

User Manual

ISA-7X Servo Drive series

Standard General Purpose Servo Drive Technical Manual

Revision History

Contents

1.1. Product check 10 1.2. Comparison of the product numbers 11 1.2.1. Description for the name plate. 11 1.2.2. Description for the model number 12 1.3. Name of each part in the servo drive. 13 1.4. Operating mode 14 2. STEPS FOR COMMISSIONING AND TUNING 15 2.1. Notes 15 2.2. Condition of the storage environment 15 2.3. Condition of and space for installation 16 2.4. Direction of and space for installation 16 2.5. Recommended specifications for the circuit breaker and fuse 19 2.6. EMI filter selection 19 2.7. Selection for the peripheral device and main power circuit 23 3.1.1. Wiring diagram of the peripheral device 23 3.1.2. Connector on the peripheral device and main power circuit 26 3.1.3. Power wiring 26 3.1.4. Wiring diagram of the peripheral device 23 3.2. Filament selection 29 3.2	1.	PANEL AND OPERATION	10
1.2. Comparison of the product numbers 11 1.2.1. Description for the name plate. 11 1.2.2. Description for the model number 12 1.3. Name of each part in the servo drive. 13 1.4. Operating mode 14 2. STEPS FOR COMMISSIONING AND TUNING 15 2.1. Notes 15 2.2. Condition of the storage environment 15 2.3. Condition of installation environment 15 2.4. Direction of and space for installation 16 2.5. Recommended specifications for the circuit breaker and fuse 19 2.6. EMI filter selection 19 2.7. Selection for the regenerative resistor 22 3.1.1. Wring diagram of the peripheral device and main power circuit 23 3.1.2. Connection for the uperipheral device and main power circuit 23 3.1.3. Power wring 26 3.1.4. Specifications for the U, V, W connectors of the motor 27 3.1.5. Filament selection 29 3.2.1. Models with the power equal to or below 200W (no built-in regenerative resistor or fan) 30 3.2.2. 400W /750W model (with regeneration resistor and fan) 31 3.3. CN1 I/O Signal wring 33 33	1.1.	Product check	10
1.2.1. Description for the name plate	1.2	Comparison of the product numbers	11
1.2.2. Description for the model number. 12 1.3. Name of each part in the servo drive. 13 1.4. Operating mode 14 2. STEPS FOR COMMISSIONING AND TUNING 15 2.1. Notes 15 2.2. Condition of the storage environment 15 2.3. Condition of installation environment 15 2.4. Direction of and space for installation 16 2.5. Recommended specifications for the circuit breaker and fuse 19 2.6. EMI filter selection 19 2.7. Selection for the regenerative resistor 22 3. WIRING 23 3.1.1. Connection for the peripheral device and main power circuit 23 3.1.2. Woing diagram of the peripheral device and main power circuit 23 3.1.3. Power wiring 26 3.1.4. Specifications for the U, V, W connectors of the motor 27 3.1.3. Power wiring 26 3.1.4. Note connector terminal 30 3.2.2. 4000 /750W model (with regeneration resistor but to fan) 30	12	1 Description for the name plate	11
1.3. Name of each part in the serve drive	1.2	2. Description for the model number	
1.3. Name of each part in the serve drive. 13 1.4. Operating mode 14 2. STEPS FOR COMMISSIONING AND TUNING 15 2.1. Notes 15 2.2. Condition of the storage environment 15 2.3. Condition of installation environment 15 2.4. Direction of and space for installation 16 2.5. Recommended specifications for the circuit breaker and fuse 19 2.6. EMI filter selection 19 2.7. Selection for the regenerative resistor 22 3. WIRING 23 3.1.1. Wiring diagram of the peripheral device and main power circuit 23 3.1.2. Connection for the peripheral device and main power circuit 23 3.1.3. Power wiring 23 3.1.4. Specifications for the U, V, W connectors of the motor 26 3.1.5. Filament selection 29 3.2. Addw/ 750W model (with regeneration resistor to tho fan) 31 3.3.1. IV l/O Signal wiring 33 3.3.1. IV l/O Signal wiring 33 3.3.2. CN1 l/O Signal wiring 33 3.3.3. Table 1 D1 definition table of output default. 33 3.3.4. IV l/O Connector signal 33 3.3.4.	1.2		
1.4. Operating mode 14 2. STEPS FOR COMMISSIONING AND TUNING 15 2.1. Notes 15 2.2. Condition of the storage environment 15 2.3. Condition of installation environment 15 2.4. Direction of and space for installation 16 2.5. Recommended specifications for the circuit breaker and fuse 19 2.6. EMI filter selection 19 2.7. Selection for the regenerative resistor 22 3. WIRING 23 3.1. Connection for the peripheral device and main power circuit 23 3.1.1. Wiring diagram of the peripheral device 23 3.1.2. Connector and terminal of the drive 25 3.1.3. Power wiring 26 3.1.4. Specifications for the U, V, W connectors of the motor 27 3.1.3. Power wiring 26 3.1.4. Specifications for the U, V, W connectors of the motor 27 3.1.5. Filament selection 29 3.2.1. Models with the power equal to or below 200W (no built-in regenerative resistor or fan)	1.3.	Name of each part in the servo drive	13
2. STEPS FOR COMMISSIONING AND TUNING 15 2.1. Notes 15 2.2. Condition of the storage environment 15 2.3. Condition of installation environment 15 2.4. Direction of and space for installation 16 2.5. Recommended specifications for the circuit breaker and fuse 19 2.6. EMI filter selection 19 2.7. Selection for the regenerative resistor 22 3. WIRING 23 3.1. Connection for the peripheral device and main power circuit 23 3.1.2. Connection and terminal of the drive 25 3.1.3. Power wiring 26 3.1.4. Specifications for the U, V, W connectors of the motor 27 3.1.5. Filament selection 29 3.2.1. Models with the power equal to or below 200W (no built-in regenerative resistor or fan) 30 3.2.2. Models with the power equal to or below 200W (no built-in regenerative resistor or fan) 31 3.3.1. CN1 I/O Signal wiring 33 33 3.3.2. CN1 I/O Signal wiring 33 3.3.3. CN1 I/O Signal wiring 33 3.3.4. CN1 I/O Layou of the connector terminal 33 3.3.3. CN1 I/O Signal wiring 33 3.3.3. CN1	1.4.	Operating mode	14
2.1. Notes 15 2.2. Condition of the storage environment 15 2.3. Condition of installation environment 15 2.4. Direction of and space for installation 16 2.5. Recommended specifications for the circuit breaker and fuse 19 2.6. EMI filter selection 19 2.7. Selection for the regenerative resistor 22 3. WIRING 23 3.1.1. Wring diagram of the peripheral device and main power circuit 23 3.1.2. Connector and the drive 23 3.1.3. Power wring 26 3.1.4. Specifications for the U, V, W connectors of the motor 27 3.1.5. Filament selection 29 3.1.6. Connector and the peripheral device 30 3.2.1. Models with the power equal to or below 200W (no built-in regenerative resistor or fan) 30 3.2.1.4. Models with the power equal to or below 200W (no built-in regenerative resistor or fan) 31 3.3.1. CNI I/O Signal wring 33 33.3.1. CNI I/O Signal wring 33 3.3.3.1. CNI I/O Signal wring 33 33.3.1. CNI I/O Connector stor terminal 33 3.3.3.1. CNI I/O Layout of the connector terminal 33 33.3.1. CNI I/O Connector specinfication table of input default.	2.	STEPS FOR COMMISSIONING AND TUNING	15
2.2. Condition of the storage environment 15 2.3. Condition of installation environment 15 2.4. Direction of and space for installation 16 2.5. Recommended specifications for the circuit breaker and fuse 19 2.6. EMI filter selection 19 2.7. Selection for the regenerative resistor 22 3. WIRING 23 3.1. Connection for the peripheral device and main power circuit 23 3.1.1. Wiring diagram of the peripheral device 23 3.1.2. Connector and terminal of the drive 25 3.1.3. Power wiring 26 3.1.4. Specifications for the U, V, W connectors of the motor 27 3.1.5. Filament selection 29 3.2.1. Models with the power equal to or below 200W (no built-in regenerative resistor of fan) 30 3.2.1. Models with the generation resistor but no fan) 31 3.2.3. Table 1D definition table of output or seistor but no fan) 32 3.3. CN1 I/O Signal wiring 33 3.3.1. CN1 I/O Connector signal 33	2.1.	Notes	15
