is considered as FALSE if at least one of the transitions connected to the same divergence on its
left side is TRUE

LEVEL 2
level 2 is the code for the actions, transitions and text for notes for level 1 elements

Each level 1 step has 5 level 2 elements, which can be open for editing by double-clicking on the
corresponding element.

1. Actions – Simple actions entered as text

2. P1 actions, that can be programmed in ST,LD or FBD, are executed only once when the step
becomes active

3. N actions, that can be programmed in ST,LD or FBD, are executed on each cycle while the step is
active

4. P0 actions, that can be programmed in ST,LD or FBD, are executed only once when the step
becomes inactive

5. Text notes

While a level 2 item is open for editing, the contents of the parent level 1 SFC program is locked for editing.
This is done to prevent renumbering or deleting of the parent level 1 element, for which the level 2 editor
is open. Once the editing of the level 2 element is complete, and the user closes the child editor, the SFC
editor is unlocked and its normal operation is restored.

When editing a level 2 SFC program, an additional combo box will appear in the status bar of the program
editor

From this combo box the language of the level 2 element can be chosen. The default is ST. When the
language is changed, a prompt will appear, notifying that the current contents of the program will be
cleared.

Trio Motion Technology

IEC 61131 PROGRaMMING
IEC Types Editor

5-16

IEC Types Editor
The types editor tool is an editor, where the user can define, delete and modify custom types. It is a tab
panel, which has 3 tabs : one for the IEC structures, one for the IEC enumerated types and one for the IEC
bit fields.

STRUCTURES TAB
The structures tab displays the custom structure types:

The description of the fields available for editing is the same as for the variables editor tool.

To add a new structure, press the “Insert new structure” button. To delete an existing structure, select it
and press the “Delete” key on the keyboard, or press the “Remove” button.

Double-click on a selected structure displays the “Type properties” dialog, where a type name, comment
and description can be edited.

To add a new field in an existing structure, press the “Insert” key on the keyboard, or press the “Insert
new variable” button. To delete an existing field in a structure, select it and press the “Delete” key on the
keyboard, or press the “Remove” button.

ENUMERATED TAB
The enumerated tab displays the custom enumerated types:

file://Trionas/documents/Manual%207/Source/PRINT/trioBasicMerged/VariableEditor.docx

Software Reference Manual

5-17IEC 61131 PROGRaMMING
IEC Types Editor

This tab editor has 2 columns:

Column Description
Name The name for the enumerated type

Value A coma separated list of symbolic values which will be the enumerated type values available for
use in programs

To add a new enumerated type, press the “Add new IEC type” button. To remove an existing enumerated
type, select it and press the “Remove” button.

To edit the name of an existing enumerated type, double-click on the selected type’s Name column in the
editor.

To edit the enumerated values, double-click on the selected type’s Value column.

1. BIT-FIELDS TAB
The bit-fields tab displays the custom bit-field types:

This tab editor has 2 columns:

Column Description
Type The name for the bit-field type. Below the name, is the list with bits(number of bits depends

on the base type). The list can be expanded/collapsed via the “+” button in front of the type
name.

Value A combo box with the available base types for the bit-field type. Depending on the base type,
the bit-field can have different number of bits. For example, a bit-field, based on INT, has 16
bits. A bit-field, based on SINT, has 8 bits. Each bit can be specified a symbolic name for use in
code. For example, user-friendly names can be assigned, like “Shared”, “None”, etc.

To add a new bit-field type, press the “Add new IEC type” button. To remove an existing bit-field type,

Trio Motion Technology

IEC 61131 PROGRaMMING
Program Local Variables

5-18

select it and press the “Remove” button.

To edit the name of an existing bit-field type, double-click on the selected type’s Type column in the editor.

To change the base type of the selected bit-field type, use the combo box with available types.

To edit the bit-field names, double-click on the selected bit-field bit in the value column.

Program Local Variables
All IEC programs have local variables, which are “private” to the programs only. User defined function block
programs, have also input and output variables, which are also local program variables.

The editor for the local variables, provides an easy way of adding/removing and setting properties of local
variables.

For normal IEC programs, only the “Private variables” are available. For FBD programs additional sections for
“Input Variables” and “Output Variables” are available.

Variable Editor

The Variable Editor displays all the variables that are in use in the IEC task. The variables are grouped in
variables groups. There are 2 predefined variables groups – the “Task” and “Retain” variables. Then for each
IEC program in the IEC task, a variable group with the same name as the program exists.

Variables in the “Task” group are accessible from all programs. The values of the variables in the “Retain”
group are stored upon IEC execution stop and are restored upon next start of the IEC executable. The

Software Reference Manual

5-19IEC 61131 PROGRaMMING
Variable Editor

variables in the rest of the groups are “private” for the corresponding program.

A new variable can be added, by selecting the corresponding group, and pressing the “Insert” key on the
keyboard. A new variable will be inserted in the selected group and will have default name, type, initial
value, etc.

The variable has the following properties, which are separated as columns in the variables editor:

Property Description
Name The name of the variable. To edit this property, double-click on it.

Type The type of variable. Can be some of the predefined IEC types, or some user-defined type.
To edit this property, double-click on it.

Dim Dimensions of the variable. For example, arrays are created by specifying the size of the
array in this field. To edit this property, double-click on it.

Attrib Attributes of the variable. Depends on the variable type and profile. For example, an
IO-mapped. To edit this property, double-click on it. variable can have the “Read-only”
attribute set.

Syb Embed variable symbol. Not supported(On-line change must be enabled). To edit this
property, double-click on it.

Init value The initial value of the variable, depending on its type. To edit this property, double-click
on it.

User group The user can specify additional grouping for a variable. To edit this property, double-click
on it.

Tag A short comment text for the variable. To edit this property, double-click on it.

Description A long comment text for the variable. To edit this property, double-click on it.

Each variable has a set of properties attached. The properties editing dialog is displayed, when a variable is
selected and the properties toolbar button is pressed, of from the context menu for the selected variable.

VARIABLE PROPERTIES EDITING

The Variables Properties dialog provides an editable text box, where the user can change the name of the
variable and its mapping (if any) physical memory or I/O on the controller, by selecting one of the binding
methods.

Property Description
None default – the variable is not mapped to anything

IO Point the variable can be mapped to a Digital or Analogue Input or Output, by specifying the I/O
point index

Trio Motion Technology

IEC 61131 PROGRaMMING
Selecting or Inserting a Variable

5-20

Property Description
TABLE the variable can be mapped to a TABLE location, by specifying the index in the table memory

VR the variable can be mapped to a VR variable, by specifying the index in the VR memory

Selecting or Inserting a Variable
This applies to ST, LD and FBD programs.

When the “Select variable” command is chosen from the context menu, a popup dialog appears in which
the user can select an existing variable to replace the variable in the current selection, or to create a new
variable. Type the name of the variable into the edit box and, if the variable already exists in the current
scope, it will be selected. Pressing the Enter key, or the small green check on the dialog will replace the
variable with the selected one. If a variable with the typed name does not already exist, a prompt will
appear for creating this variable, setting its type and group.

Selecting or Inserting a Function Block
This applies to ST, LD and FBD programs.

When the “Select function” command is chosen from the context menu, a popup dialog appears, where
the user can select from a list of available functions and function blocks. Type the name or symbol of the
function/function block into the edit box and if it exists, it will be selected in the list. Pressing the Enter
key or the small green check box will replace/insert the selected function in the editor with the selected

Software Reference Manual

5-21IEC 61131 PROGRaMMING
Compiling

one from the list box.

Compiling
When the “Build” command is executed, the “IEC 61131-3 Compilation” tool is automatically displayed. It
contains a list with the build results from compiling the IEC task into an executable.

If the project compilation have been successful, there should be no errors, and the executable is
downloaded on the controller.

If any errors occurred, the error description is displayed as a hint, so the error can be removed by the user.

Double-clicking on an item opens the source editor, relevant to the item. In the example below, double-
clicking on the second line(Variable, constant expression or function call expected), will open an editor for
the “LADDER1” program, and will position the caret on line 1, column 9 (which is the source of the error).

To show and hide different types of messages, the user can use the “Errors”, “Warnings” and “Messages”
buttons respectively.

Trio Motion Technology

IEC 61131 PROGRaMMING
Running and debugging a Program

5-22

Running and Debugging a Program
When an IEC task is compiled, it can be executed by several ways:

1. From the toolbar of the IEC item in the project tree

2. From the context menu of the IEC item in the project tree

3. From the toolbar of some of the IEC programs, belonging to that IEC task

4. From the command line, by typing “RUN <IEC task name>”

5. From a BASIC program, using RUN basic command

It is possible that an IEC task can be started more than once (e.g. from a BASIC program) but this is not a
typical scenario. Motion Perfect’s support for IEC programs is designed in a way that only one instance of
an IEC task can be debugged at a time. Different IEC tasks can be debugged simultaneously, however, when
connecting to a controller with more than one instance of the same IEC task running, Motion Perfect will
prompt to which instance the debugger should connect.

It is also possible to set an IEC task to automatically start when the controller boots up, from the context
menu of the IEC task, selecting the command “Set AUTORUN”, or using the standard command RUNTYPE.

Spy List window
A spy list window can be opened for each spy list, defined in the IEC task by double-clicking on the spy list in
the project tree, or from its context menu.

Software Reference Manual

5-23IEC 61131 PROGRaMMING
IEC Settings

The Spy List is a list of variables and their values:

Column Description
Name The name of the variable to be spied

Value The current value of the variable being spied

To add a new variable directly to the list of variables, drag and drop from an open editor, or the variables
editor, or the structures editor. Alternatively press the “Insert” key on the keyboard or click on the Add
Variable button in the toolbar, which will pop-up a dialog allowing the user to select the variable from a list.

To remove a variable from the list, select the variable, and press the “Delete” key on the keyboard.

As spy lists are part of the IEC task, when variables are added to, or removed from a spy list, the IEC
task has to be recompiled.

IEC Settings
The IEC Settings dialog can be accessed from the context menu of task in the Controller or Project Tree. It
allows the user to adjust what type of code is generated and how it is run.

Trio Motion Technology

IEC 61131 PROGRaMMING
IEC Settings

5-24

CODE GENERATION
The Code Generation setting controls which type of code is produced:

• Debug Code: allows the user to use Spy Lists to view variables and to step through the code in order
to debug it. The generated code is larger and will run more slowly than the release code.

• Release Code: contains no debugging information.

EXECUTION MODE
This determines how the code is executed:

• Run as fast as possible: Cycles are executed with the fastest possible speed of the hardware
platform.

• Triggered: Cycles are executed with respect to the specified cycle time. The cycle time is the time
between 2 consecutive cycles, in milliseconds. If for example, the user wants to execute code twice
each second, the cycle timing should be specified as 500 ms(here the time needed for executing
the instructions is ignored. In real-world scenarios, more precise timing might be needed)

Software Reference Manual

5-25IEC 61131 PROGRaMMING

6MC400 SIMULATOR

Trio Motion Technology

MC400 SIMuLaTOR

6-2

Software Reference Manual

6-3MC400 SIMuLaTOR
Running the Simulator

Introduction to MC400 Simulator

The MC400 is a Microsoft Windows™ based application for the PC, designed to be used in conjunction with
Trio Motion Technology’s Motion Perfect development software. It provides a software simulation
of one of Trio Motion Technology’s series 4 range of multi-tasking motion controllers.

Running the Simulator

USING STORED CONNECTION PARAMETERS
To run the simulator, select “Triomotion/MC400 Simulator” from the “All programs” menu. This will cause
both the simulator GUI and the simulator process to start up. The connection parameters used will be those
last set in the application’s “Options” dialog, of default parameters if none have been set.

The simulator consists of a GUI which is always running and a simulator process which mimics the
internal processing of a real controller. The simulator process can be started and stopped by the user
using the context menu.

Whilst the simulator process is running it is possible to connect to the simulator using an application such as
Motion Perfect using a local Ethernet port (see Communications).

SPECIFYING CONNECTION PARAMETERS
If the application is run from the command line, the connection parameters may be specified as follows:
ExeFile MPE _ Port REMOTE _ Port HMI _ Port Flash _ File SD _ Card _ Dir

WHERE:
ExeFile is the full or relative path to the MC400Simulator executable file.

MPE_Port is the IP port used for communications with Motion Perfect (default 23).

REMOTE_Port is the IP port used for communications with the Trio PC Motion ActiveX control (default 3240).

HMI_Port is the IP port used for communications with an HMI device (default 10000).

Flash_File is the file which holds the image of the virtual flash memory.

file:///\\TRIONAS\documents\Manual%207\Source\MC400%20Simulator\Options.docx
file:///\\TRIONAS\documents\Manual%207\Source\MC400%20Simulator\ContextMenu.docx
file:///\\TRIONAS\documents\Manual%207\Source\MC400%20Simulator\Communications.docx

Trio Motion Technology

MC400 SIMuLaTOR
Communications

6-4

SD_Card_Dir is the directory used for SD Memory Card images.

� Starting the simulator using command line parameters allows more than one instance to run at the
same time as long as the instances have different parameters from any other running instance.

 M IF AN INSTANCE USE ONE OR MORE PARAMETERS THE SAME AS THOSE USED BY A DIFFERENT INSTANCE THERE MAY BE
CONNECTION PROBLEMS AND/OR CORRUPTION OF THE FLASH AND SD-CARD STORED DATA.

Communications
Communication between an application (such as Trio Motion Technology’s Motion Perfect) and to simulator is
done using a local Ethernet connection. The simulation acts a local server with the following parameters:

IP Address 127.0.0.1 (localhost)
Command Port 23
Token Port 3240

The command port is used for programs such as Motion Perfect.

The Token port is used with the Trio PC Motion ActiveX control.

Context Menu
The context menu is displayed when the user right-clicks on the main application window.

START
Starts the simulation process (only available when the simulation process is not
running). This is equivalent to powering on the controller.

Only available when the simulator is stopped.

STOP
Stops the simulation process (only available when the simulation process is running). This is equivalent to
powering off the controller.

Only available when the simulator is running.

HELP
Displays the help file.

Software Reference Manual

6-5MC400 SIMuLaTOR
Options

OPTIONS
Displays the options for the simulator.

Only available when the simulator is stopped.

ABOUT
Displays information about this version of the simulator.

EXIT
Terminates the simulator program (both the simulator process and the GUI).

Options
The options dialog allows the user to set up the IP ports used for communications and the files used for
saving images of the virtual flash memory and SD Memory Card.

FLASH
The file which holds the image of the virtual flash memory.

SDCARD
The directory used for SD Memory Card images.

MPE PORT
The IP port used for communications with Motion Perfect (default 23).

REMOTE PORT
The IP port used for communications with the Trio PC Motion ActiveX control (default 3240).

HMI PORT
The IP port used for communications with an HMI device (default 10000).

file:///\\TRIONAS\documents\Manual%207\Source\MC400%20Simulator\Options.docx

7PC MOTION ACTIVEX
CONTROL

Trio Motion Technology

PC MOTION aCTIVEX CONTROL7-2

Technical Reference Manual

PC MOTION aCTIVEX CONTROL 7-3

TrioPC Motion ActiveX Control
The TrioPC ActiveX component provides a direct connection to the Trio MC controllers via a USB
or ethernet link. It can be used in any windows programming language supporting ActiveX (OCX)
components, such as Visual Basic, Delphi, Visual C, C++ Builder etc.