2.3. Condition of installation environment 15 2.4. Direction of and space for installation 16 2.5. Recommended specifications for the circuit breaker and fuse 19 2.6. EMI filter selection 19 2.7. Selection for the regenerative resistor 22 3. WIRING 23 3.1. Connection for the peripheral device and main power circuit 23 3.1.1. Wing diagram of the peripheral device 23 3.1.2. Connector and terminal of the drive 25 3.1.3. Power wiring 26 3.1.4. Specifications for the U, V, W connectors of the motor 27 3.1.5. Filament selection 29 3.2.1. Models with the power equal to or below 200W (no built-in regenerative resistor or fan) 30 3.2.1. Models with the generation resistor but no fan) 31 3.2.3. IkW ~ 2kW model (with regeneration resistor but no fan) 31 3.3.1. CN1 I/O Signal wiring 33 3.3.2. CN1 I/O Connector signal 33 3.3.3. Table 1D I definition table of input default. 33 <t< td=""><td>2.2.</td><td>Condition of the storage environment</td><td> 15</td></t<>	2.2.	Condition of the storage environment	15
2.4. Direction of and space for installation 16 2.5. Recommended specifications for the circuit breaker and fuse 19 2.6. EMI filter selection 19 2.7. Selection for the regenerative resistor 22 3. WIRING 23 3.1. Connection for the peripheral device and main power circuit 23 3.1.1. Wiring diagram of the peripheral device and main power circuit 23 3.1.2. Connector and terminal of the drive 23 3.1.3. Power wiring 26 3.1.4. Specifications for the U, V, W connectors of the motor 27 3.1.5. Filament selection 29 3.2.1. Models with the power equal to or below 200W (no built-in regenerative resistor or fan) 30 3.2.2. 400W / 750W model (with regeneration resistor but no fan) 31 3.3.3. CN1 I/O Signal wiring 33 3.3.1. CN1 I/O layout of the connector terminal 33 3.3.2. CN1 I/O Connector signal 33 3.3.3. Table 1 D1 definition table of input default 39 3.3.4. Table 2 D0 definition table of output default 31 3.3.5. Interface wiring diagram (CN1) 43 3.4.1. Encoder connector Signal 53 3.4.1. Encoder connector Signal 53	2.3.	Condition of installation environment	
2.5. Recommended specifications for the circuit breaker and fuse 19 2.6. EMI filter selection 19 2.7. Selection for the regenerative resistor 22 3. WIRING 23 3.1. Connection for the peripheral device and main power circuit 23 3.1.1. Wiring diagram of the peripheral device. 23 3.1.2. Connector and terminal of the drive 25 3.1.3. Power wiring 26 3.1.4. Specifications for the U, V, W connectors of the motor. 27 3.1.5. Filament selection 29 3.2. Basic block diagram of the server system 30 3.2.1. Models with the power equal to or below 200W (no built-in regenerative resistor or fan) 30 3.2.1. Models with regeneration resistor but no fan) 31 3.2.3. IkW ~ 2kW model (with regeneration resistor but no fan) 31 3.3.1. CN1 I/O Signal wiring 33 3.3.1. CN1 I/O Connector terminal 33 3.3.1. CN1 I/O Connector signal 35 3.3.3. Table 1D definition table of output default. 35	2.4.	Direction of and space for installation	16
2.6. EMI filter selection 19 2.7. Selection for the regenerative resistor 22 3. WIRING 23 3.1. Connection for the peripheral device and main power circuit 23 3.1.1. Wiring diagram of the peripheral device 23 3.1.2. Connector and terminal of the drive 25 3.1.3. Power wiring 26 3.1.4. Specifications for the U, V, W connectors of the motor 27 3.1.5. Filament selection 29 3.2.1. Models with the power equal to or below 200W (no built-in regenerative resistor or fan) 30 3.2.1. Models with the power equal to or below 200W (no built-in regenerative resistor or fan) 30 3.2.1. Models with the generation resistor but no fan) 31 3.2.3. 1kW ~ 2kW model (with regeneration resistor and fan) 32 3.3.1. CNI I/O Signal wiring 33 3.3.1. CNI I/O Signal wiring 33 3.3.2. CNI I/O Connector signal 35 3.3.3. Table 1 D1 definition table of input default. 39 3.4. Table 2 DO definition table of output default. 34 3.5. Interface wiring diagram (CN1) 43 3.6. User-specified D1 and DO signals 52 3.4. CN2 Wiring of the the encoder signal	2.5.	- Recommended specifications for the circuit breaker and fuse	
2.7. Selection for the regenerative resistor 22 3. WIRING	2.6	FMI filter selection	19
3. WIRING	2.7	Selection for the regenerative resistor	22
3. WIRING. 23 3.1. Connection for the peripheral device and main power circuit 23 3.1.1. Wiring diagram of the peripheral device 23 3.1.2. Connector and terminal of the drive 25 3.1.3. Power wiring 26 3.1.4. Specifications for the U, V, W connectors of the motor 27 3.1.5. Filament selection 29 3.2. Basic block diagram of the server system 30 3.2.1. Models with the power equal to or below 200W (no built-in regenerative resistor or fan) 30 3.2.2. 400W /750W model (with regeneration resistor but no fan) 31 3.2.3. 1kW ~ 2kW model (with regeneration resistor and fan) 32 3.3. CN1 I/O Signal wiring 33 3.3.1. CN1 I/O layout of the connector terminal 33 3.3.2. CN1 I/O layout of the connector terminal 35 3.3.3. Table 1 DI definition table of output default 39 3.3.4. Table 2 DO definition table of output default 39 3.3.6. User-specified DI and DO signals 52 3.4. CN2 Wiring of the the encoder signal 53 3.4.1. Encoder Connector Specifications 53 3.4.2. Encoder cable wiring diagram 53	2.,.		
3.1. Connection for the peripheral device and main power circuit 23 3.1.1. Wiring diagram of the peripheral device 23 3.1.2. Connector and terminal of the drive 25 3.1.3. Power wiring 26 3.1.4. Specifications for the U, V, W connectors of the motor. 27 3.1.5. Filament selection 29 3.2. Basic block diagram of the server system 30 3.2.1. Models with the power equal to or below 200W (no built-in regenerative resistor or fan) 30 3.2.2. 400W / 750W model (with regeneration resistor but no fan) 31 3.2.3. 1kW ~ 2kW model (with regeneration resistor and fan) 32 3.3. CN1 I/O Signal wiring 33 3.3.1. CN1 I/O layout of the connector terminal 33 3.3.2. CN1 I/O Connector signal 35 3.3.3. Table 1 DI definition table of input default 39 3.3.4. Table 2 DO definition table of output default 41 3.3.5. Interface wiring diagram (CN1) 43 3.3.6. User-specified DI and DO signals 52 3.4. CN2 Wiring of the the encoder signal	3.	WIRING	23
3.1.1. Wiring diagram of the peripheral device 23 3.1.2. Connector and terminal of the drive 25 3.1.3. Power wiring 26 3.1.4. Specifications for the U, V, W connectors of the motor 27 3.1.5. Filament selection 29 3.2. Basic block diagram of the server system 30 3.2.1. Models with the power equal to or below 200W (no built-in regenerative resistor or fan) 30 3.2.2. 400W / 750W model (with regeneration resistor but no fan) 31 3.2.3. 1kW ~ 2kW model (with regeneration resistor and fan) 32 3.3. CN1 I/O Signal wiring 33 3.3.1. CN1 I/O Connector signal 35 3.3.3. Table 1 DI definition table of input default. 39 3.3.4. Table 2 DO definition table of output default. 43 3.3.5. Interface wiring diagram (CN1) 43 3.4. CN2 Wiring of the the encoder signal 52 3.4.1. Encoder Connector Specifications. 53 3.4.2. Encoder cable wiring diagram. 53	3.1.	Connection for the peripheral device and main power circuit	23
3.1.2. Connector and terminal of the drive 25 3.1.3. Power wiring 26 3.1.4. Specifications for the U, V, W connectors of the motor 27 3.1.5. Filament selection 29 3.2. Basic block diagram of the server system 30 3.2.1. Models with the power equal to or below 200W (no built-in regenerative resistor or fan) 30 3.2.2. 400W / 750W model (with regeneration resistor but no fan) 31 3.2.3. 1kW ~ 2kW model (with regeneration resistor and fan) 32 3.3. CN1 I/O Signal wiring 33 3.3.1. CN1 I/O Connector signal 33 3.3.2. CN1 I/O Connector signal 35 3.3.3. Table 1 DI definition table of input default. 39 3.3.4. Table 2 DO definition table of output default. 39 3.3.6. User-specified DI and DO signals 52 3.4. CN2 Wiring of the the encoder signal 53 3.4.1. Encoder Connector Specifications 53 3.4.2. Encoder cable wiring diagram 55	3.1.	.1. Wiring diagram of the peripheral device	23
3.1.3. Power wiring 26 3.1.4. Specifications for the U, V, W connectors of the motor 27 3.1.5. Filament selection 29 3.2. Basic block diagram of the server system 30 3.2.1. Models with the power equal to or below 200W (no built-in regenerative resistor or fan) 30 3.2.2. 400W / 750W model (with regeneration resistor but no fan) 31 3.2.3. 1kW ~ 2kW model (with regeneration resistor and fan) 32 3.3. CN1 I/O Signal wiring 33 3.3.1. CN1 I/O Signal wiring 33 3.3.2. CN1 I/O Connector signal 33 3.3.3. Table 1 DI definition table of input default. 39 3.3.4. Table 2 DO definition table of output default. 41 3.3.5. Interface wiring diagram (CN1) 43 3.3.6. User-specified DI and DO signals 52 3.4. CN2 Wiring of the the encoder signal 53 3.4.1. Encoder Connector Specifications. 53 3.4.2. Encoder cable wiring diagram 55	3.1.	.2. Connector and terminal of the drive	25
3.1.4. Specifications for the U, V, W connectors of the motor 27 3.1.5. Filament selection 29 3.2. Basic block diagram of the server system 30 3.2.1. Models with the power equal to or below 200W (no built-in regenerative resistor or fan) 30 3.2.2. 400W / 750W model (with regeneration resistor but no fan) 31 3.2.3. 1kW ~ 2kW model (with regeneration resistor and fan) 32 3.3. CN1 I/O Signal wiring 33 3.3.1. CN1 I/O layout of the connector terminal 33 3.3.2. CN1 I/O Connector signal 35 3.3.3. Table 1 DI definition table of input default. 39 3.3.4. Table 2 DO definition table of output default. 43 3.3.6. User-specified DI and DO signals 52 3.4. CN2 Wiring of the the encoder signal 53 3.4.1. Encoder Connector Specifications. 53 3.4.2. Encoder cable wiring diagram 53	3.1.	.3. Power wiring	
3.1.5. Filament selection 29 3.2. Basic block diagram of the server system 30 3.2.1. Models with the power equal to or below 200W (no built-in regenerative resistor or fan) 30 3.2.2. 400W / 750W model (with regeneration resistor but no fan) 31 3.2.3. 1kW ~ 2kW model (with regeneration resistor and fan) 32 3.3. CN1 I/O Signal wiring 33 3.3.1. CN1 I/O layout of the connector terminal 33 3.3.2. CN1 I/O Connector signal 35 3.3.3. Table 1 DI definition table of input default. 39 3.3.4. Table 2 DO definition table of output default. 41 3.3.5. Interface wiring diagram (CN1) 43 3.3.6. User-specified DI and DO signals 52 3.4. CN2 Wiring of the the encoder signal 53 3.4.1. Encoder Connector Specifications 53 3.4.2. Encoder cable wiring diagram 55	3.1.	.4. Specifications for the U, V, W connectors of the motor	27
3.2. Basic block diagram of the server system 30 3.2.1. Models with the power equal to or below 200W (no built-in regenerative resistor or fan) 30 3.2.2. 400W / 750W model (with regeneration resistor but no fan) 31 3.2.3. 1kW ~ 2kW model (with regeneration resistor and fan) 32 3.3. CN1 I/O Signal wiring 33 3.3.1. CN1 I/O layout of the connector terminal 33 3.3.2. CN1 I/O Connector signal 35 3.3.3. Table 1 DI definition table of input default. 39 3.3.4. Table 2 DO definition table of output default. 41 3.3.5. Interface wiring diagram (CN1) 43 3.3.6. User-specified DI and DO signals 52 3.4. Encoder Connector Specifications. 53 3.4.1. Encoder Connector Specifications. 53 3.4.2. Encoder cable wiring diagram. 55	3.1.	.5. Filament selection	29
3.2.1. Models with the power equal to or below 200W (no built-in regenerative resistor or fan) 30 3.2.2. 400W / 750W model (with regeneration resistor but no fan) 31 3.2.3. 1kW ~ 2kW model (with regeneration resistor and fan) 32 3.3. CN1 I/O Signal wiring 33 3.3.1. CN1 I/O Signal wiring 33 3.3.2. CN1 I/O Signal wiring 33 3.3.3. CN1 I/O Connector signal 33 3.3.4. Table 1 DI definition table of input default 39 3.3.4. Table 2 DO definition table of output default 41 3.3.6. User-specified DI and DO signals 52 3.4. CN2 Wiring of the the encoder signal 53 3.4.1. Encoder Connector Specifications 53 3.4.2. Encoder cable wiring diagram 53	3.2	Basic block diagram of the server system	30
3.2.1. Horder Solution of the the encoder signal 31 3.2.2. 400W / 750W model (with regeneration resistor but no fan) 31 3.2.3. 1kW ~ 2kW model (with regeneration resistor and fan) 32 3.3. CN1 I/O Signal wiring 33 3.3.1. CN1 I/O Signal wiring 33 3.3.2. CN1 I/O Connector terminal 33 3.3.3. CN1 I/O Connector signal 35 3.3.3. Table 1 DI definition table of input default 39 3.3.4. Table 2 DO definition table of output default 41 3.3.5. Interface wiring diagram (CN1) 43 3.3.6. User-specified DI and DO signals 52 3.4. Encoder Connector Specifications 53 3.4.1. Encoder cable wiring diagram 53	32	1 Models with the power equal to or below 200W (no built-in regenerative resistor or fan)	30
3.2.3.1kW ~ 2kW model (with regeneration resistor and fan)323.3.CN1 I/O Signal wiring333.3.1.CN1 I/O layout of the connector terminal333.3.2.CN1 I/O Connector signal353.3.3.Table 1 DI definition table of input default.393.3.4.Table 2 DO definition table of output default.413.3.5.Interface wiring diagram (CN1)433.3.6.User-specified DI and DO signals523.4.CN2 Wiring of the the encoder signal533.4.1.Encoder Connector Specifications533.4.2.Encoder cable wiring diagram55	3.2	.2. 400W / 750W model (with regeneration resistor but no fan)	
3.3.CN1 I/O Signal wiring333.3.1.CN1 I/O layout of the connector terminal333.3.2.CN1 I/O Connector signal353.3.3.Table 1 DI definition table of input default.393.3.4.Table 2 DO definition table of output default.413.3.5.Interface wiring diagram (CN1)433.3.6.User-specified DI and DO signals523.4.CN2 Wiring of the the encoder signal533.4.1.Encoder Connector Specifications533.4.2.Encoder cable wiring diagram55	3.2.	.3. $1kW \sim 2kW$ model (with regeneration resistor and fan)	32
3.3.1.CN1 I/O layout of the connector terminal333.3.2.CN1 I/O Connector signal353.3.3.Table 1 DI definition table of input default.393.3.4.Table 2 DO definition table of output default.413.3.5.Interface wiring diagram (CN1)433.3.6.User-specified DI and DO signals523.4.CN2 Wiring of the the encoder signal533.4.1.Encoder Connector Specifications533.4.2.Encoder cable wiring diagram55	3.3.	CN1 I/O Signal wiring	
3.3.2.CN1 I/O Connector signal353.3.3.Table 1 DI definition table of input default.393.3.4.Table 2 DO definition table of output default.413.3.5.Interface wiring diagram (CN1)433.3.6.User-specified DI and DO signals523.4.CN2 Wiring of the the encoder signal533.4.1.Encoder Connector Specifications533.4.2.Encoder cable wiring diagram55	3.3.	.1. CN1 I/O layout of the connector terminal	
3.3.3. Table 1 DI definition table of input default.393.3.4. Table 2 DO definition table of output default.413.3.5. Interface wiring diagram (CN1)433.3.6. User-specified DI and DO signals523.4. CN2 Wiring of the the encoder signal533.4.1. Encoder Connector Specifications533.4.2. Encoder cable wiring diagram55	3.3.	.2. CN1 I/O Connector signal	
3.3.4. Table 2 DO definition table of output default.413.3.5. Interface wiring diagram (CN1)433.3.6. User-specified DI and DO signals523.4. CN2 Wiring of the the encoder signal533.4.1. Encoder Connector Specifications533.4.2. Encoder cable wiring diagram55	3.3.	.3. Table 1 DI definition table of input default.	
3.3.5. Interface wiring diagram (CN1)	3.3.	.4. Table 2 DO definition table of output default	
3.3.6. User-specified DI and DO signals 52 3.4. CN2 Wiring of the the encoder signal 53 3.4.1. Encoder Connector Specifications 53 3.4.2. Encoder cable wiring diagram 55	3.3.	.5. Interface wiring diagram (CN1)	43
3.4.CN2 Wiring of the the encoder signal53 3.4.1.Encoder Connector Specifications533.4.2.Encoder cable wiring diagram55	3.3.	.6. User-specified DI and DO signals	52
3.4.1. Encoder Connector Specifications	3.4.	CN2 Wiring of the the encoder signal	53
3.4.2. Encoder cable wiring diagram55	3.4.	.1. Encoder Connector Specifications	53
	3.4	.2. Encoder cable wiring diagram	55