REQUIREMENTS
• PC with USB and/or ethernet network support

• Windows XP, Windows Vista (32 bit verions) or Windows 7 (32 bit versions)

• Trio PCI driver - for PCI based Motion Coordinators

• Trio USB driver - for Motion Coordinator with a USB interface.

• Knowledge of the Trio Motion Coordinator to which the TrioPC ActiveX controls will connect.

• Knowledge of the TrioBASIC programming language.

INSTALLATION OF THE ACTIVEX COMPONENT
The component and auxiliary documentation is provided as an MSI installer package. Double clicking
on the .msi file will start the install process. It is recommended that any previous version should be
uninstalled before the install process is initiated. The installer also installs the Trio USB and Trio PCI
drivers and registers the ActiveX component.

USING THE COMPONENT
The TrioPC component must be added to the project within your programming environment. Here is an
example using Visual Basic, however the exact sequence will depend on the software package used.

From the Menu select Tools then Choose Toolbox Items.

When the Choose Toolbox Items dialogue box has opened, select the COM components tab, then scroll
down until you find “TrioPC Control” then click in the block next to TrioPC. (A tick will appear).

Now click OK and the component should appear in the control panel on the left side of the screen. It
is identified as TrioPC Control.

Once you have added the TrioPC component to your form, you are ready to build the project and
include the TrioPC methods in your programs.

Connection Commands

Trio Motion Technology

PC MOTION aCTIVEX CONTROL7-4

Connection Commands

Open
DESCRIPTION:
Initialises the connection between the TrioPC ActiveX control and the Motion Coordinator.

The connection can be opened over a PCI, Serial, USB or Ethernet link, and can operate in either a
synchronous or asynchronous mode. In the synchronous mode all the TrioBASIC methods are available. In
the asynchronous mode these methods are not available, instead the user must call SendData() to write to
the Motion Coordinator, and respond to the OnReceiveChannelx event by calling GetData() to read data
received from the Motion Coordinator. In this way the user application can respond to asynchronous events
which occur on the Motion Coordinator without having to poll for them.

If the user application requires the TrioBASIC methods then the synchronous mode should be selected.
However, if the prime role of the user application is to respond to events triggered on the Motion
Coordinator, then the asynchronous method should be used.

SYNTAX:
Open(PortType, PortMode)

PARAMETERS:
Short PortType: See Connection Type.
Short PortMode: See Communications Mode.

RETURN VALUE:
Boolean; TRUE if the connection is successfully established. For a USB connection, this means the Trio USB
driver is active (an MC with a USB interface is on, and the USB connections are correct). If a synchronous
connection has been opened the ActiveX control must have also successfully recovered the token list from
the Motion Coordinator. If the connection is not successfully established this method will return FALSE.

EXAMPLE:
Rem Open a USB connection and refresh the TrioPC indicator
TrioPC _ Status = TrioPC1.Open(0, 0)
frmMain.Refresh

Close
DESCRIPTION:
Closes the connection between the TrioPC ActiveX control and the Motion Coordinator.

Connection Commands

Software Reference Manual

PC MOTION aCTIVEX CONTROL 7-5

SYNTAX:
Close(PortId)

PARAMETERS:
Short PortMode: -1: all ports, 0: synchronous port, >1: asynchronous port
Return Value: None

EXAMPLE:
Rem Close the connection when form unloads
Private Sub Form _ Unload(Cancel As Integer)
 TrioPC1.Close
 frmMain.Refresh
EndSub

IsOpen
DESCRIPTION:
Returns the state of the connection between the TrioPC ActiveX control and the Motion Coordinator.

SYNTAX:
IsOpen(PortMode)

PARAMETERS:
Short PortMode: See Communications Mode.
Return Value: Boolean; TRUE if the connection is open, FALSE if it is not .

EXAMPLE:
Rem Close the connection when form unloads
Private Sub Form _ Unload(Cancel As Integer)
 If TrioPC1.IsOpen(0) Then
 TrioPC1.Close(0)
 End If
 frmMain.Refresh
End Sub

Connection Commands

Trio Motion Technology

PC MOTION aCTIVEX CONTROL7-6

SetHost
DESCRIPTION:
Sets the ethernet host IPV4 address, and must be called prior to opening an ethernet connection. The
HostAddress property can also be used for this function

SYNTAX:
SetHost(host)

PARAMETERS:
String host: host IP address as string (eg “192.168.0.250”).
Return Value: None

EXAMPLE:
Rem Set up the Ethernet IPV4 Address of the target Motion Coordinator
TrioPC1.SetHost(“192.168.000.001”)
Rem Open a Synchronous connection
TrioPC _ Status = TrioPC1.Open(2, 0)
frmMain.Refresh

GetConnectionType
DESCRIPTION
Gets the connection type of the current connection.

SYNTAX:
GetConnectionType()

PARAMETERS:
None

RETURN VALUE:
-1: No Connection, See Connection Type.

EXAMPLE:
Rem Open a Synchronous connection
ConnectError = False
TrioPC _ Status = TrioPC1.Open(0, 0)
ConnectionType = TrioPC1.GetConnectionType()

Connection Commands

Software Reference Manual

PC MOTION aCTIVEX CONTROL 7-7

If ConnectionType <> 0 Then
 ConnectError = True
End If
frmMain.Refresh

Properties

Trio Motion Technology

PC MOTION aCTIVEX CONTROL7-8

Properties

Board
DESCRIPTION
Sets the board number used to access a PCI card.

The PCI cards in a PC are always enumerated sequentially starting at 0. It must be set before the OPEN
command is used.

TYPE:
Long

ACCESS READ / WRITE

DEFAULT VALUE:
0

EXAMPLE:
Rem Open a PCI connection and refresh the TrioPC indicator
If TrioPC.Board <> 0 Then
 TrioPC.Board = 0
End If
TrioPC _ Status = TrioPC1.Open(3, 0)
frmMain.Refresh

HostAddress
DESCRIPTION:
Used for reading or setting the IPV4 host address used to access a Motion Coordinator over an Ethernet
connection. The SetHost command can also be used for setting the host adddress.

TYPE:
String

ACCESS:
Read / Write

Properties

Software Reference Manual

PC MOTION aCTIVEX CONTROL 7-9

DEFAULT VALUE:
“192.168.0.250”

EXAMPLE:
Rem Open a Ethernet connection and refresh the TrioPC indicator
If TrioPC.HostAddress <> “192.168.0.111” Then
 TrioPC.HostAddress = “192.168.0.111”
End If
TrioPC _ Status = TrioPC1.Open(2, 0)
frmMain.Refresh

CmdProtocol
DESCRIPTION:
Used to specify the version of the ethernet communications protocol to use to be compatible with the
firmware in the ethernet daughterboard. The following values should be used:

0: for ethernet daughterboard firmware version 1.0.4.0 or earlier.

1: for ethernet daughterboard firmware version 1.0.4.1 or later.

TYPE:
Long

ACCESS:
Read / Write

DEFAULT VALUE:
1

EXAMPLE:
Rem Set ethernet protocol for firmware 1.0.4.0
TrioPC.CmdProtocol = 0

Users of older daughterboards will need to update their programs to set the value of this proporty to
0.

Properties

Trio Motion Technology

PC MOTION aCTIVEX CONTROL7-10

FlushBeforeWrite
DESCRIPTION:
The USB and serial communications interfaces are error prone in electrically noisy environments. This
means that spurious characters can be received on these interfaces which will cause errors in the OCX. If
FlushBeforeWrite is non-zero then the OCX will flush the communications interface before sending a new
request, so minimizing the consequences of a noisy environment. The flush routine clears the current
contents of the communications buffer and waits 100ms to make sure that there are no other pending
characters coming in.

TYPE:
Long

ACCESS:
Read / write

EXAMPLE:
TrioPC1.FlushBeforeWrite = 0

FastSerialMode
DESCRIPTION:
The Trio Motion Coordinator have two standard RS232 communications modes: slow and fast. The slow
mode has parameters 9600,7,e,1 whereas the fast mode has parameters 38400,8,e,1. If FastSerialMode is
FALSE then the RS232 connection will use the slow mode parameters. If the FastSerialMode is TRUE then
the RS232 connection will use the fast mode parameters.

ACCESS:
Read / write

TYPE:
Boolean

EXAMPLE:
TrioPC1.FastSerialMode = True

Motion Commands

Software Reference Manual

PC MOTION aCTIVEX CONTROL 7-11

Motion Commands

MoveRel
DESCRIPTION
Performs the corresponding MOVE(...) command on the Motion Coordinator.

SYNTAX:
MoveRel(Axes, Distance, [Axis])

PARAMETERS:

short Axes: Number of axes involved in the MOVE command.
Double Distance: Distance to be moved, can be a single numeric value or an array of numeric values

that contain at least Axes values.
Short Axis: Optional parameters that must be a single numeric value that specifies the base axis

for this move.

RETURN VALUE:
See TrioPC STATUS.

Base
DESCRIPTION:
Performs the corresponding BASE(...) command on the Motion Coordinator.

SYNTAX:
Base(Axes,[Order])

PARAMETERS:
short Axes: Number of axes involved in the move command.
Short Order: A single numeric value or an array of numeric values that contain at least Axes values

that specify the axis ordering for the subsequent motion commands.

RETURN VALUE:
See TrioPC STATUS.

Motion Commands

Trio Motion Technology

PC MOTION aCTIVEX CONTROL7-12

MoveAbs
DESCRIPTION:
Performs the corresponding MOVEABS(...) AXIS(...) command on the.

SYNTAX:
MoveAbs(Axes, Distance, [Axis])

PARAMETERS:
short Axes: Number of axes involved in the MOVEABS command.
Double Distance: Absolute position(s) that specify where the move must terminate. This can be a single

numeric value or an array of numeric values that contain at least Axes values.
Short Axis: Optional parameters that must be a single numeric value that specifies the base axis

for this move.

RETURN VALUE:
See TrioPC STATUS.

MoveCirc
DESCRIPTION:
Performs the corresponding MOVECIRC(...) AXIS(...) command on the Motion Coordinator.

SYNTAX:
MoveCirc(EndBase, EndNext, CentreBase, CentreNext, Direction, [Axis])

PARAMETERS:
Double EndBase: Distance to the end position on the base axis.
Double EndNext: Distance to the end position on the axis that follows the base axis.
Double CentreBase: Distance to the centre position on the base axis.
Double CentreNext: Distance to the centre position on the axis that follows the base axis.
Short Dir: A numeric value that sets the direction of rotation. A value of 1 implies a clockwise

rotation on a positive axis set, 0 implies an anti-clockwise rotation on a positive axis
set.

Short Axis: Optional parameters that must be a single numeric value that specifies the base axis
for this move.

Motion Commands

Software Reference Manual

PC MOTION aCTIVEX CONTROL 7-13

RETURN VALUE:
See TrioPC STATUS.

AddAxis
DESCRIPTION:
Performs the corresponding ADDAX(...) command on the Motion Coordinator.

SYNTAX:
AddAxis(LinkAxis, [Axis])

PARAMETERS:
short LinkAxis: A numeric value that specifies the axis to be “added” to the base axis.
short Axis: Optional parameters that must be a single numeric value that specifies the base axis

for this move.

RETURN VALUE:
See TrioPC STATUS.

CamBox
DESCRIPTION:
Performs the corresponding CAMBOX(...) command on the Motion Coordinator.

SYNTAX:
CamBox(TableStart, TableStop, Multiplier, LinkDist, LinkAxis, LinkOption, LinkPos,
[Axis])

PARAMETERS:
Short TableStart: The position in the table data on the Motion Coordinator where the cam pattern

starts.
Short TableStop: The position in the table data on the Motion Coordinator where the cam pattern stops.
Double Multiplier: The scaling factor to be applied to the cam pattern.
Double LinkDist: The distance the input axis must move for the cam to complete.
Short LinkAxis: Definition of the Input Axis.

Motion Commands

Trio Motion Technology

PC MOTION aCTIVEX CONTROL7-14

Short LinkOption: 1. link commences exactly when registration event occurs on link axis.
2. link commences at an absolute position on link axis (see param 7).
4. CAMBOX repeats automatically and bi-directionally when this bit is set.
8. Pattern Mode.
32. Link is only active during positive moves.

Double LinkPos: The absolute position on the link axis where the cam will start.
Short Axis: Optional parameters that must be a single numeric value that specifies the base axis

for this move.

RETURN VALUE:
See TrioPC STATUS.

Cam
DESCRIPTION
Performs the corresponding CAM(...) AXIS(...) command on the Motion Coordinator.

SYNTAX:
Cam(TableStart, TableStop, Multiplier, LinkDistance, [Axis])

PARAMETERS:
Short TableStart: The position in the table data on the Motion Coordinator where the cam pattern

starts.
Short TableStop: The position in the table data on the Motion Coordinator where the cam pattern stops.
Double Multiplier: The scaling factor to be applied to the cam pattern.
Double LinkDistance: Used to calculate the duration in time of the cam. The LinkDistance/Speed on the

base axis specifies the duration. The Speed can be modified during the move, and will
affect directly the speed with which the cam is performed.

Short Axis: Optional parameters that must be a single numeric value that specifies the base axis
for this move.

RETURN VALUE:
See TrioPC STATUS.

Cancel
DESCRIPTION:
Performs the corresponding CANCEL(...) AXIS(...) command on the Motion Coordinator.

Motion Commands

Software Reference Manual

PC MOTION aCTIVEX CONTROL 7-15

SYNTAX:
Cancel(Mode,[Axis])

PARAMETERS:
Short Mode: Cancel mode.

0 cancels the current move on the base axis.
1 cancels the buffered move on the base axis.

Short Axis: Optional parameters that must be a single numeric value that specifies the base axis
for this move.

RETURN VALUE:
See TrioPC STATUS.

Connect
DESCRIPTION:
Performs the corresponding CONNECT(...) AXIS(...) command on the Motion Coordinator.

SYNTAX:
Connect(Ratio, LinkAxis, [Axis])

PARAMETERS:
Double Ratio: The gear ratio to be applied.
Short LinkAxis: The driving axis.
Short Axis: Optional parameters that must be a single numeric value that specifies the base axis

for this move.

RETURN VALUE:
See TrioPC STATUS.

Datum
DESCRIPTION:
Performs the corresponding DATUM(...) AXIS(...) command on the Motion Coordinator.

SYNTAX:
Datum(Sequence, [Axis])

Motion Commands

Trio Motion Technology

PC MOTION aCTIVEX CONTROL7-16

PARAMETERS:
The type of datum procedure to be performed:

Short sequence: 0 The current measured position is set as demand position (this is especially useful on
stepper axes with position verification). DATUM(0) will also reset a following error
condition in the AXISSTATUS register for all axes.

Short Axis: 1 The axis moves at creep speed forward till the Z marker is encountered. The
Demand position is then reset to zero and the Measured position corrected so as to
maintain the following error.

2 The axis moves at creep speed in reverse till the Z marker is encountered. The
Demand position is then reset to zero and the Measured position corrected so as to
maintain the following error.

3 The axis moves at the programmed speed forward until the datum switch is reached.
The axis then moves backwards at creep speed until the datum switch is reset. The
Demand position is then reset to zero and the Measured position corrected so as to
maintain the following error .

4 The axis moves at the programmed speed reverse until the datum switch is reached.
The axis then moves at creep speed forward until the datum switch is reset. The
Demand position is then reset to zero and the Measured position corrected so as to
maintain the following error .

5 The axis moves at programmed speed forward until the datum switch is reached.
The axis then moves at creep speed until the datum switch is reset. The axis is then
reset as in mode 2.

6 The axis moves at programmed speed reverse until the datum switch is reached. The
axis then moves at creep speed forward until the datum switch is reset. The axis is
then reset as in mode 1.

Optional parameters that must be a single numeric value that specifies the base axis for
this move

RETURN VALUE:
See TrioPC STATUS.

Forward
DESCRIPTION:
Performs the corresponding FORWARD(...) AXIS(...) command on the Motion Coordinator.

SYNTAX:
Forward([Axis])

PARAMETER:
Short Axis: Optional parameters that must be a single numeric value that specifies the base axis

for this move.

Motion Commands

Software Reference Manual

PC MOTION aCTIVEX CONTROL 7-17

RETURN VALUE:
See TrioPC STATUS.

Reverse
DESCRIPTION:
Performs the corresponding REVERSE(...) AXIS(...) command on the Motion Coordinator.

SYNTAX:
Reverse([Axis])

PARAMETERS:
Short Axis: Optional parameters that must be a single numeric value that specifies the base axis

for this move.

RETURN VALUE:
See TrioPC STATUS.

MoveHelical
DESCRIPTION:
Performs the corresponding MOVEHELICAL(...) AXIS(...) command on the Motion Coordinator.

SYNTAX:
MoveHelical(FinishBase, FinishNext, CentreBase, CentreNext, Direction,
LinearDistance, [Axis])

PARAMETERS:
Double FinishBase: Distance to the finish position on the base axis.
Double FinishNext: Distance to the finish position on the axis that follows the base axis.
Double CentreBase: Distance to the centre position on the base axis.
Double CentreNext: Distance to the centre position on the axis that follows the base axis.
Short Direction: A numeric value that sets the direction of rotation. A value of 1 implies a clockwise

rotation on a positive axis set, 0 implies an anti-clockwise rotation on a positive axis
set.

Double
LinearDistance:

The linear distance to be moved on the base axis + 2 whilst the other two axes are
performing the circular move.

Short Axis: Optional parameters that must be a single numeric value that specifies the base axis
for this move.

Motion Commands

Trio Motion Technology

PC MOTION aCTIVEX CONTROL7-18

RETURN VALUE:
See TrioPC STATUS.

MoveLink
DESCRIPTION:
Performs the corresponding MOVELINK(...) AXIS(...) command on the Motion Coordinator.

SYNTAX:
MoveLink(Distance, LinkDistance, LinkAcceleration, LinkDeceleration, LinkAxis,
LinkOptions, LinkPosition, [Axis])

PARAMETERS:
Double Distance: Total distance to move on the base axis.
Double LinkDistance: Distance to be moved on the driving axis.
Double LinkAcceleration Distance to be moved on the driving axis during the acceleration phase of the

move.
Double LinkDeceleration Distance to be moved on the driving axis during the deceleration phase of the

move.
Short LinkAxis: The driving axis for this move.
Short LinkOptions: Specifies special processing for this move:

0 no special processing.
1 link commences exactly when registration event occurs on link axis.
2 link commences at an absolute position on link axis (see param 7).
4 MOVELINK repeats automatically and bi-directionally when this bit is

set. (This mode can be cleared by setting bit 1 of the REP_OPTION axis
parameter).

32 Link is only activee during positive moves on the link axis.
Double LinkPosition: The absolute position on the link axis where the move will start.
Short Axis: Optional parameters that must be a single numeric value that specifies the base

axis for this move.

RETURN VALUE:
See TrioPC STATUS.

MoveModify
DESCRIPTION
Performs the corresponding MOVEMODIFY(...) AXIS(...) command on the Motion Coordinator.

Motion Commands

Software Reference Manual

PC MOTION aCTIVEX CONTROL 7-19

SYNTAX:
MoveModify(Position,[Axis]

PARAMETERS:
Double Position: Absolute position of the end of move for the base axis.
Short Axis: Optional parameters that must be a single numeric value that specifies the base axis

for this move.

RETURN VALUE:
See TrioPC STATUS.

RapidStop
DESCRIPTION:
Performs the corresponding RAPIDSTOP(...) command on the Motion Coordinator.

PARAMETERS:
None

RETURN VALUE:
See TrioPC STATUS.

Process Control Commands

Trio Motion Technology

PC MOTION aCTIVEX CONTROL7-20

Process Control Commands

Run
DESCRIPTION:
Performs the corresponding RUN(...) command on the Motion Coordinator.

SYNTAX:
Run(Program, Process)

PARAMETERS:
String Program: String that specifies the name of the program to be run.
Short Process: Optional parameter that must be a single numeric value that specifies the process on

which to run this program.

RETURN VALUE:
See TrioPC STATUS.

Stop
DESCRIPTION:
Performs the corresponding STOP(...) command on the Motion Coordinator.

SYNTAX:
Stop(Program, Process)

PARAMETERS:
String Program: String that specifies the name of the program to be stopped.
Short Process: Optional parameter that must be a single numeric value that specifies the process on

which the program is running.

RETURN VALUE:
See TrioPC STATUS.

Variable Commands

Software Reference Manual

PC MOTION aCTIVEX CONTROL 7-21

Variable Commands

GetTable
DESCRIPTION:
Retrieves and writes the specified table values into the given array.

SYNTAX:
GetTable(StartPosition, NumberOfValues, Values)

PARAMETERS
Long StartPosition: Table location for first value in array.
Long NumberOfValues: Size of array to be transferred from Table Memory.
Double Values: A single numeric value or an array of numeric values, of at least size

NumberOfValues, into which the values retrieved from the Table Memory will be
stored.

RETURN VALUE:
See TrioPC STATUS.

GetVariable
DESCRIPTION:
Returns the current value of the specified system variable. To specify different base axes, the BASE
command must be used.

SYNTAX:
GetVariable(Variable, Value)

PARAMETERS:
String Variable: Name of the system variable to read.
Double Value: Variable in which to store the value read.

RETURN VALUE:
See TrioPC STATUS.

Variable Commands

Trio Motion Technology

PC MOTION aCTIVEX CONTROL7-22

GetVr
DESCRIPTION:
Returns the current value of the specified VR variable.

SYNTAX:
GetVr(Variable, Value)

PARAMETERS:
Short Variable: Number of the VR variable to read.
Double Value: Variable in which to store the value read.

RETURN VALUE:
See TrioPC STATUS.

SetTable
DESCRIPTION:
Sets the specified table variables to the values given in an array.

SYNTAX:
SetTable(StartPosition, NumberOfValues, Values)

PARAMETERS
Long StartPosition: Table location for first value in array.
Long NumberOfValues: Size of array to be transferred to Table Memory.
Double Values: A single numeric value or an array of numeric values that contain at least

NumberOfValues values to be placed in the Table Memory.

RETURN VALUE:
See TrioPC STATUS.

SetVariable
DESCRIPTION:
Sets the current value of the specified system variable. To specify different base axes, the BASE command

Variable Commands

Software Reference Manual

PC MOTION aCTIVEX CONTROL 7-23

must be used.

SYNTAX:
SetVariable(Variable, Value)

PARAMETERS:
String Variable: Name of the system variable to write.
Double Value: Variable in which the value to write is stored.

RETURN VALUE:
See TrioPC STATUS.

SetVr
DESCRIPTION:
Sets the value of the specified Global variable.

SYNTAX:
SetVr(Variable, Value)

PARAMETERS:
Short Variable: Number of the VR variable to write.
Double Value: Variable in which the value to write is stored.

RETURN VALUE:
See TrioPC STATUS.

GetProcessVariable
DESCRIPTION:
Returns the current value of a variable from a currently running process. It is quite difficult to calculate the
VariableIndex as the storage for the named variables is assigned during the program compilation, but it is
not stored due to memory restrictions on the Motion Coordinators. To make things worse, if a program is
modified in such a way the named variables it uses are changed (added, removed, or changed in order of
use) then the indices may change.

Variable Commands

Trio Motion Technology

PC MOTION aCTIVEX CONTROL7-24

SYNTAX:
GetProcessVariable(VariableIndex, Process, Value)

PARAMETERS:
Short VariableIndex: The index of the variable in the process variables table.
Short Process: The process number of the running process.
Double Value: Variable in which to store the value read.

EXAMPLE:
Let us assume that there is the program “T1” on the Motion Coordinator which has the following contents:

y=2
x=1

If this program is run on process 1 by the command RUN “T1”,1 then we could use the following code in
VisualBASIC to read the contents of the x and y variables.

Dim x As Double
Dim y As Double
If Not AxTrioPC1.GetProcessVariable(1, 1, x) Then Exit Sub
If Not AxTrioPC1.GetProcessVariable(0, 1, y) Then Exit Sub
MsgBox(“X has value “ + Format(x))
MsgBox(“Y has value “ + Format(y))

RETURN VALUE:
See TrioPC STATUS.

GetAxisVariable
DESCRIPTION:
For a system variable that accepts the AXIS modifier this method will return the value of the that system
variable on the given axis. If the system variable does not exist, or does not accept the AXIS modifier, then
this method will fail.

SYNTAX:
GetAxisVariable(VariableIndex, Axis, Value)

PARAMETERS:
String Variable: The name of the variable.
Short Axis: The axis number.
Double Value: Variable in which to store the value read.

Variable Commands

Software Reference Manual

PC MOTION aCTIVEX CONTROL 7-25

RETURN VALUE:
See TrioPC STATUS.

SetAxisVariable
DESCRIPTION:
For a system variable that accepts the AXIS modifier this method will set the value of the that system
variable on the given axis. If the system variable does not exist, or does not accept the AXIS modifier, then
this method will fail.

SYNTAX:
SetAxisVariable(VariableIndex, Axis, Value)

PARAMETERS:
String Variable: The name of the variable.
Short Axis: The axis number.
Double Value: Value to set.

RETURN VALUE:
See TrioPC STATUS.

GetProcVariable
DESCRIPTION:
For a system variable that accepts the PROC modifier this method will return the value of the that system
variable on the given process. If the system variable does not exist, or does not accept the PROC modifier,
then this method will fail.

SYNTAX:
GetProcVariable(Variable, Process, Value)

PARAMETERS:
String Variable: The name of the variable.
Short Process: The process number of the running process.
Double Value: Variable in which to store the value read.

Variable Commands

Trio Motion Technology

PC MOTION aCTIVEX CONTROL7-26

RETURN VALUE:
See TrioPC STATUS.

SetProcVariable
DESCRIPTION:
For a system variable that accepts the PROC modifier this method will set the value of the that system
variable on the given process. If the system variable does not exist, or does not accept the PROC modifier,
then this method will fail.

SYNTAX:
SetProcVariable(Variable, Process, Value)

PARAMETERS:
String Variable: The name of the variable.
Short Process: The process number of the running process.
Double Value: Value to set.

RETURN VALUE:
See TrioPC STATUS.

GetSlotVariable
DESCRIPTION:
For a system variable that accepts the SLOT modifier this method will return the value of the that system
variable on the given slot. If the system variable does not exist, or does not accept the SLOT modifier, then
this method will fail.

SYNTAX:
GetSlotVariable(Variable, Slot, Value)

PARAMETERS:
String Variable: The name of the variable.
Short Slot: The slot number.
Double Value: Variable in which to store the value read.

Variable Commands

Software Reference Manual

PC MOTION aCTIVEX CONTROL 7-27

RETURN VALUE:
See TrioPC STATUS.

SetSlotVariable
DESCRIPTION:
For a system variable that accepts the SLOT modifier this method will set the value of the that system
variable on the given slot. If the system variable does not exist, or does not accept the SLOT modifier, then
this method will fail.

SYNTAX:
SetSlotVariable(Variable, Slot, Value)

PARAMETERS:
String Variable: The name of the variable.
Short Slot: The slot number.
Double Value: Value to set.

RETURN VALUE:
See TrioPC STATUS.

GetPortVariable
DESCRIPTION:
For a system variable that accepts the PORT modifier this method will return the value of the that system
variable on the given port. If the system variable does not exist, or does not accept the PORT modifier, then
this method will fail.

SYNTAX:
GetPortVariable(Variable, Port, Value)

PARAMETERS:
String Variable: The name of the variable.
Short Port: The port number.
Double Value: Variable in which to store the value read.

Variable Commands

Trio Motion Technology

PC MOTION aCTIVEX CONTROL7-28

RETURN VALUE:
See TrioPC STATUS.

SetPortVariable
DESCRIPTION:
For a system variable that accepts the PORT modifier this method will set the value of the that system
variable on the given port. If the system variable does not exist, or does not accept the PORT modifier, then
this method will fail.

SYNTAX:
SetPortVariable(Variable, Port, Value)

PARAMETERS:
String Variable: The name of the variable.
Short Port: The port number.
Double Value: Value to set.

RETURN VALUE:
See TrioPC STATUS.

Input / Output Commands

Software Reference Manual

PC MOTION aCTIVEX CONTROL 7-29

Input / Output Commands

Ain
DESCRIPTION:
Performs the corresponding AIN(...) command on the Motion Coordinator.

SYNTAX:
Ain(Channel, Value)

PARAMETERS:
Short Channel: AIN channel to be read.
Double Value: Variable in which to store the value read.

RETURN VALUE:
See TrioPC STATUS.

Get
DESCRIPTION:
Performs the corresponding GET #… command on the Motion Coordinator.

SYNTAX:
Get(Channel, Value)

PARAMETERS:
Short Channel: Comms channel to be read.
Short Value: Variable in which to store the value read.

RETURN VALUE:
See TrioPC STATUS.

Input / Output Commands

Trio Motion Technology

PC MOTION aCTIVEX CONTROL7-30

In
DESCRIPTION:
Performs the corresponding IN(...) command on the Motion Coordinator.

SYNTAX:
In(StartChannel, StopChannel, Value)

PARAMETERS:
Short StartChannel: First digital I/O channel to be checked.
Short StopChannel: Last digital I/O channel to be checked.
Long Value: Variable to store the value read.

RETURN VALUE:
See TrioPC STATUS.

Input
DESCRIPTION:
Performs the corresponding INPUT #… command on the Motion Coordinator.

SYNTAX:
Input(Channel, Value)

PARAMETERS:
Short Channel: Comms channel to be read.
Double Value: Variable in which to store the value read.

RETURN VALUE:
See TrioPC STATUS.

Key
DESCRIPTION:
Performs the corresponding KEY #… command on the Motion Coordinator.

Input / Output Commands

Software Reference Manual

PC MOTION aCTIVEX CONTROL 7-31

SYNTAX:
Key(Channel, Value)

PARAMETERS:
Short Channel: Comms channel to be read.
Double Value: Variable in which to store the value read.

RETURN VALUE:
See TrioPC STATUS.

Linput
DESCRIPTION:
Performs the corresponding LINPUT # command on the Motion Coordinator.

SYNTAX:
Linput(Channel, Startvr)

PARAMETERS:
Short Channel: Comms channel to be read.
Short StartVr: Number of the VR variable into which to store the

first key press read.

RETURN VALUE:
See TrioPC STATUS.

Mark
DESCRIPTION:
Performs the corresponding MARK(...) command on the Motion Coordinator.

SYNTAX:
Mark(Axis, Value)

PARAMETERS:
Short Axis number: Axis number.
Short Value: The stored capture value for a registration first event.

Input / Output Commands

Trio Motion Technology

PC MOTION aCTIVEX CONTROL7-32

RETURN VALUE:
See TrioPC STATUS. FALSE if no value has been captured (no registration first event has occurred).