3.4.3	3. CN2 Enclosure connector housing connection	
3.5.	CN3 Wiring for the signal of the communication connector	
3.6.	CN5 Analog voltage output terminal	
37	Standard wiring	59
3.7.1	1. Standard wiring for the position mode	
3.7.2	2. Standard wiring for the speed mode	
3.7.3	3. Standard wiring for the torque mode	61
4. F	PANEL AND OPERATION	62
4.1.	Panel display and key description	
4.2.	Panel operating process	
4.3.	Status display	
4.3.1	1. Description for the display of status value	
4.3.2	2. Display of storage setting	
4.3.3	3. Display of decimal point	66
4.3.4	4. Display of the warning message	
4.3.5	5. Monitoring display	
4.4.	Operation of the general function	
4.4.1	1. Operation for displaying the record of the abnormal status	67
4.4.2	2. Operation for the jog mode	67
4.4.3	3. Enforced operation of the digital output	
4.4.4	4. Operation for the diagnosis of digital input	
4.4.5	5. Operation for the diagnosis of digital output	71
5. S	STEPS FOR COMMISSIONING AND TUNING	72
5.1.	No-load detection	
5.2.	Power transmission for the drive	
53	No.load iog test	77
5.5.	10-10au jūg test	
5.4.	No-load speed test	
5.5.	Tuning steps	
5.5.1	1. Process of the tuning steps	79
5.5.2	2. Flowchart of the tuning steps in the semi-auto gain mode	
5.5.3	3. Flowchart of the tuning steps in the automatic gain mode	
5.5.4	4. Manual adjustment of gain parameters	
5.5.6 5.5.6	 Relationship of the gain adjustment mode with the parameters Solutions for mechanical resonance 	
2.2.0		
6. F	PARAMETERS AND FUNCTIONS	86
6.1.	Definitions of parameters	
6.2.	Parameters overview	
6.2.1	1. Parameter list	
6.2.2	2. Classification of the parameter function	
	·	