MarkB
DESCRIPTION:
Performs the corresponding MARKB(...) command on the Motion Coordinator.

SYNTAX:
MarkB(Axis, Value)

PARAMETERS:
Short Axis number: Axis number.
Short Value: The stored capture value for a registration second

event.

RETURN VALUE:
See TrioPC STATUS. FALSE if no value has been captured (no registration second event has occurred).

Op
DESCRIPTION:
Performs the corresponding OP(...) command on the Motion Coordinator.

SYNTAX:
Op(Output, [State])

PARAMETERS:
Long Output: Numeric value. If this is the only value specified

then it is the bit map of the outputs to be specified,
otherwise it is the number of the output to be
written.

Short State: Optional numeric value that specifies the desired
status of the output, 0 implies off, not-0 implies on.

RETURN VALUE:
See TrioPC STATUS.

Input / Output Commands

Software Reference Manual

PC MOTION aCTIVEX CONTROL 7-33

Pswitch
DESCRIPTION:
Performs the corresponding PSWITCH(…) command on the Motion Coordinator.

SYNTAX:
Pswitch(Switch, Enable, Axis, OutputNumber, OutputStatus, SetPosition,
ResetPosition)

PARAMETERS:
Short Switch: Switch to be set.
Short Enable: 1 to enable, 0 to disable.
Short Axis: Optional numeric value that specifies the base axis for this command.
Short OutputNumber: Optional numeric value that specifies the number of the output to set.
Short OutputStatus: Optional numeric value that specifies the signalled status of the output, 0 implies off,

not-0 implies on.
Double SetPosition: Optional numeric value that specifies the position at which to signal the output.
Double ResetPosition: Optional numeric value that specifies the position at which to reset the output.

RETURN VALUE:
See TrioPC STATUS.

ReadPacket
DESCRIPTION:
Performs the corresponding READPACKET(…) command on the Motion Coordinator.

SYNTAX:
ReadPacket(PortNumber, StartVr, NumberVr, Format)

PARAMETERS:
Short PortNumber: Number of the comms port to read (0 or 1).
Short StartVr: Number of the first variable to receive values read from the comms port.
Short NumberVr: Number of variables to receive.
Short Format: Numeric format in which the numbers will arrive.

RETURN VALUE:
See TrioPC STATUS.

Input / Output Commands

Trio Motion Technology

PC MOTION aCTIVEX CONTROL7-34

Record
DESCRIPTION:
This method is no longer supported by any current Motion Coordinator.

Regist
DESCRIPTION:
Performs the corresponding REGIST(...) command on the Motion Coordinator.

SYNTAX:
Regist(Mode, Dist)

PARAMETERS:
Short Mode: Registration mode.

1. Axis absolute position when Z Mark Rising.
2. Axis absolute position when Z Mark Falling.
3. Axis absolute position when Registration Input Rising.
4. Axis absolute position when Registration Input Falling.
5. Unused.
6. R input rising into REG_POS and Z mark rising into REG_POSB.
7. R input rising into REG_POS and Z mark falling into REG_POSB.
8. R input falling into REG_POS and Z mark rising into REG_POSB.
9. R input falling into REG_POS and Z mark falling into REG_POSB.

Double Dist: Only used in pattern recognition mode and specifies the distance over which to record
the transitions.

RETURN VALUE:
See TrioPC STATUS.

Send
DESCRIPTION:
Performs the corresponding SEND(...) command on the Motion Coordinator.

Input / Output Commands

Software Reference Manual

PC MOTION aCTIVEX CONTROL 7-35

SYNTAX:
Send(Destination, Type, Data1, Data2)

PARAMETERS:
Short Destination: Address to which the data will be sent.
Short Type: type of message to be sent:

1 . Direct variable transfer.
2 . Keypad offset.

Short Data1: Data to be sent. If this is a keypad offset message then it is the offset, otherwise it is
the number of the variable on the remote node to be set.

Short Data2: Optional numeric value that specifies the value to be set for the variable on the
remote node.

RETURN VALUE:
See TrioPC STATUS.

Setcom
DESCRIPTION:
Performs the corresponding SETCOM(...) command on the Motion Coordinator.

SYNTAX:
Setcom(Baudrate, DataBits, StopBits, Parity, [Port], [Control])

PARAMETERS:
Long BaudRate: Baud rate to be set.
Short DataBits: Number of bits per character transferred.
Short StopBits: Number of stop bits at the end of each character.
Short Parity: Parity mode of the port (0=>none, 1=>odd, 2=> even).
Short Port: Optional numeric value that specifies the port to set (0..3).
Short Control: Optional numeric value that specifies whether to enable or disable handshaking on this

port.

 RETURN VALUE:
See TrioPC STATUS.

General commands

Trio Motion Technology

PC MOTION aCTIVEX CONTROL7-36

General commands

Execute
DESCRIPTION:
Performs the corresponding EXECUTE... command on the Motion Coordinator.

SYNTAX:
Execute(Command)

PARAMETERS:
String Command: String that contains a valid TrioBASIC command.

RETURN VALUE:
Boolean; TRUE if the command was sent successfully to the Motion Coordinator and the EXECUTE command
on the Motion Coordinator was completed successfully and the command specified by the EXECUTE
command was tokenised, parsed and completed successfully. Otherwise FALSE.

GetData
DESCRIPTION:
This method is used when an asynchronous connection has been opened, to read data received from the
Motion Coordinator over a particular channel. The call will empty the appropriate channel receive data
buffer held by the ActiveX control.

SYNTAX:
GetData(channel, data)

PARAMETERS:
Short channel: Channel over which the required data was received (0,5,6,7, or 9).
String data: data received by the control from the Motion Coordinator.

RETURN VALUE:
Boolean; TRUE - if the given channel is valid, the connection open and the data read correctly from the
buffer. Otherwise FALSE.

General commands

Software Reference Manual

PC MOTION aCTIVEX CONTROL 7-37

SendData
DESCRIPTION
This method is used when the connection has been opened in the asynchronous mode, to write data to the
Motion Coordinator over a particular channel.

SYNTAX:
SendData(channel, data)

PARAMETERS:
Short channel: channel over which to send the data (0,5,6,7, or 9).
String data: data to be written to the Motion Coordinator.

RETURN VALUE:
Boolean; TRUE - if the given channel is valid, the connection open, and the data written out correctly.
Otherwise FALSE.

Scope
DESCRIPTION:
Initialises the data capture system in the Motion Coordinator for future data capture on a trigger event
by executing a SCOPE command on the Motion Coordinator. A trigger event occurrs when the Motion
Coordinator executes a TRIGGER command.

SYNTAX:
Scope(OnOff, [SamplePeriod, TableStart, TableEnd, CaptureParams])

PARAMETERS:
Boolean OnOff: TRUE to set up and enable data capture, FALSE to disable it.
Long SamplePeriod: Data sample period (in servo periods).
Long TableStart: The table index for the start of the block of TABLE memory which will be used to

hold captured data.
Long TableEnd: The table index for the start of the block of TABLE memory which will be used to

hold captured data.
String CaptureParams: A string of up to 4 comma seperated parameters to capture.

EXAMPLE:
Rem Set up to capture MPOS and DOPS on axis 5
TrioPC _ Status = TrioPC1.Scope(True, 10, 0, 1000, “MPOS AXIS(5), DPOS

General commands

Trio Motion Technology

PC MOTION aCTIVEX CONTROL7-38

AXIS(5)””)

RETURN VALUE:
See TrioPC STATUS.

Trigger
DESCRIPTION:
Sends a TRIGGER command to the Motion Coordinator to start data capture previously configured using a
SCOPE command.

SYNTAX:
Trigger()

PARAMETERS:
None.

RETURN VALUE:
See TrioPC STATUS.

Events

Software Reference Manual

PC MOTION aCTIVEX CONTROL 7-39

Events

OnBufferOverrunChannel0/5/6/7/9
DESCRIPTION:
One of these events will fire if a particular channel data buffer overflows. The ActiveX control stores all
data received from the Motion Coordinator in the appropriate channel buffer when the connection has
been opened in asynchronous mode. As data is received it is the responsibility of the user application to
call the GetData() method whenever the OnReceiveChannelx event fires (or otherwise to call the method
periodically) to prevent a buffer overrun. Which event is fired will depend upon which channel buffer
overran.

SYNTAX:
OnBufferOverrunChannelx()
The channel number (x) can be any of the following: 0, 5, 6, 7 or 9.

PARAMETERS:
None.

RETURN VALUE:
None.

OnReceiveChannel0/5/6/7/9
DESCRIPTION:
One of these events will fire when data is received from the Motion Coordinator over a connection which
has been opened in the asynchronous mode. Which event is fired will depend upon over which channel
the Motion Coordinator sent the data. It is the responsibility of the user application to call the GetData()
method to retrieve the data received.

SYNTAX:
OnReceiveChannelx()
The channel number (x) can be any of the following: 0, 5, 6, 7 or 9.

PARAMETERS:
None.

RETURN VALUE:
None.

Events

Trio Motion Technology

PC MOTION aCTIVEX CONTROL7-40

OnProgress
DESCRIPTION:
The file operations LoadProgram, LoadProject and LoadSystem can take a long time to complete. To give
some feedback on this process the OnProgress event is fired periodically during the file operation.

SYNTAX:
OnOnProgress

PARAMETERS:
Description: Textual description of the associated process
Percentage: Progress of the process in percent.

Intelligent drive Commands

Software Reference Manual

PC MOTION aCTIVEX CONTROL 7-41

Intelligent Drive Commands

MechatroLink
DESCRIPTION:
Performs the corresponding MECHATROLINK(...) command on the Motion Coordinator. For more information
on the MECHATROLINK command please see the corresponding Motion Coordinator user manual. This
method will only work on those Motion Coordinators that support the MehchatroLink interface.

SYNTAX:
MechatroLink(Module, Function, NumberOfParameters, MLParameters, Result)

PARAMETERS:
Short Module: Number of the MechatroLink interface module.
Short Function: MechatroLink function number.
Short NumberOfParameters: Number of parameters to use in the MECHATROLINK command.
Double MLParameters: Array of parameters to use for the MECHATROLINK command.
Double Result: Variable in which the return value is stored.

RETURN VALUE:
See TrioPC STATUS.

Program Manipulation Commands

Trio Motion Technology

PC MOTION aCTIVEX CONTROL7-42

Program Manipulation Commands

LoadProject
DESCRIPTION:
Not implemented.

LoadSystem
DESCRIPTION:
Not implemented.

LoadProgram
DESCRIPTION:
Not implemented.

New
DESCRIPTION:
Deletes a program on the Motion Coordinator.

SYNTAX:
New(Program)

PARAMETERS:
String Program: The name of the program to be deleted.

RETURN VALUE:
See TrioPC STATUS.

Program Manipulation Commands

Software Reference Manual

PC MOTION aCTIVEX CONTROL 7-43

Select
DESCRIPTION:
Selects a program on the Motion Coordinator.

SYNTAX:
Select(Program)

PARAMETERS:
String Program: The name of the program to be selected.

RETURN VALUE:
See TrioPC STATUS.

Dir
DESCRIPTION:
Gets a directory listing from the Motion Coordinator.

SYNTAX:
Dir(Directory)

PARAMETERS:
String Program: A string object used to return the directory listing.

RETURN VALUE:
See TrioPC STATUS.

InsertLine
DESCRIPTION:
Inserts a line into a program onto the Motion Coordinator. This will first Select the given program on the
controller and then insert the line text at the given line number.

SYNTAX:
InsertLine(Program, Line, LineText)

Program Manipulation Commands

Trio Motion Technology

PC MOTION aCTIVEX CONTROL7-44

PARAMETERS:
String Program: The name of the program.
Short Line: The line number at which the new line will be inserted.
String LineText: The text of the line to be inserted.

RETURN VALUE:
See TrioPC STATUS.

data Types

Software Reference Manual

PC MOTION aCTIVEX CONTROL 7-45

Data Types
The following data types are used by the PC Motion control interface:

Connection Type
ALSO KNOWN AS:
Port Type.

DESCRIPTION:
An enumeration representing communication port type.

Values: -1: No connection .
0: USB.
1: Serial.
2: Ethernet.
3: PCI.
4: Path.
5: FINS (Not used on Trio controllers).

Communications Mode
ALSO KNOWN AS:
Port Mode.

DESCRIPTION:
An enumeration representing the operating mode of a communications link.

VALUES:
Interface Mode Description
USB: 0 Synchronous.

1 Asynchronous.

Serial: >0 Synchronous on specified port number.
<0 Asynchronous on specified port number.

Ethernet: 0 Synchronous on specified port number.
3240

23 Asynchronous on specified port number (default 23).

TrioPC status

Trio Motion Technology

PC MOTION aCTIVEX CONTROL7-46

other
PCI: 0 Synchronous.

1 Asynchronous.

TrioPC status

Many of the methods implemented by the TrioPC interface return a boolean status value. The value will
be TRUE if the command was sent successfully to the Motion Coordinator and the command on the Motion
Coordinator was completed successfully. It will be FALSE if it was not processed correctly, or there was a
communications error.

Software Reference Manual

PC MOTION aCTIVEX CONTROL 7-47

8AUTO LOADER AND
MCLOADER ACTIVEX

Trio Motion Technology

auTO LOadER aNd MCLOadER aCTIVEX8-2

using the autoloader

Software Reference Manual

auTO LOadER aNd MCLOadER aCTIVEX 8-3

Project Autoloader
Trio Project Autoloader is a stand-alone program to load projects created using Motion Perfect onto a Trio
Motion Coordinator.

The program is small enough to fit onto a 1.44MByte floppy disk and is intended for easy loading of projects
onto controllers without the need to run Motion Perfect and so allows OEM manufacturers to update
customers’ equipment easily.

Operation of the program is controller using a script file which gives a series of commands to be processed,
in order, by the program.

Using the Autoloader

GENERAL
The autoloader is primarily intended to be used from a floppy disk to update controllers already installed in
equipment to allow OEM manufacturers to update customers equipment easily. It can also be used from a
hard disk or CD-ROM.

SCRIPT FILE
The commands to be executed are held in a script file AutoLoader.tas which by default is in the LoaderFiles
directory. The commands are executed in sequence until either the script completes or an error occurs.

PROJECT
The project to be loaded using LOADPROJECT or FASTLOADPROJECT is in the form of a normal Motion
Perfect 2 project. This consists of a directory containing a project definition file and Trio BASIC program
files. The directory must have the same name as the project definition file less the extension.

i.e. project definition file TestProj.prj, directory TestProj

The project directory must be in the LoaderFiles directory.

TIMEOUT
If there are large programs in the project the command timeout may need to be increased from its default
value of 10 seconds otherwise the project load may fail due to the long time it takes to select a new
program on the controller. The TIMEOUT command should appear in the script file before any LOADPROJECT
command.

TABLES
Any tables to be loaded must be in the form of *.lst files produced by Motion Perfect.

Normally these table files will be in the LoaderFiles directory.

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/Commands.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/ScriptFile.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/LoadProject.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/FastLoadProject.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/Timeout.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/LoadProject.docx

using the autoloader

Trio Motion Technology

auTO LOadER aNd MCLOadER aCTIVEX8-4

EXTRA PROGRAMS
Programs which need to be loaded using LOADPROGRAM because they are not in the project being loaded (or
if no project is being loaded)

Normally these program files will be in the LoaderFiles directory.

FILES
By default the autoloader is designed to work with the following file structure (fixed names are shown in
bold type).

Where:

Base Directory is normally the root directory on a floppy disk (A:\), but can be any directory.

Project is the Motion Perfect 2 project directory for the project to be loaded using the LOADPROJECT
command, Project.prj being the project file and Proj?.bas are the program files in the project.

Table?.lst are the table files to be loaded using the LOADTABLE command.

ExtProg?.bas are the extra programs to be loaded using the LOADPROGRAM command.

Any or all of the objects in the LoaderFiles directory can be located elsewhere as long as the file (or
directory) name is specified using a full path. The script file can be specified as a single argument to the
AutoLoader program.

RUNNING THE PROGRAM
The program can be started in the same way as any other Windows program, in which case the LoaderFiles
directory must be in the same directory as the AutoLoader executable file.

It can also be started from the command line with an optional argument which specifies the script file to
process. e.g.

AutoLoader E:\MXUpdate\20051203\UpDate1.tas

AutoLoader.exe

Base Directory

AutoLoader.tas

Table1.lst

ExtProg1.bas

Project

Loader Files

Project.prj

Prog1.bas

Pro2.bas

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/LoadProgram.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/LoadProject.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/LoadTable.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/LoadProgram.docx

using the autoloader

Software Reference Manual

auTO LOadER aNd MCLOadER aCTIVEX 8-5

START DIALOG

The start dialog displays a message specified in the script and has continue and cancel buttons so that the
user can exit from the program without running the script.

MAIN WINDOW

The program main window consists of two message windows; one to display the current command and
the other to display the name of the program or file currently being loaded. There is a button to show the
current status (Starting, running, pass or fail) and a progress bar to show the progress during file and table
loading.

The close button closes the dialog. If it is pressed while a script is being processed then script processing
will be terminated at the end of the current operation.

Script Commands
The following commands are available for use in script files:

AUTORUN
CHECKPROJECT
CHECKTYPE
CHECKUNLOCKED

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/Autorun.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/CheckProject.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/CheckType.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/CheckUnlocked.docx

using the autoloader

Trio Motion Technology

auTO LOadER aNd MCLOadER aCTIVEX8-6

CHECKVERSION
COMMLINK (alternative COMMPORT)
COMPILEALL
COMPILEPROGRAM
DELETEALL (alternative NEWALL)
DELETEPROGRAM
DELTABLE
EPROM
FASTLOADPROGRAM
FASTLOADPROJECT
HALTPROGRAMS
LOADPROGRAM
LOADPROJECT
LOADTABLE
SETDECRYPTIONKEY
SETPROJECT
SETRUNFROMEPROM
TIMEOUT

Comment (‘)

All commands return a result of OK or Fail. An OK result allows script execution to continue, a Fail result will
make script execution terminate at that point.

AUTORUN
PURPOSE:
To run the programs on the controller which are set to run automatically at power-on.

SYNTAX:
AUTORUN

CHECKPROJECT

PURPOSE:
To check the programs on a controller against a project on disk.

SYNTAX:
CHECKPROJECT [<ProjectName>]
Where <ProjectName> is the optional path of the project directory. If the project directory is in the same
directory as the ALoader.exe executable then it is just the name of the of the project directory. If no <ProjectName>
is	specified	then	the	current	project,	set	by	a	previous	SETPROJECT or LOADPROJECT command, is used. This
operation is automatically performed by a LOADPROJECT operation.

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/CheckVersion.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/CommLink.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/CompileAll.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/CompileProgram.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/DeleteAll.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/DeleteProgram.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/DelTable.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/EPROM.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/FastLoadProgram.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/FastLoadProject.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/HaltPrograms.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/LoadProgram.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/LoadProject.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/LoadTable.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/SetDecryptionKey.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/SetProject.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/SetRunFromEPROM.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/Timeout.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/Comment.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/SetProject.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/LoadProject.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/LoadProject.docx

using the autoloader

Software Reference Manual

auTO LOadER aNd MCLOadER aCTIVEX 8-7

EXAMPLES:
CHECKPROJECT
CHECKPROJECT TestProj

CHECKTYPE

PURPOSE:
To check the controller type.

SYNTAX:
CHECKTYPE <Controller List>
Where <Controller List> is a comma separated list of one or more valid controller ID numbers.

i.e. 206,216

EXAMPLES:
CHECKTYPE 206
CHECKTYPE 202,216,206

CONTROLLER ID NUMBERS
Each type of controller returns a different ID number in response to the TrioBASIC command:

?CONTROL[0]

The table below gives the ID number for current controllers.

Controller ID Number
MC2 2

MC202 202

MC204 204

Euro205 205

Euro205x 255

MC206 206

PCI208 208

MC216 216

MC224 224

MC402 (Omron) 250

MC402e (Omron) 251

MCW151 (Omron) 260

TJ1-MC16 (Omron) 262

MC302L 292

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/ControllerIDNumbers.docx

using the autoloader

Trio Motion Technology

auTO LOadER aNd MCLOadER aCTIVEX8-8

Euro205XL 254

MC206X 207

MC302X 293

TJ1_MC04 (Omron) 263

MTX205 294

MC464 464

MC209 209

Euro209 259

CJ1_MCH72 264

TJ2_MC64 (Omron) 266

PCI214 214

TJ2_MC04 267

TJ2_MC16 268

MC405 405

MC403 403

MC400 400

P157 305

The ID numbers are used in the CHECKTYPE command.

CHECKUNLOCKED
PURPOSE:
To check that the controller is not locked.

SYNTAX:
CHECKUNLOCKED

CHECKVERSION

PURPOSE:
To check the version of the controller system code.

SYNTAX:
CHECKVERSION <Operator><Version>
CHECKVERSION <LowVersion>-<HighVersion>

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/CheckType.docx

using the autoloader

Software Reference Manual

auTO LOadER aNd MCLOadER aCTIVEX 8-9

EXAMPLES:
CHECKVERSION > 1.49
CHECKVERSION >= 1.51
CHECKVERSION 1.42-1.50

‘ Comment
PURPOSE:
To allow the user to put descriptive comments into a script.

SYNTAX:
‘ <Text>
Where <Text> is any text.

EXAMPLES:
‘ This is a comment line

COMMLINK (alternative COMMPORT)
PURPOSE:
To set the communications port and parameters.

SYNTAX:
COMMLINK <PortSpec>
Where <PortSpec> is a string specifying a communications port and the connection parameters.

SERIAL
For a serial port this string is similar to COM1:9600,7,e,2 to specify the port, speed, number of data bits,
parity and number of stop bits. 9600,7,e,2 are the default parameters for a controller.

USB
For a USB connection the string is USB:0	as	only	a	single	USB	connection	(0)	is	supported.	

Ethernet
For an Ethernet connection the string is similar to Ethernet:192.168.0.123:23 which specifies an Ethernet
connection to IP address 192.168.0.123 on port 23. The final ‘:’ and the port number can be omitted, in
which case the port number defaults to 23.

using the autoloader

Trio Motion Technology

auTO LOadER aNd MCLOadER aCTIVEX8-10

PCI
For a PCI connection the string is similar to PCI:0	which	specifies	a	connection	to	PCI	card	0.	

EXAMPLES:
COMMLINK COM2:9600,7,e,2
COMMLINK USB:0
COMMLINK Ethernet:192.168.0.111
COMMLINK PCI:1

COMPILEALL
PURPOSE:
To compile all the programs on the controller.

SYNTAX:
COMPILEALL

COMPILEPROGRAM
PURPOSE:
To compile a program on the controller.

SYNTAX:
COMPILEPROGRAM <Program>
Where <Program> is the program name.

EXAMPLES:
COMPILEPROGRAM Prog

The LOADPROGRAM command automatically compiles programs after they are loaded so under normal
circumstances there is no need to use this command.

DELETEALL (alternative NEWALL)
PURPOSE:
To delete all programs on the controller.

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/LoadProgram.docx

using the autoloader

Software Reference Manual

auTO LOadER aNd MCLOadER aCTIVEX 8-11

SYNTAX:
DELETEALL

DELETEPROGRAM
PURPOSE:
To delete a program on the controller.

SYNTAX:
DELETEPROGRAM <ProgramName>
Where <ProgramName> is the name of a program on the controller.

EXAMPLES:
DELETEPROGRAM Prog.bas

DELETEPROGRAM may fail if programs are running. It will also indicate an error if the specified
program is not present on the controller.

DELTABLE
PURPOSE:
To delete the table on the controller.

SYNTAX:
DELTABLE
This command should always be used before the LOADTABLE command.

This command has no effect on controllers with statically allocated table memory.

EPROM
PURPOSE:
To store the project currently in controller RAM into EPROM

SYNTAX:
EPROM

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/LoadTable.docx

using the autoloader

Trio Motion Technology

auTO LOadER aNd MCLOadER aCTIVEX8-12

FASTLOADPROGRAM
PURPOSE:
To load a program not in a project onto the controller using the fast method.

SYNTAX:
FASTLOADPROGRAM <ProgramFile>
Where <ProgramFile> is the path of the program file. If the program file is in the same directory as the
AutoLoader.exe executable then this is just the file name of the program file.

EXAMPLES:
FASTLOADPROGRAM Prog.bas

FASTLOADPROGRAM will only work on series 2 Motion Coordinators with system version 1.6653 or later
and series 4 Motion Coordinators with system version 2.0010 or later.

FASTLOADPROJECT
PURPOSE:
To load a project from disk onto the controller.

DESCRIPTION:
FASTLOADPROJECT is a faster alternative to LOADPROJECT. It is only compatible with system software
version 1.63 or later for series 2 Motion Coordinators, and version 1.9013 or later for series 3 Motion
Coordinators.

FASTLOADPROJECT must be used if a project contains encrypted programs.

SYNTAX:
FASTLOADPROJECT [<ProjectName>]
Where <ProjectName> is the optional path of the project directory. If the project directory is in the same
directory as the ALoader.exe executable then it is just the name of the of the project directory. If no
<ProjectName> is specified then the current project, set by a previous SETPROJECT command, is used.

EXAMPLES:
FASTLOADPROJECT
FASTLOADPROJECT TestProj

If FASTLOADPROJECT fails and the project only contains Trio BASIC source files then using

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/LoadProject.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/SetProject.docx

using the autoloader

Software Reference Manual

auTO LOadER aNd MCLOadER aCTIVEX 8-13

LOADPROJECT may work

HALTPROGRAMS
PURPOSE:
To halt all programs on the controller.

SYNTAX:
HALTPROGRAMS
This operation is automatically performed as part of LOADPROJECT, LOADPROGRAM and DELTABLE
commands.

LOADPROGRAM
PURPOSE:
To load a program not in a project onto the controller.

SYNTAX:
LOADPROGRAM <ProgramFile>
Where <ProgramFile> is the path of the program file. If the program file is in the same directory as the
ALoader.exe executable then this is just the file name of the program file.

EXAMPLES:
LOADPROGRAM Prog.bas

LOADPROGRAM will only load TrioBASIC source files.

LOADPROJECT
PURPOSE:
To load a project from disk onto the controller.

SYNTAX:
LOADPROJECT [<ProjectName>]
Where <ProjectName> is the optional path of the project directory. If the project directory is in the same

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/LoadProject.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/LoadProject.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/LoadProgram.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/DelTable.docx

using the autoloader

Trio Motion Technology

auTO LOadER aNd MCLOadER aCTIVEX8-14

directory as the ALoader.exe executable then it is just the name of the of the project directory. If no
<ProjectName> is specified then the current project, set by a previous SETPROJECT command, is used.

EXAMPLES:
LOADPROJECT
LOADPROJECT TestProj

LOADPROJECT will only load projects which only contain Trio BASIC source files. If a project contains other
types of file (i.e. encrypted programs) then FASTLOADPROJECT must be used

LOADTABLE
PURPOSE:
To load a table onto the controller.

SYNTAX:
LOADTABLE <TableFile>
Where <TableFile> is the path of the table file. If the table file is in the LoaderFiles directory then this is just
the file name of the table file.

This command should always be used after the LOADPROJECT command.

EXAMPLES:
LOADTABLE Tbl.lst

SETDECRYPTIONKEY
PURPOSE:
To set the decryption key required when load an encrypted project from disk onto the controller.

DESCRIPTION:
SETDECRYPTIONKEY sets the decryption key for a subsequent FASTLOADPROJECT operation. The decryption
key is only used when a project containing one or more encrypted programs is loaded onto a controller using
FASTLOADPROJECT.

If a project contains encrypted programs, it can only be loaded using FASTLOADPROJECT.

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/SetProject.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/FastLoadProject.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/LoadProject.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/FastLoadProject.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/FastLoadProject.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/FastLoadProject.docx

using the autoloader

Software Reference Manual

auTO LOadER aNd MCLOadER aCTIVEX 8-15

SYNTAX:
SETDECRYPTIONKEY KeyString

EXAMPLES:
SETDECRYPTIONKEY 67dj0.fIcc

Decryption keys are a derived from the key string used to encrypt the program(s) and the security
code of the target controller. Decryption keys can be generated using the Project Encryptor tool
distributed with Motion Perfect.

SETPROJECT
PURPOSE:
To set the current project for following commands.

SYNTAX:
SETPROJECT <ProjectName>
Where <ProjectName> is the path of the project directory. If the project directory is in the same directory
as the ALoader.exe executable then it is just the name of the of the project directory.

EXAMPLES:
SETPROJECT TestProj

SETRUNFROMEPROM
PURPOSE:
To set the controller to use the programs stored in its EPROM. (It actually copies the programs from EPROM
into RAM at startup).

SYNTAX:
SETRUNFROMEPROM <State>
Where <State> is 1 for copy from EPROM and 0 is use programs currently in RAM.

A single @ character can be used to specify state in the project file.

EXAMPLES:
SETRUNFROMEPROM 1
SETRUNFROMEPROM @

This command only applies to controllers which have battery backed RAM (controllers with no battery

using the autoloader

Trio Motion Technology

auTO LOadER aNd MCLOadER aCTIVEX8-16

backed RAM will always copy programs from EPROM).

TIMEOUT
PURPOSE:
To set the command timeout.

SYNTAX:
TIMEOUT time
Where time is the timeout value in seconds (default is 10).

EXAMPLE:
TIMEOUT 30

It will normally only be necessary to increase the timeout above 10 if there are large programs in the
target controller or you are loading large programs onto it.

Script File

Software Reference Manual

auTO LOadER aNd MCLOadER aCTIVEX 8-17

Script File
The autoloader program uses a script file AutoLoader.tas as a source of commands. These commands are
executed in order until all commands have been processed or an error has occurred.

If any command fails the execution terminates without completing the scripted command sequence.

SAMPLE SCRIPT
‘ Test Script
‘ **************
‘ Startup Message

This autoloader was set up by TRIO to load a test project onto a
controller of fixed type.

COMMLINK COM1:9600,7,e,2
CHECKTYPE 206
CHECKVERSION > 1.45
CHECKUNLOCKED
LOADPROJECT LoaderTest
LOADTABLE tbl _ 1.lst
CHECKPROJECT LoaderTest
LOADPROGRAM flashop.bas
LOADPROGRAM clrtable.bas
LOADPROGRAM settable.bas
EPROM
SETRUNFROMEPROM @

For this script to work correctly the LoaderFiles directory must contain a project directory LoaderTest, a
table file tbl_1.lst and three program files: flashop.bas, clrtable.bas and settable.bas.