6.3.	Parameter description	115
6.3.1.	PA-XX (Basic parameter)	
6.3.2.	PB-XX (Gain/filtering parameter)	
6.3.3.	PC-XX (I/O configuration parameters)	
6.3.4.	PD-XX (Expansion parameter)	
6.3.5.	PG-XX (Msc system parameter)	
6.3.6.	PH-XX (Msc command parameter)	
6.3.7.	PJ-XX (Msc command parameter)	
6.3.8.	PL-XX (Msc Electronic cam parameter)	
7. C	ONTROL FUNCTION	
7.1.	Selection of operating mode	206
7.2	Position mode	207
721	Command of position mode	207
7.2.2	Control structure of the position mode	208
7.2.3.	Electronic gear ratio	
7.2.4.	Adjustment for the gain of position circuit	
73	Sneed mode	213
731	Selection of speed command	213
7.3.2	Control structure of the speed mode	
7.3.3.	Smoothing of speed command	
7.3.4.	Proportioner at the analog command end	
7.3.5.	Timing diagram of speed mode	
7.3.6.	Adjustment for the gain of speed circuit	
7.3.7.	Resonance suppression unit	
7.3.8.	Low frequency vibration suppression of position mode	
7.4.	Torque mode	
7.4.1.	Selection of torque command	
7.4.2.	Control structure of the torque mode	
7.4.3.	Smoothing of torque command	
7.4.4.	Proportioner at the analog command end	
7.4.5.	Timing diagram of torque mode	
7.4.6.	Mixed mode	
7.4.7.	Position/speed mixed mode	
7.4.8.	Position/torque mixed mode	
7.4.9.	Speed/torque mixed mode	
7.4.10	MSC/Position mixed mode	
7.4.11	MSC/Speed mixed mode	
7.5.	Others	
7.5.1.	Use of the speed limit	
7.5.2.	Use of the torque limit	
7.5.3.	Analog monitoring	
7.5.4.	Use of the electromagnetic brake	
7.5.5.	Use of the electromagnetic brake	
7.6.	Msc mode	
7.6.1	Return to origin	
7.6.2	Return to origin - Execution trigger	
7.6.3.	Msc Motion Planning - Command Description	
7.6.4.	Msc Motion Planning - Shared Information Group Description	
7.6.5.	Msc Motion Planning - command selection and triggering	