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/Commands.docx

Trio MC Loader

Trio Motion Technology

auTO LOadER aNd MCLOadER aCTIVEX8-18

Trio MC Loader

INTRODUCTION
Trio MC Loader is a Windows ActiveX control which can load projects (produced with Motion Perfect) and
programs onto a Trio Motion Coordinator. Communication with the Motion Coordinator can be via Serial link,
USB, Ethernet or PCI depending on the Motion Coordinator.

PROPERTIES
The control has the following properties:

CommLink
ControllerSystemVersion
ControllerType
DecryptionKey
DisplayGaugeDuringProgramLoad
Locked
Open
ProjectFile
RunFromEPROM
Timeout

EVENTS
The control does not generate any events.

Property: CommLink
TYPE:
BSTR (string)

ACCESS:
Read / write

DESCRIPTION:
This property is used to get or set the configuration of the communications link. The format of the string
depends on the type of communications link being used.

SERIAL
For a serial port this string is similar to COM1:9600,7,e,2 to specify the port, speed, number of data bits,
parity and number of stop bits. 9600,7,e,2 are the default parameters for most controllers.

USB
For a USB connection the string is USB:0 as only a single USB connection (0) is supported.

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/CommLink.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/ControllerSystemVersion.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/ControllerType.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/DecryptionKey.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/DisplayGaugeDuringProgramLoad.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/Locked.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/Open.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/ProjectFile.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/RunFromEPROM.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/Timeout.docx

Trio MC Loader

Software Reference Manual

auTO LOadER aNd MCLOadER aCTIVEX 8-19

ETHERNET
For an Ethernet connection the string is similar to Ethernet:192.168.0.123:23 which specifies an Ethernet
connection to IP address 192.168.0.123 on port 23. The final ‘:’ and the port number can be omitted, in
which case the port number defaults to 23.

PCI
For a PCI connection the string is similar to PCI:0	which	specifies	a	connection	to	PCI	card	0.	

EXAMPLES:

VISUAL BASIC:
axLoader.CommLink = “Ethernet:192.168.22.11”

VISUAL C#:
axLoader.CommLink = “Ethernet:192.168.22.11”;

Property: ControllerSystemVersion
TYPE:
double

ACCESS:
Read

DESCRIPTION:
This is a read-only property which returns the controller system software version number.

EXAMPLES:

VISUAL BASIC:
Dim Version As Double

Version = axLoader.ControllerSystemVersion

VISUAL C#:
double dVersion;

dVersion = axLoader.ControllerSystemVersion;

Trio MC Loader

Trio Motion Technology

auTO LOadER aNd MCLOadER aCTIVEX8-20

Property: ControllerType
TYPE:
unsigned long

ACCESS:
Read

DESCRIPTION:
This is a read-only property which returns the Controller Type code.

EXAMPLES:

VISUAL BASIC:
Dim ConType As Long

ConType = axLoader.ControllerType

VISUAL C#:
ulong ulConType;

ulConType = axLoader.ControllerType;

Property: DecryptionKey
TYPE:
BSTR (string)

ACCESS:
Read / write

DESCRIPTION:
The DecryptionKey property sets/gets the decryption key for a subsequent fast mode LoadProject
operations. The decryption key is only used when a project containing one or more encrypted programs is
loaded onto a controller using fast LoadProject.

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/LoadProject.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/LoadProject.docx

Trio MC Loader

Software Reference Manual

auTO LOadER aNd MCLOadER aCTIVEX 8-21

EXAMPLES:

VISUAL BASIC:
axLoader.DecryptionKey = “hjiHU87OOo”

VISUAL C#:
axLoader.DecryptionKey = “hjiHU87OOo”;

Decryption keys are a derived from the key string used to encrypt the program(s) and the security
code of the target controller. Decryption keys can be generated using the Project Encryptor tool
distributed with Motion Perfect.

Property: DisplayGaugeDuringProgramLoad
TYPE:
VARIANT _ BOOL

ACCESS:
Read / write

DESCRIPTION:
This property is used to control the display of a gauge (progress control) whilst a program is loading. When
true, a gauge is displayed showing progress as a program is loaded. When false no gauge is displayed.

Displaying a gauge whilst a program is loaded gives some feedback to the user that something is happening.
Otherwise there would potentially be a long period where nothing happens, which may give the impression
that the program has hung up.

EXAMPLES:

VISUAL BASIC:
If Not axLoader.DisplayGaugeDuringProgramLoad Then
 axLoader.DisplayGaugeDuringProgramLoad = True

VISUAL C#:
if (!axLoader.DisplayGaugeDuringProgramLoad)
 axLoader.DisplayGaugeDuringProgramLoad = true;

Trio MC Loader

Trio Motion Technology

auTO LOadER aNd MCLOadER aCTIVEX8-22

Property: Locked
TYPE:
VARIANT _ BOOL

ACCESS:
Read

DESCRIPTION:
This is a read-only property which returns the locked state of the controller (true	for	locked,	false	for	
unlocked).	

EXAMPLES:

VISUAL BASIC:
Dim IsLocked As Boolean

IsLocked = axLoader.Locked

VISUAL C#:
bool bLocked;

bLocked = axLoader.Locked;

Property: Open
TYPE:
bool

ACCESS:
Read / write

DESCRIPTION:
The Open property sets/gets the state of the communications port used to communicate with the controller.

Trio MC Loader

Software Reference Manual

auTO LOadER aNd MCLOadER aCTIVEX 8-23

EXAMPLES:

VISUAL BASIC:
If Not axLoader.Open Then
 axLoader.Open = False
End If

VISUAL C#:
if (!axLoader.Open)
 axLoader.Open = false;

Any method or property which needs to communicate with the controller will automatically open
a communications port if the parameters have been set. The communications port is not closed on
completion of a command so the primary use of this property is to close the communications link
rather than to open it.

Property: ProjectFile
TYPE:
BSTR (string)

ACCESS:
Read / write

DESCRIPTION:
This property is used to get or set the current project file. The full path to the project file should be used
when setting this property.

EXAMPLES:

VISUAL BASIC:
If axLoader.ProjectFile.Length = 0 then
 axLoader.ProjectFile = “C:\Projects\PPX\PPX.prj”
End If

VISUAL C#:
if (axLoader.ProjectFile.Length == 0)
 axLoader.ProjectFile = “C:\\Projects\\PPX\\PPX.prj”;

Trio MC Loader

Trio Motion Technology

auTO LOadER aNd MCLOadER aCTIVEX8-24

Property: RunFromEPROM
TYPE:
VARIANT _ BOOL

ACCESS:
Read / write

DESCRIPTION:
This property is used to control how the controller starts up. When set to false it uses programs stored in its
RAM	memory.		When	set	to	true	the	controller	uses	programs	stored	in	its	EPROM	memory	(overwriting	the	programs	
in	RAM).	

EXAMPLES:

VISUAL BASIC:
If not axLoader.RunFromEPROM then
 axLoader.RunFromEPROM = True
End If

VISUAL C#:
if (!axLoader.RunFromEPROM)
 axLoader.RunFromEPROM = true;

Property: Timeout
TYPE:
unsigned long

ACCESS:
Read / write

DESCRIPTION:
This property is used to set the command timeout for communications with the controller. The default value
is 10 (seconds) but may need to be increased if you are using large programs or have a large project.

Trio MC Loader

Software Reference Manual

auTO LOadER aNd MCLOadER aCTIVEX 8-25

EXAMPLES:

VISUAL BASIC:
If axLoader.Timeout < 20 Then
 axLoader.Timeout = 25
End If

VISUAL C#:

IF (AXLOADER.TIMEOUT < 20)
 axLoader.Timeout = 25;

Methods

Trio Motion Technology

auTO LOadER aNd MCLOadER aCTIVEX8-26

Methods
The control has the following methods:

AutoRun
CheckProject
ClearGaugePosition
CompileAll
CompileProgram
DeleteAll
DeleteProgram
DeleteTable
FastLoadProgram
GetLastError
GetLastErrorString
HaltPrograms
LoadProgram
LoadProject
LoadTable
Lock
SetGaugePosition
StoreInEPROM
Unlock

Method: AutoRun
PARAMETERS:
none

RETURN TYPE:
VARIANT _ BOOL

DESCRIPTION:
This method is used to run any programs on the controller which are set to auto-run on startup.

The return value is true if the method call succeeded and false if it failed. Further error information can be
obtained by calling the GetLastError and GetLastErrorString methods.

EXAMPLES:

VISUAL BASIC:
If Not axLoader.AutoRun Then
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString)
End If

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/AutoRun.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/CheckProject.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/ClearGaugePosition.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/CompileAll.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/CompileProgram.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/DeleteAll.docx
file:///C:\Users\Public\TrioWork\Help\Loader\MCLoader_Help\word\DeleteProgram.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/DeleteTable.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/FastLoadProgram.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastError.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastErrorString.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/HaltPrograms.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/LoadProgram.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/LoadProject.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/LoadTable.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/Lock.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/SetGaugePosition.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/StoreInEPROM.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/Unlock.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastError.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastErrorString.docx

Methods

Software Reference Manual

auTO LOadER aNd MCLOadER aCTIVEX 8-27

VISUAL C#:
if (!axLoader.AutoRun())
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString);

Method: CheckProject
PARAMETERS:
none

RETURN TYPE:
VARIANT _ BOOL

DESCRIPTION:
This method is used to check the programs on the controller against the project previously set using the
ProjectFile.

The return value is true if the method call succeeded and false if it failed. Further error information can be
obtained by calling the GetLastError and GetLastErrorString methods.

EXAMPLES:

VISUAL BASIC:
If Not axLoader.CheckProject Then
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString)
End If

VISUAL C#:
if (!axLoader.CheckProject())
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString);

Method: ClearGaugePosition
PARAMETERS:
None.

RETURN TYPE:
VOID

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/ProjectFile.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastError.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastErrorString.docx

Methods

Trio Motion Technology

auTO LOadER aNd MCLOadER aCTIVEX8-28

DESCRIPTION:
This method is used to clear the position of the gauge dialog which is displayed while a program is being
loaded, which has been previously set using the SetGaugePosition method. This causes the gauge dialog to
be displayed in its default position (the centre of the screen).

EXAMPLES:

VISUAL BASIC:
ClearGaugePosition

VISUAL C#:
ClearGaugePosition();

Method: CompileAll
PARAMETERS:
none

RETURN TYPE:
VARIANT _ BOOL

DESCRIPTION:
This method is used to compile all programs on the controller.

The return value is true if the method call succeeded and false if it failed. Further error information can be
obtained by calling the GetLastError and GetLastErrorString methods.

EXAMPLES:

VISUAL BASIC:
If Not axLoader.CompileAll Then
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString)
End If

VISUAL C#:
if (!axLoader.CompileAll())
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString);

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/SetGaugePosition.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastError.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastErrorString.docx

Methods

Software Reference Manual

auTO LOadER aNd MCLOadER aCTIVEX 8-29

Method: CompileProgram
PARAMETERS:
BSTR (string): ProgramName

RETURN TYPE:
VARIANT _ BOOL

DESCRIPTION:
This method is used to compile a single program on the controller.

The return value is true if the method call succeeded and false if it failed. Further error information can be
obtained by calling the GetLastError and GetLastErrorString methods.

EXAMPLES:

VISUAL BASIC:
If Not axLoader.CompileProgram(“PROG”) Then
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString)
End If

VISUAL C#:
if (!axLoader.CompileProgram(“PROG”))
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString);

Method: DeleteAll
PARAMETERS:
none

RETURN TYPE:
VARIANT _ BOOL

DESCRIPTION:
This method is used to delete the all the programs on the controller.

The return value is true if the method call succeeded and false if it failed. Further error information can be
obtained by calling the GetLastError and GetLastErrorString methods.

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastError.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastErrorString.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastError.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastErrorString.docx

Methods

Trio Motion Technology

auTO LOadER aNd MCLOadER aCTIVEX8-30

EXAMPLES:

VISUAL BASIC:
If Not axLoader.DeleteAll Then
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString)
End If

VISUAL C#:
if (!axLoader.DeleteAll())
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString);

Method: DeleteProgram
PARAMETERS:
BSTR (string): ProgramName

RETURN TYPE:
VARIANT _ BOOL

DESCRIPTION:
This method is used to delete a single program from the controller.

The return value is true if the method call succeeded and false if it failed. Further error information can be
obtained by calling the GetLastError and GetLastErrorString methods.

EXAMPLES:

VISUAL BASIC:
If Not axLoader.DeleteProgram(“PROG”) Then
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString)
End If

VISUAL C#:
if (!axLoader.DeleteProgram(“PROG”))
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString);

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastError.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastErrorString.docx

Methods

Software Reference Manual

auTO LOadER aNd MCLOadER aCTIVEX 8-31

Method: DeleteTable
PARAMETERS:
none

RETURN TYPE:
VARIANT _ BOOL

DESCRIPTION:
This method is used to delete the table on the controller. It only works on controllers which do not have
dedicated table memory.

The return value is true if the method call succeeded and false if it failed. Further error information can be
obtained by calling the GetLastError and GetLastErrorString methods.

EXAMPLES:

VISUAL BASIC:
If Not axLoader.DeleteTable Then
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString)
End If

VISUAL C#:
if (!axLoader.DeleteTable())
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString);

Method: FastLoadProgram
PARAMETERS:
BSTR (string): ProgramFileName
VARIANT _ BOOL: Compile

RETURN TYPE:
VARIANT _ BOOL

DESCRIPTION:
This method is used to load a single program onto the controller using the fast load method. If Compile is
true, the program will be compiled after it has been loaded (it is generally good practice to do this).

The return value is true if the method call succeeded and false if it failed. Further error information can be
obtained by calling the GetLastError and GetLastErrorString methods.

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastError.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastErrorString.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastError.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastErrorString.docx

Methods

Trio Motion Technology

auTO LOadER aNd MCLOadER aCTIVEX8-32

EXAMPLES:

VISUAL BASIC:
If Not axLoader.FastLoadProgram(“C:\Programs\Prog.bas”, True) Then
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString)
End If

VISUAL C#:
if (!axLoader.FastLoadProgram(“C:\\Programs\\Prog.bas”, true))
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString);

FASTLOADPROGRAM will only work on series 2 Motion Coordinators with system version 1.6653 or later
and series 4 Motion Coordinators with system version 2.0010 or later.

Method: GetLastError
PARAMETERS:
none

RETURN TYPE:
unsigned long

DESCRIPTION:
This method is used to retrieve the error code after a method call has failed (returned false). The returned
error code is only valid for the previous method call.

The following error codes can be returned:

Code Error Description
0 No error
1 File does not exist
2 Error opening file
3 Invalid IP address
4 Invalid IP port
5 Invalid integer
6 Invalid communications port
7 Invalid communications parameters
8 Communications error
9 Communications echo error
10 Invalid controller system version
11 Invalid controller type
12 Controller type not found
13 Invalid range
14 Failed version check

Methods

Software Reference Manual

auTO LOadER aNd MCLOadER aCTIVEX 8-33

Code Error Description
15 Controller locked
16 Failed to set project
17 Invalid command
18 Directory does not exist
19 No file specified
20 Program not in project
21 Program not on controller
22 CRC mismatch
23 Invalid directory
24 Failed to create directory
25 Invalid program file name
26 Error writing to file
27 Error reading CRC
28 Error calculating CRC
29 File not in project
30 Invalid program name
31 Failed to halt programs
32 Error reading directory
33 Program failed to compile
34 Failed to set communications parameters
35 Failed to get communications parameters
36 Transmit failure
37 Invalid connection type
38 Internal pointer error
39 Error sending string
40 Error sending command
41 Failed to select program
42 Program not loadable
43 Program does not exist
44 Project failed to load
45 Program failed to load
46 Program not compilable
47 Error deleting program
48 Error opening communications port
49 Error locking controller
50 Error unlocking controller

Further error information can be obtained by calling the GetLastErrorString method.

EXAMPLES:

VISUAL BASIC:
If Not axLoader.CompileAll Then
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString)
End If

VISUAL C#:
if (!axLoader.CompileAll())

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastErrorString.docx

Methods

Trio Motion Technology

auTO LOadER aNd MCLOadER aCTIVEX8-34

 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString);

Method: GetLastErrorString
PARAMETERS:
none

RETURN TYPE:
BSTR (string)

DESCRIPTION:
This method is used to retrieve additional information from the controller. The string contains extra
information which can be used in conjunction with the error code returned by the GetLastError method.

EXAMPLES:

VISUAL BASIC:
If Not axLoader.CompileAll Then
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString)
End If

VISUAL C#:
if (!axLoader.CompileAll())
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString);

Method: HaltPrograms
PARAMETERS:
none

RETURN TYPE:
VARIANT _ BOOL

DESCRIPTION:
This method is used to halt all programs currently running on the controller.

The return value is true if the method call succeeded and false if it failed. Further error information can be
obtained by calling the GetLastError and GetLastErrorString methods.

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastError.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastError.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastErrorString.docx

Methods

Software Reference Manual

auTO LOadER aNd MCLOadER aCTIVEX 8-35

EXAMPLES:

VISUAL BASIC:
If Not axLoader.HaltPrograms Then
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString)
End If

VISUAL C#:
if (!axLoader.HaltPrograms())
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString);

Method: LoadProgram
PARAMETERS:
BSTR (string): ProgramFileName
VARIANT _ BOOL: Compile

RETURN TYPE:
VARIANT _ BOOL

DESCRIPTION:
This method is used to load a single program onto the controller. If Compile is true, the program will be
compiled after it has been loaded (it is generally good practice to do this).

The return value is true if the method call succeeded and false if it failed. Further error information can be
obtained by calling the GetLastError and GetLastErrorString methods.

EXAMPLES:

VISUAL BASIC:
If Not axLoader.LoadProgram(“C:\Programs\Prog.bas”, True) Then
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString)
End If

VISUAL C#:
if (!axLoader.LoadProgram(“C:\\Programs\\Prog.bas”, true))
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString);

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastError.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastErrorString.docx

Methods

Trio Motion Technology

auTO LOadER aNd MCLOadER aCTIVEX8-36

Method: LoadProject
PARAMETERS:
VARIANT _ BOOL: FastLoad

RETURN TYPE:
VARIANT _ BOOL

DESCRIPTION:
This method is used to load the project previously set using the ProjectFile property onto the controller. If
FastLoad is true, the loader will use the fast loading algorithm. Fast loading is not available some controllers
and is only available in more recent versions of system software. All controllers will perform a normal (slow)
load. Fast load must be used if the project contains one or more encrypted programs.

The return value is true if the method call succeeded and false if it failed. Further error information can be
obtained by calling the GetLastError and GetLastErrorString methods.

EXAMPLES:

VISUAL BASIC:
If Not axLoader.LoadProject(False) Then
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString)
End If

VISUAL C#:
if (!axLoader.LoadProject(false))
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString);

Method: LoadTable
PARAMETERS:
BSTR (string): TableFileName

RETURN TYPE:
VARIANT _ BOOL

DESCRIPTION:
This method is used to load data into the table on the controller from a table list file (usually saved by
Motion Perfect).

The return value is true if the method call succeeded and false if it failed. Further error information

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/ProjectFile.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastError.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastErrorString.docx

Methods

Software Reference Manual

auTO LOadER aNd MCLOadER aCTIVEX 8-37

can be obtained by calling the GetLastError and GetLastErrorString methods.

EXAMPLES:

VISUAL BASIC:
If Not axLoader.LoadTable(“C:\Tables\ThisTable.lst”) Then
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString)
End If

VISUAL C#:
if (!axLoader.LoadTable(“C:\\Tables\\ThisTable.lst”))
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString);

Method: Lock
PARAMETERS:
unsigned long: Lock Code

RETURN TYPE:
VARIANT _ BOOL

DESCRIPTION:
This method is used to lock the controller so that programs cannot be edited. The lock code used here must
also be used if the controller is unlocked using the Unlock method.

The return value is true if the method call succeeded and false if it failed. Further error information can
be obtained by calling the GetLastError and GetLastErrorString methods.

EXAMPLES:

VISUAL BASIC:
If Not axLoader.Lock(1234) Then
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString)
End If

VISUAL C#:
if (!axLoader.Lock(1234))
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString);

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastError.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastErrorString.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/Unlock.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastError.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastErrorString.docx

Methods

Trio Motion Technology

auTO LOadER aNd MCLOadER aCTIVEX8-38

Method: SetGaugePosition
PARAMETERS:
LONG: x
LONG: y

RETURN TYPE:
VOID

DESCRIPTION:
This method is used to position the gauge dialog which is displayed while a program is being loaded. The
parameters x and y are the screen coordinates of the top, left corner of the gauge dialog.

The gauge display position can be reset to default using the ClearGaugePosition method.

EXAMPLES:

VISUAL BASIC:
SetGaugePosition(10, 20)

VISUAL C#:
SetGaugePosition(10, 20);

Method: StoreInEPROM
PARAMETERS:
None

RETURN TYPE:
VARIANT _ BOOL

DESCRIPTION:
This method is used to store the programs already loaded onto the controller into the controller’s EPROM
memory.

The return value is true if the method call succeeded and false if it failed. Further error information can be
obtained by calling the GetLastError and GetLastErrorString methods.

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/ClearGaugePosition.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastError.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastErrorString.docx

Methods

Software Reference Manual

auTO LOadER aNd MCLOadER aCTIVEX 8-39

EXAMPLES:

VISUAL BASIC:
If Not axLoader.StoreInEPROM Then
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString)
End If

VISUAL C#:
if (!axLoader.StoreInEPROM())
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString);

Method: Unock
PARAMETERS:
unsigned long: LockCode

RETURN TYPE:
VARIANT _ BOOL

DESCRIPTION:
This method is used to unlock a locked controller so that programs can be edited. The lock code used here
must be the same as the code used to lock the controller.

The return value is true if the method call succeeded and false if it failed. Further error information can be
obtained by calling the GetLastError and GetLastErrorString methods.

EXAMPLES:

VISUAL BASIC:
If Not axLoader.Unlock(1234) Then
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString)
End If

VISUAL C#:
if (!axLoader.Unlock(1234))
 DisplayError(axLoader.GetLastError, axLoader.GetLastErrorString);

file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastError.docx
file://HYPERION/documents/Manual%207/Source/Auto%20Loader%20And%20MCloader%20ActiveX/Single%20File/GetLastErrorString.docx

Trio Motion Technology

auTO LOadER aNd MCLOadER aCTIVEX8-40

INDEX

Trio Motion Technology

INdEX

ii

Software Reference Manual

iiiINdEX

SYMBOLS
^ 2-385
_ 2-304
- 2-477
: 2-98
. 2-58
.. 2-401
‘ 2-99, 2-395
* 2-357
/ 2-145
+ 2-15
< 2-302
<< 2-459
<= 2-302
<> 2-363
= 2-182
> 2-262
>= 2-261
>> 2-460
$ 2-151

A
ABS 2-13
ACC 2-13
ACCEL 2-14
Add 2-15
ADDAX 2-18
ADDAX_AXIS 2-22
AddAxis 7-13
ADD_DAC 2-16
ADDRESS 2-22
AFF_GAIN 2-23
Ain 7-29
AIN0..3 / AINBI0..3 2-24
AND 2-24
ANYBUS 2-26
AOUT 2-31
AOUT0..3 2-32
ASIN 2-32
ATAN 2-33
ATAN2 2-34
ATYPE 2-34

AUTO_ETHERCAT 2-36
Autoloader

AUTORUN 8-6
CHECKUNLOCKED 8-8
‘ Comment 8-9
COMMLINK 8-9
COMMPORT 8-9
COMPILEALL 8-10
COMPILEPROGRAM 8-10
DELETEALL 8-10
DELETEPROGRAM 8-11
DELTABLE 8-11
EPROM 8-11
Ethernet 8-9
FASTLOADPROGRAM 8-12
FASTLOADPROJECT 8-12
HALTPROGRAMS 8-13
Introduction 8-3
LOADPROGRAM 8-13
LOADPROJECT 8-13
LOADTABLE 8-14
NEWALL 8-10
Script Command 8-5
Script File 8-17
SETDECRYPTIONKEY 8-14
SETPROJECT 8-15
SETRUNFROMEPROM 8-15
TIMEOUT 8-16
Using the Autoloader 8-3

AUTORUN 2-37
AXIS 2-37
AXIS_ADDRESS 2-38
AXIS_DEBUG_A 2-39
AXIS_DEBUG_B 2-39
AXIS_DISPLAY 2-39
AXIS_DPOS 2-39
AXIS_ENABLE 2-40
AXIS_ERROR_COUNT 2-41
AXIS_FS_LIMIT 2-42
AXIS_MODE 2-43
AXIS_OFFSET 2-43
AXIS_RS_LIMIT 2-45
AXISSTATUS 2-47
AXIS_UNITS 2-46
AXISVALUES 2-48

Index

Trio Motion Technology

INdEX

iv

B
BACKLASH 2-54
BACKLASH_DIST 2-55
Base 7-11
BASE 2-55
BASICERROR 2-57
BATTERY_LOW 2-57
Bit number 2-58
Board 7-8
BOOT_LOADER 2-59
BREAK_ADD 2-59
BREAK_DELETE 2-60
BREAK_LIST 2-60
BREAK_RESET 2-61
B_SPLINE 2-51

C
Cam 7-14
CAM 2-63
CamBox 7-13
CAMBOX 2-67
CAN 2-75
Cancel 7-14
CANCEL 2-81
CANIO_ADDRESS 2-84
CANIO_ENABLE 2-84
CANIO_MODE 2-85
CANIO_STATUS 2-85
CANOPEN_OP_RATE 2-86
CHANGE_DIR_LAST 2-86
CHANNEL_READ 2-87
CHANNEL_WRITE 2-88
CHECKSUM 2-88
CHR 2-88
CLEAR 2-89
CLEAR_BIT 2-90
CLEAR_PARAMS 2-90
Close 7-4
CLOSE 2-91
CLOSE_WIN 2-91
CLUTCH_RATE 2-92
CmdProtocol 7-9
Colon 2-98
Comment 2-99
COMMSERROR 2-100
COMMSPOSITION 2-100
COMMSTYPE 2-100
Communications 7-45

COMPILE 2-101
COMPILE_ALL 2-102
COMPILE_MODE 2-102
Connect 7-15
CONNECT 2-103
Connection 7-45
CONNPATH 2-106
CONSTANT 2-107
CONTROL 2-108
COORDINATOR_DATA 2-109
COPY 2-109
CO_READ 2-92
CO_READ_AXIS 2-94
CORNER_MODE 2-110
CORNER_STATE 2-111
COS 2-112
CO_WRITE 2-95
CO_WRITE_AXIS 2-96
CPU_EXCEPTIONS 2-112
CRC16 2-113
CREEP 2-115

D
DAC 2-119
DAC_OUT 2-120
DAC_SCALE 2-120
DATE 2-122
DATE$ 2-121
Datum 7-15
DATUM 2-124
DATUM_IN 2-129
DAY 2-130
DAY$ 2-129
DECEL 2-131
DECEL_ANGLE 2-131
DEFPOS 2-132
DEL 2-135
DEMAND_EDGES 2-135
DEMAND_SPEED 2-136
DEVICENET 2-136
D_GAIN 2-117
DIM 2-138
Dir 7-43
DIR 2-140
DISABLE_GROUP 2-140
DISPLAY 2-144
DISTRIBUTOR_KEY 2-145
Divide 2-145
DLINK 2-146

Software Reference Manual

vINdEX

Dollar 2-151
DPOS 2-152
DRIVE_CONTROLWORD 2-153
DRIVE_CW_MODE 2-153
DRIVE_FE 2-155
DRIVE_STATUS 2-156
DRIVE_TORQUE 2-156
DUMP 2-157
D_ZONE_MAX 2-117
D_ZONE_MIN 2-118

E
EDPROG 2-159
EDPROG1 2-165
ELSE 2-279
ELSEIF 2-279
ENCODER 2-171
ENCODER_BITS 2-171
ENCODER_CONTROL 2-172
ENCODER_FILTER 2-173
ENCODER_ID 2-173
ENCODER_RATIO 2-174
ENCODER_READ 2-176
ENCODER_STATUS 2-176
ENCODER_TURNS 2-177
ENCODER_WRITE 2-177
END_DIR_LAST 2-178
ENDIF 2-279
ENDMOVE 2-179
ENDMOVE_BUFFER 2-180
ENDMOVE_SPEED 2-180
EPROM 2-181
EPROM_STATUS 2-181
Equals 2-182
ERROR_AXIS 2-183
ERROR_LINE 2-183
ERRORMASK 2-184
ETHERCAT 2-185
ETHERNET 2-189
EX 2-198
Execute 7-36
EXECUTE 2-199
EXP 2-199

F
FALSE 2-201
FASTDEC 2-202
FAST_JOG 2-201

FastSerialMode 7-10
FE 2-202
FEATURE_ENABLE 2-206
FE_LATCH 2-203
FE_LIMIT 2-204
FE_LIMIT_MODE 2-204
FE_RANGE 2-205
FHOLD_IN 2-208
FHSPEED 2-209
FILE 2-209
FLAG 2-217
FLAGS 2-218
FLASH_DUMP 2-218
FLASHTABLE 2-219
FLASHVR 2-219
FLEXLINK 2-220
FlushBeforeWrite 7-10
FOR 2-222
FORCE_SPEED 2-224
Forward 7-16
FORWARD 2-225
FPGA_PROGRAM 2-227
FPGA_VERSION 2-228
FPU_EXCEPTIONS 2-229
FRAC 2-229
FRAME 2-230
FRAME_GROUP 2-248
FRAME_TRANS 2-250
FREE 2-252
FS_LIMIT 2-252
FULL_SP_RADIUS 2-253
FWD_IN 2-254
FWD_JOG 2-255

G
Get 7-29
GET 2-257
GetAxisVariable 7-24
GetConnectionType 7-6
GetData 7-36
GetPortVariable 7-27
GetProcessVariable 7-23
GetProcVariable 7-25
GetSlotVariable 7-26
GetTable 7-21
GetVariable 7-21
GetVr 7-22
GLOBAL 2-258
GOSUB 2-259

Trio Motion Technology

INdEX

vi

GOTO 2-260
Greater Than 2-262
Greater Than or Equal 2-261

H
HALT 2-263
HEX 2-263
HLM_COMMAND 2-264
HLM_READ 2-266
HLM_STATUS 2-267
HLM_TIMEOUT 2-267
HLM_WRITE 2-268
HLS_MODEL 2-269
HLS_NODE 2-269
HMI_PROC 2-270
HMI_SERVER 2-270
HostAddress 7-8
HW_TIMER 2-274
HW_TIMER_DONE 2-276