LITEON

7.6.6. 7.6.7.	Msc Motion Planning – command jump and interrupt Msc Motion Planning – command monitoring	
8. C	OMMUNICATION MECHANISM	
8.1.	RS-485/RS-232 Communication hardware interface	271
8.2.	RS-485/RS-232 Communication parameter setting	
8.3.	MODBUS protocol	
9. W	VARNING TROUBLESHOOTING	
9.1.	Drive Alarm List	278
9.2.	Reason for and handling of the alarm	281
9.3.	Alarm troubleshooting	
10.	SPECIFICATIONS	
10.1.	Standard specification for the servo drive	
10.1.1	1. Outline dimension drawing (drive)	291
10.2.	Standard specification for the servo motor	
10.2.2	2. Motor fixing screw size	
10.2.3	3. Outline dimension drawing (Motor)	
10.2.4	4. T-N Characteristic figure	

PREFACE

Thank you for using our product. The manual provides the information for the use of the ISA-7X servo drive and motor.

The manual is provided as a reference for the following users:

- Designer of the system integration for the machine
- Personnel for installation or wiring
- Personnel for commissioning and tuning
- Personnel for maintenance or inspection

The content includes:

- The steps for installation and inspection of the drive and motor
- Description for the formation of wiring for the drive
- Steps for commissioning
- Introduction for the control function and the tuning method of the servo drive
- Description for the parameter function
- Description for the protocol
- Method for inspection and maintenance
- Troubleshooting
- Explanation for the application example

Contact the dealer or our customer service center for any problem with our product.

Safety precautions

The ISA-7X series is an open type servo drive that must be installed in a shielded control box for operation. The drive uses precise feedback control and combines a digital signal processor (DSP) with high-performance computing. It controls the IGBT to generate current output to drive the three-phase permanent-magnet synchronous motor (PMSM) to achieve precise positioning.

The ISA-7X series can be used for industrial application. It is recommended to install it in the distribution box specified in the manual. (The drive, filament and motor must be installed in an environment that meets the minimum specifications for UL50 Type 1 or NEMA 250 Type 1.)

- Acceptance inspection
 - ☆ The servo motor and drive must be used according to specified methods to avoid fire or equipment breakdown.

Installation notes

☆ It is prohibited to use the product in the place exposed to the steam, corrosive or flammable gases, otherwise it may result in electric shock or fire.

Wiring notes

- \Rightarrow The earth terminal must be connected to Class 3 earthing (below 100Ω). Poor earthing may cause electric shock or fire.
- ✤ Do not connect the three-phase power supply to U, V and W motor output terminal; otherwise it may result in personal injury or fire.
- ♦ Secure the set screw of the power supply and motor output terminal, otherwise it may cause fire.

Operation notes

- ♦ Before the operation of the machinery equipment, the set value must be adjusted according to the user parameter of the machinery equipment. The machinery equipment might lose control or breaks down if the set value is not adjusted to the adequate set value.
- ♦ Before the operation of the machine, check if the emergency button can be activated anytime for shutdown.
- ☆ It is prohibited to touch any motor part that is in rotation during motor operation, otherwise it may result in personal injury.
- ☆ To avoid accidents, separate the coupling from the belt of the machinery equipment and keep them separate before the first commissioning.
- ♦ When the servo motor and machinery equipment are connected and in operation, operating error may result in the damage of the machinery equipment and occasional personal injury.
- ☆ Strongly recommended: Test the operation of the servo motor under the unloaded condition and connect the motor to the load afterwards to avoid danger.
- ♦ Do not touch the radiator of the servo drive in operation, otherwise it may result in burn injuries due to heat.

LITEON

Maintenance and inspection

- \diamond Do not touch the interior of the servo drive and motor, otherwise it may cause electric shock.
- ✤ Do not remove the drive panel when the power is on, otherwise it may result in electric shock.
- ✤ Do not touch the wiring terminal within 10 minutes after the power is off. The residual may cause electric shock.
- \diamond Do not remove the servo motor, otherwise it may cause electric shock or personal injury.
- ♦ Do not change the wiring while the power is on, otherwise it may result in electric shock or personal injury.
- ☆ The installation, wiring, repair and maintenance of the servo drive and motor are only allowed for qualified personnel specialized in electrical engineering.

- ☆ Do not thread the power and signal cable into the same channel or bind them. For wiring, the distance between the power and signal cables must be above 30 cm (11.8 in.).
- As for the signal cable and the encoder signal cable, use the multi-stranded twisted-pair wires and multi-core shielded-pair wires. The length of the signal input cable is up to 3 m (9.84 ft.); the length of the encoder signal cable is up to 20 m (65.62 ft.).
- ♦ High power might remain in the interior of the servo drive after the power is off. Do not touch the power supply terminal for 10 minutes. Check that the "CHARGE" indicator is off before the inspection.

■ Wiring for the terminal block of the main circuit

- \diamond Only insert one piece of wire into a wire socket of the terminal block.
- \diamond As for wire insertion, do not short the core wire to the wire nearby.
- \diamond Use the Y terminal to secure the thread of the core wire.
- \diamond Check the wiring for accuracy before power on.

1. Panel and Operation

1.1. Product check

Damages may be caused by negligence and during delivery when the product is purchased. Check the following items.

Contact the factory or agent for the following.

Inspection item	Contents		
Accuracy of the product	Check if the model number of the motor and drive is the same as the one		
number	on the order. Refer to the subsequent chapters for the description of the		
	model number.		
Smooth rotation of the	Turn the motor by hand. The motor operates normally if it can be rotated		
motor shaft	smoothly.		
Damage of the	Visually check the appearance of the product for damage.		
appearance			

The complete parts and components of the server should include:

A servo drive and motor

A power cable of the motor should be available. Connect the cable to the drive in the order of red (U), white (V) and black (W). The green earth line is connected to the earth of the drive.

A signal cable for the motor encoder should be available. One end of the cable is connected to the motor encoder and another end to the CN2 drive.

The 44PIN connector is used for CN1.

The 9PIN connector is used for CN2.

The 8PIN connector is used for CN3.

1.2. Comparison of the product numbers

1.2.1. Description for the name plate

ISA-7X series servo drive

Description for the name plate

1.2.2. Description for the model number

Driver Moden name

Motor Moden name

1.3. Name of each part in the servo drive

1.4. Operating mode

This drive provides numerous operating modes for the user. These modes are shown as follow:

Mode name		Mode code	Description
	Position mode	Р	The drive receives the position command and controls
	(Tampinal input)	1	The position command is input from the terminal block
	(Terminal input)		The signal type is guide.
			The signal type is pulse.
			The drive receives the speed command and controls the
			motor to reach the target rotational speed.
	Speed mode	S	The internal register provides the speed command
			(three registers available) or the external terminal block
			inputs the analog voltage (-10V \sim +10V).
			The command selection is based on the DI signal.
			The drive receives the speed command and controls the
			motor to reach the target rotational speed.
	Speed mode		The speed command can only be provided by the
	(no analog input)	Sn	internal register (three registers available). It can't be
Single			provided by the external terminal block. The command
mode			selection is based on the DI signal. The DI status of the
			external input in the original S mode is the speed
			command zero.
			The drive receives the torque command and controls the
			motor to reach the target torque.
	Torque mode	Т	The torque command can be provided by the internal
		-	register (three registers available).
			It is also possible to input the analog voltage from the
			external terminal block (- $10V \sim +10V$).
			The command selection is based on the DI signal.
			The drive receives the torque command and controls the
			motor to reach the target torque.
	Torque mode		The torque command can only be provided by the
	(no analog input)	Tn	internal register (three registers available). It can't be
			provided by the external terminal block. The command
			selection is based on the DI signal. The DI status of the
			external input in the original T mode is the torque
		C D	command zero.
	· 1 1.	3-Y	S and P can be switched via the DI signal.
M	ixed mode	1-P	1 and P can be switched via the DI signal.
		S-T	S and T can be switched via the DI signal.

The mode can be selected via the PA-01 parameter. After the new mode is set, the power is transmitted to the drive. The new mode then becomes effective!

2. Steps for Commissioning and Tuning

2.1. Notes

The user must pay attention to the following:

- Do not pull the connecting line between the servo drive and motor tight.
- The servo drive must be fastened at every securing spot.
- The axle center of the servo motor must be centered to the axle rod adequately.
- If the connecting line between the servo drive and motor exceeds 20 m (65.62 ft.), the UVW line must be thickened. The connecting line of the encoder shall also be thickened.
- The four set screws of the servo motor must be fastened.

2.2. Condition of the storage environment

The product must be placed in the packing box before installation. Pay attention to the following for storage to make sure that the product condition is applicable to our warranty and future maintenance if the drive wouldn't be used for the moment:

- The product must be placed in a dustless and dry place.
- The ambient temperature of the storage location must be kept within -20° C ~ $+65^{\circ}$ C (-4° F ~ 149° F).
- The relative humidity of the storage location must be kept within 0% and 90% without condensation.
- Do not store the product in the environment with corrosive gas or liquid.
- The product should be packed properly and stored on the shelf or platform.

2.3. Condition of installation environment

Operating temperature:

- ISA-7X series servo drive: $0^{\circ}C \sim 55^{\circ}C (32^{\circ}F \sim 131^{\circ}F)$
- ISA-7X series servo motor: 0°C ~ 40°C (32°F ~ 104°F)

The product must be placed in a well ventilated area if the ambient temperature exceeds 45°C. If the product is placed in the distribution box, the size and ventilation of the distribution box must be able to prevent the electronic device in the distribution box from overheating. Pay attention to see if the machine vibration affects the electronic device of the distribution box.

Besides, the following must be observed for the selection of the installation location. If not, our server product might not be applicable to our warranty and future maintenance:

- Our server product can be installed in places without heat emitting device, water drop, steam, dust, oil dust, corrosive or flammable gas or liquid, floating dust or metal particle. It can also be installed in stable places without vibration or interference of electromagnetic noise.
- Keep the temperature and humidity of the place where the servo drive and motor are installed within the specified range.
- Do not store the servo drive or motor in the place with the vibration exceeding the specified degree.
- Make sure that the servo drive and motor are stored in locations that conform to the environmental specifications stated in our manual.

2.4. Direction of and space for installation

Notes:

- The direction for installation must conform to the specifications to prevent malfunction.
- To ensure the cooling circulation remains effective, it is required to keep a sufficient space between the upper, lower, left and right sides of the servo drive and the object and guard plate (wall) nearby for the installation of the AC servo drive. If not, it may cause breakdown.
- Do not seal the air inlet and outlet of the servo drive during installation or tilt the servo drive, otherwise it may result in malfunction.

Drive installation:

• The ISA-7X series server drive must be installed vertically on a dry and stable platform complying to the NEMA standard. To ensure the circulation of ventilation air and heat radiation remain effective, it is required to keep a sufficient space between the upper, lower, left and right sides of the servo drive and the object and guard plate (wall) nearby for the installation of the AC servo drive. (It is recommended to leave a free space of 50 mm, which is about 2 in.) Leave the space required for wiring, if necessary. Besides, the bracket or platform for drive installation must be made of materials with great thermal conductivity to prevent the platform and drive from overheating.

Motor installation:

• The ECMA series servo motor must be installed properly on a dry and stable platform. Ensure the circulation of the ventilation air and heat radiation remain effective for installation and keep the earth adequate.

Installation diagram

The windage of the radiator fan must be reduced for effective heat emission. The suggested distance for one-to-many AC servo drives must be observed. (Refer to the figure below.)