I
IDLE 2-277
IEC 61131-3 Motion Library

TC_ADDAX 3-7
TC_ADDDAC 3-8
TC_BACKLASH 3-9
TC_BASE 3-10
TC_CAM 3-12
TC_CAMBOX 3-13
TC_CANCEL 3-15
TC_CONNECT 3-16
TC_DATUM 3-18
TC_DEFINETOOLOFFSET 3-19
TC_DEFINEUSERFRAME 3-21
TC_DEFPOS 3-22
TC_DEFPOS1 3-24
TC_DEFPOS2 3-25
TC_DEFPOS3 3-26
TC_DISABLEGROUP 3-28
TC_ENCODERRATIO 3-29
TC_FORWARD 3-30
TC_FRAMEGROUP 3-31
TC_FRAMETRANS 3-33
TC_GetFRAME 3-34
TC_IDLE 3-35
TC_MOVE 3-37
TC_MOVE1 3-38
TC_MOVE2 3-40

TC_MOVE3 3-41
TC_MOVEABS 3-43
TC_MOVEABS1 3-45
TC_MOVEABS2 3-46
TC_MOVEABS3 3-48
TC_MOVEABSSP 3-50
TC_MOVEABSSP1 3-51
TC_MOVEABSSP2 3-53
TC_MOVEABSSP3 3-55
TC_MOVECIRC 3-56
TC_MOVECIRCSP 3-58
TC_MOVEHELICAL 3-60
TC_MOVEHELICALSP 3-62
TC_MOVELINK 3-64
TC_MOVEMODIFY 3-66
TC_MOVESP 3-68
TC_MOVESP1 3-69
TC_MOVESP2 3-71
TC_MOVESP3 3-73
TC_MOVETANG 3-74
TC_MSPHERICAL 3-76
TC_MSPHERICALSP 3-78
TC_OP 3-80
TC_PSWITCH 3-81
TC_RAPIDSTOP 3-83
TCR_AxisParameter 3-96
TC_READOP 3-84
TCR_ErrorID 3-97
TC_REVERSE 3-84
TCR_TABLE 3-98
TCR_TICKS 3-99
TCR_VR 3-100
TCR_WDOG 3-101
TC_SELECTTOOLOFFSET 3-86
TC_SELECTUSERFRAME 3-87
TC_SELECTUSERFRAMEB 3-88
TC_SetFRAME 3-89
TC_STEPRATIO 3-90
TC_SYNC 3-91
TC_ USERFRAMETRANS 3-93
TC_VOLUMELIMIT 3-95
TCW_AxisParameter 3-101
TCW_TABLE 3-102
TCW_TICKS 3-103
TCW_VR 3-104
TCW_WDOG 3-105

IEC61131 Introduction
Adding a New IEC 61131 Program 5-5
Compiling 5-21
Controller and Project Trees 5-3

Software Reference Manual

viiINdEX

Editing FBD Programs 5-12
Editing LD Programs 5-9
Editing SFC Programs 5-13
Editing ST Programs 5-11
Environment 5-5
IEC Settings 5-23
IEC Types Editor 5-16
Introduction 5-3
Languages 5-4
Program Local Variables 5-18
Running and Debugging a Program 5-22
Selecting or Inserting a Function Block 5-20
Selecting or Inserting a Variable 5-20
Spy List window 5-22
Variable Editor 5-18

IEEE_IN 2-278
IEEE_OUT 2-278
IF 2-279
I_GAIN 2-277
In 7-30
IN 2-281
INCLUDE 2-282
INDEVICE 2-283
INITIALISE 2-284
Input 7-30
INPUT 2-284
INPUTS0 2-285
INPUTS1 2-285
InsertLine 7-43
INSTR 2-286
INT 2-287
INTEGER_READ 2-288
INTEGER_WRITE 2-288
INTERP_FACTOR 2-289
Introduction to IEC Motion Library 3-4
Introduction to Programming 1-3
Introduction to The IEC Motion Library 3-4
Introduction to TrioBasic Commands 2-7
INVERT_IN 2-289
INVERT_STEP 2-290
IP_ADDRESS 2-291
IP_GATEWAY 2-291
IP_MAC 2-292
IP_MEMORY_CONFIG 2-293
IP_NETMASK 2-293
IP_PROTOCOL_CONFIG 2-294
IP_TCP_TX_THRESHOLD 2-295
IP_TCP_TX_TIMEOUT 2-296
IsOpen 7-5

J
JOGSPEED 2-297

K
Key 7-30
KEY 2-297

L
LAST_AXIS 2-299
LCASE 2-299
LCDSTR 2-300
LEFT 2-301
LEN 2-301
Less Than 2-302
Less Than or Equal 2-302
LIMIT_BUFFERED 2-303
Line Continue 2-304
LINK_AXIS 2-304
Linput 7-31
LINPUT 2-305
LIST 2-306
LIST_GLOBAL 2-306
LN 2-307
LOADED 2-308
LoadProgram 7-42
LoadProject 7-42
LOAD_PROJECT 2-307
LoadSystem 7-42
LOADSYSTEM 2-308
LOCK 2-309
LOOKUP 2-310

M
Mark 7-31
MARK 2-311
MarkB 7-32
MARKB 2-311
MC400 Simulator

Communications 6-4
Context Menu 6-4
Introduction 6-3
Options 6-5
Running the Simulator 6-3

MC Loader
Introduction 8-18

Trio Motion Technology

INdEX

viii

Method: AutoRun 8-26
Method: CheckProjec 8-27
Method: ClearGaugePosition 8-27
Method: CompileAll 8-28
Method: CompileProgram 8-29
Method: DeleteAll 8-29
Method: DeleteProgram 8-30
Method: DeleteTable 8-31
Method: FastLoadProgram 8-31
Method: GetLastError 8-32
Method: GetLastErrorString 8-34
Method: HaltPrograms 8-34
Method: LoadProgram 8-35
Method: LoadProject 8-36
Method: LoadTable 8-36
Method: Lock 8-37
Methods 8-26
Method: SetGaugePosition 8-38
Method: StoreInEPROM 8-38
Method: Unock 8-39
Property: CommLink 8-18
Property: ControllerSystemVersion 8-19
Property: ControllerType 8-20
Property: DecryptionKey 8-20
Property: DisplayGaugeDuringProgramLoad 8-21
Property: Locked 8-22
Property: Open 8-22
Property: ProjectFile 8-23
Property: RunFromEPROM 8-24
Property: Timeout 8-24

MechatroLink 7-41
MERGE 2-312
MHELICAL 2-313
MHELICALSP 2-316
MID 2-316
MOD 2-317
MODBUS 2-318
MODULE_IO_MODE 2-323
MOTION_ERROR 2-325
Motion Perfect

Analogue I/O Viewer 4-37
Axis Parameters 4-34
Backup Manager 4-73
Connection Dialogue 4-27
Controller Project Dialogue 4-59
Controller Tools 4-60
Controller Tree 4-12
Creating a New Program 4-23
Date And Time Tool 4-68
Diagnostics 4-48

Digital I/O Viewer 4-35
Directory Viewer 4-67
Feature Configuration 4-60
General Oscilloscope Information 4-58
Initial Connection 4-29
Intelligent Drives 4-59
Introduction 4-3
Jog Axes 4-48
Load System Firmware 4-61
Lock / Unlock Controller 4-64
Main Menu 4-7
Main Toolbar 4-11
Main Window 4-6
MC_CONFIG Program 4-71
Memory Card Manager 4-65
Modify STARTUP Program 4-69
Operating Modes 4-4
Options - Axis Parameters Tool 4-41
Options - Diagnostics 4-41
Options Dialogue 4-40
Options - General 4-42
Options - IEC 61131 Editing 4-43
Options - Language 4-43
Options - Oscilloscope 4-44
Options - Plug-ins 4-45
Options - Program Editor 4-45
Options - Project Synchronization 4-47
Oscilloscope 4-51
Output Window 4-17
Process Viewer 4-67
Program Editor 4-24
Program Types 4-23
Project 4-20
Project Check 4-20
Project Tree 4-16
Recent Work Dialogue 4-31
Solutions 4-18
STARTUP Program 4-69
System Requirements 4-4
Table Viewer 4-38
Terminal 4-32
Tools 4-31
VR Viewer 4-39
Watch Variables 4-40

MOVE 2-325
MoveAbs 7-12
MOVEABS 2-328
MOVEABSSP 2-331
MoveCirc 7-12
MOVECIRC 2-332

Software Reference Manual

ixINdEX

MOVECIRCSP 2-335
MoveHelical 7-17
MoveLink 7-18
MOVELINK 2-336
MoveModify 7-18
MOVEMODIFY 2-340
MoveRel 7-11
MOVES_BUFFERED 2-344
MOVESP 2-344
MOVETANG 2-345
MPE 2-348
MPOS 2-349
MSPEED 2-350
MSPHERICAL 2-351
MSPHERICALSP 2-355
MTYPE 2-355
Multiply 2-357

N
N_ANA_IN 2-359
N_ANA_OUT 2-359
NEG_OFFSET 2-360
New 7-42
NEW 2-360
NEXT 2-222
NIN 2-361
NIO 2-362
NOP 2-362
NOT 2-363
Not Equal 2-363
NTYPE 2-364

O
OFF 2-367
OFFPOS 2-367
ON 2-369
OnBufferOverrunChannel0/5/6/7/9 7-39
ON GOSUB 2-369
ON GOTO 2-369
OnProgress 7-40
OnReceiveChannel0/5/6/7/9 7-39
Op 7-32
OP 2-371
Open 7-4
OPEN 2-373
OPEN_WIN 2-375
OR 2-376
OUTDEVICE 2-377

OUTLIMIT 2-378

P
PEEK 2-381
P_GAIN 2-381
PI 2-382
PLM_OFFSET 2-382
PMOVE 2-383
POKE 2-383
PORT 2-384
POS_OFFSET 2-384
Power 2-385
POWER_UP 2-385
PP_STEP 2-385
PRINT 2-386
PRMBLK 2-388
PROC 2-388
PROCESS 2-390
PROC_LINE 2-389
PROCNUMBER 2-390
PROC_STATUS 2-389
PROJECT_KEY 2-391
PROTOCOL 2-392
PS_ENCODER 2-393
Pswitch 7-33
PSWITCH 2-394

Q
Quote 2-395

R
RAISE_ANGLE 2-400
Range 2-401
RapidStop 7-19
RAPIDSTOP 2-401
READ_BIT 2-404
READ_OP 2-405
ReadPacket 7-33
READPACKET 2-406
Record 7-34
REG_INPUTS 2-407
Regist 7-34
REGIST 2-411
REGIST_CONTROL 2-420
REGIST_DELAY 2-420
REGIST_SPEED 2-421
REGIST_SPEEDB 2-422

Trio Motion Technology

INdEX

x

REG_POS 2-409
REG_POSB 2-410
REMAIN 2-422
REMOTE 2-423
REMOTE_PROC 2-424
RENAME 2-425
REP_DIST 2-425
REPEAT 2-427
REPEAT.. UNTIL 2-427
REP_OPTION 2-426
RESET 2-428
RETURN 2-259
Reverse 7-17
REVERSE 2-430
RIGHT 2-432
R_MARK 2-397
R_REGISTSPEED 2-398
R_REGPOS 2-399
RS_LIMIT 2-433
Run 7-20
RUN 2-434
RUN_ERROR 2-435
RUNTYPE 2-441

S
SCHEDULE_OFFSET 2-443
SCHEDULE_TYPE 2-443
Scope 7-37
SCOPE 2-444
SCOPE_POS 2-445
Select 7-43
SELECT 2-446
Send 7-34
SendData 7-37
SERCOS 2-446
SERCOS_PHASE 2-453
SERIAL_NUMBER 2-453
SERVO 2-454
SERVO_PERIOD 2-455
SERVO_READ 2-456
SetAxisVariable 7-25
SET_BIT 2-456
Setcom 7-35
SETCOM 2-457
SetHost 7-6
SetPortVariable 7-28
SetProcVariable 7-26
SetSlotVariable 7-27
SetTable 7-22

SetVariable 7-22
SetVr 7-23
SGN 2-459
Shift Left 2-459
Shift Right 2-460
SIN 2-461
SLOT 2-461
SLOT_NUMBER 2-462
SPEED 2-462
SPEED_SIGN 2-463
SPHERE_CENTRE 2-463
SQR 2-464
SRAMP 2-464
S_REF 2-443
S_REF_OUT 2-443
START_DIR_LAST 2-465
STARTMOVE_SPEED 2-466
STEP 2-222
STEPLINE 2-468
STEP_RATIO 2-466
STICK_READ 2-468
STICK_READVR 2-469
STICK_WRITE 2-470
STICK_WRITEVR 2-471
Stop 7-20
STOP 2-472
STOP_ANGLE 2-473
STORE 2-474
STR 2-474
Subtract 2-477
SYNC 2-478
SYNC_CONTROL 2-481
SYNC_TIMER 2-481
SYSTEM_ERROR 2-482

T
TABLE 2-483
TABLE_POINTER 2-484
TABLEVALUES 2-486
TAN 2-487
TANG_DIRECTION 2-488
TEXT_FILE_LOADER 2-488
TEXT_FILE_LOADER_PROC 2-491
THEN 2-279
TICKS 2-492
TIME 2-493
TIME$ 2-492
TIMER 2-494
TO 2-222

Software Reference Manual

xiINdEX

TOKENTABLE 2-495
TOOL_OFFSET 2-496
T_REF 2-483
T_REF_OUT 2-483
Trigger 7-38
TRIGGER 2-497
TrioBASIC

Commands - A 2-13
Commands - B 2-51
Commands - C 2-63
Commands - D 2-117
Commands - E 2-159
Commands - F 2-201
Commands - G 2-257
Commands - H 2-263
Commands - I 2-277
Commands - J 2-297
Commands - K 2-297
Commands - L 2-299
Commands - M 2-311
Commands - N 2-359
Commands - O 2-367
Commands - P 2-381
Commands - Q 2-381
Commands - R 2-397
Commands - S 2-443
Commands - T 2-483
Commands - U 2-503
Commands - V 2-513
Commands - W-Z 2-521

TrioPC Motion ActiveX Control
Connection Commands 7-4
Data Types 7-45
Events 7-39
General commands 7-36
Input / Output Commands 7-29
Intelligent Drive Commands 7-41
Motion Commands 7-11
Process Control Commands 7-20
Program Manipulation Commands 7-42
Properties 7-8
TrioPC status 7-46
Variable Commands 7-21

TRIOPCTESTVARIAB 2-498
TROFF 2-498
TRON 2-499
TRUE 2-500
TSIZE 2-500

U
UCASE 2-503
UNIT_CLEAR 2-503
UNIT_DISPLAY 2-504
UNIT_ERROR 2-504
UNITS 2-505
UNIT_SW_VERSION 2-505
UNOCK 2-506
USER_FRAME 2-506
USER_FRAMEB 2-510
USER_FRAME_TRANS 2-509

V
VAL 2-513
VECTOR_BUFFERED 2-513
VERIFY 2-514
VERSION 2-514
VFF_GAIN 2-514
VOLUME_LIMIT 2-515
VP_SPEED 2-518
VR 2-518
VRSTRING 2-520

W
WA 2-521
WAIT 2-521
WDOG 2-522
WEND 2-523
WHILE 2-523
WORLD_DPOS 2-524

X
XOR 2-524