2.5. Recommended specifications for the circuit breaker and fuse

S	trongly recommended: CSA / UL certified fuse and circuit breaker						
	Drive model	Circuit breaker	Fuse				
	Operating Mode	Normal	Normal				
	ISA-7X-010-A1	5A	6A				
	ISA-7X-020-A1	10A	10A				
	ISA-7X-040-A1	10A	20A				
	ISA-7X-075-A1	15A	25A				
	ISA-7X-100-A1	20A	40A				
	ISA-7X-150-A2	30A	50A				

2.6. EMI filter selection

Notes for the installation of the EMI filter

All electronic equipment (including the servo drive) generates certain high or low frequency noises during normal operation. Such noises interfere with the peripheral equipment via transmission or radiation. The interference can be minimized with correct installation of an appropriate EMI filter. Suppose that the servo drive and EMI filter are installed and wired according to the manual, we can be sure that they comply with the following standards:

- 1. EN61000-6-4 (2001)
- 2. EN61800-3 (2004) PDS of category C2
- 3. EN55011+A2 (2007) Class A Group 1

Surge Protector

Model	Rated Voltage	DC Breakdown	Current Life 8/20µs-1,000A	Marker
RSPD-250-U4	250Vac	700+-25%	Approx. 300times	ΟΚΑΥΑ

RSPD-DDD-U series (Three-Phase)

EMC Filter

Item	Power	Servo Drive	EMI Filter m		
			1PH 3PH		Marker
1	200W	ISA-7X-020-A1	B84113C0000x110	B84143A0008R105	EPCOS
3	400W	ISA-7X-040-A1	B84113C0000x110	B84143A0008R105	EPCOS
4	750W	ISA-7X-075-A1	B84113C0000x110	B84143A0008R105	EPCOS
5	1000W	ISA-7X-100-A1	B84113C0000x110	B84143A0016R105	EPCOS
6	1500W	ISA-7X-150-A2	-	B84143A16R105	EPCOS
7	2000W	ISA-7X-200-A2	-	B84143A16R105	EPCOS

Item	Power	Servo Drive	EMI Filter mo		
			1PH	1PH 3PH	
1	200W	ISA-7X-020-A1	TBD	FN 351 H-8-29	Schaffner
3	400W	ISA-7X-040-A1	TBD	FN 351 H-8-29	Schaffner
4	750W	ISA-7X-075-A1	TBD	FN 351 H-8-29	Schaffner

5	1000W	ISA-7X-100-A1	TBD	FN 351 H-8-29	Schaffner
6	1500W	ISA-7X-150-A2	-	FN3258-30-47	Schaffner
7	2000W	ISA-7X-200-A2	-	FN3258-30-47	Schaffner

Clamp filter

<24V Power cable, Motor cable, Encoder cable, Interface cable>

SHAPE & DIMENSIONS

Manufacture's Part No.	Manufacturer	А	В	С	D
ZCAT3035-1330	TDK	39 +- 1	34 +- 1	13 +- 1	30 +- 1

Installation notes

We hope that the EMI filter elaborates the maximum suppression against the interference from the servo drive. Therefore the servo drive must be installed and wired according to the manual. Furthermore, the following must be noted:

- 1. The servo drive and EMI filter must be installed on the same metal surface.
- 2. For the installation of the servo drive and EMI filter, the servo drive should be installed above the EMI filter, if possible.
- 3. The wiring must be as short as possible.
- 4. Adequate earthing is required for the metal surface.
- 5. The metal case or earth of the servo drive and EMI filter must be fixed firmly to the metal surface. The contact surface between the metal case or earth and the metal area must be as large as possible.

Selection of and installation notes for the motor wire

The selection and installation of the motor wire are associated with whether the EMI filter can elaborate the maximum suppression against the interference from the servo drive. Note the following:

- 1. The cable with copper mesh for separation must be used (double separation preferred).
- 2. The copper mesh for separation on both ends of the motor wire must be grounded with shortest distance and largest contact area.

LITEON

The protective paint on the area where the U-shaped bracket for the metal pipe is fixed to the metal surface needs to be removed to ensure that the contact is effective. Refer to the figure as follows.

3. The copper mesh for separation of the motor wire must be connected adequately to the metal surface. The U-shaped bracket for the metal pipe should be used to fix the copper mesh for separation at both ends of the motor wire to the metal surface. See the figure below for the correct connection.

2.7. Selection for the regenerative resistor

If the output torque and rotating speed are in opposite directions, the energy is transmitted from the loading end into the drive. The energy entered the capacitor of the DC bus so that the voltage of the capacitor increases. The energy recharged can only be consumed by the regenerative resistor when the voltage rises to a certain value. The regenerative resistor is included in the drive and available for external connection.

The table below lists the specifications of the regenerative resistor offered by the ISA-7X series.

Drive	Specifications of the built-in		The regenerative	Minimum resistance
(KW)	regenerative resistor		capacity processed by	tolerable
	Resistance (PD-45)	Capacity (PD-46)	the built-in	
			regenerative resistor	
0.2				40
0.4	40	40	20	40
0.75	40	40	20	40
1.0	40	40	20	40
1.5	20	100	50	20
2.0	20	100	50	20

3. Wiring

The chapter explains the connecting method of the servo drive and the meaning of all signals. It also lists the illustration of the standard wiring in various modes.

3.1. Connection for the peripheral device and main power circuit **3.1.1.** Wiring diagram of the peripheral device

Installation notes:

- 1. Make sure that the power supply and wiring for the R S T and L1 and L2 must be accurate.
- 2. Make sure that the phase sequence regarding the wiring for the servo motor output U V W is correct. The motor will not work if the connection is wrong and an alarm will occur.
- 3. When using the external regenerative resistor, open the circuit for the P and D ends and connect the external regenerative resistor to the P and C ends. When using the internal external regenerative resistor, short the circuit for the P and D ends and open the circuit for the P and C ends.

If using the external braking unit, connect P+ and P- of the braking unit to the P and N ends of the servo motor. Open the circuit for the P and D ends, as well as the P and C ends.

4. For the alarm or emergency stop, use ALM or WARN output to disconnect the magnetic contactor (MC) to cut off the power supply of the servo drive.

3.1.2. Connector and terminal of the drive

Indication	Name	Description		
R, S, T	Three-phase main circuit for RST power input	Connect the three-phase AC power supply. (Select adequate input voltage based on the product number.)		
L1, L2	Control power input end	Connect the single-phase AC power supply. (Select adequate input voltage based on the product number.)		
U, V, W FG	Motor power cable	Connect the cable to the r	notor. U (red) V (white) W (black) and FG (green) area of the drive.	
P, D,	Regenerative resistor	Use the internal resistor.	Make sure that it is short circuited between P and D and it is open circuited between P and C.	
С,	contact	Use the external resistor.	Connect the regenerative resistor to P and C. Make sure that it is open circuited between P and D.	
		Use the external braking unit.	Connect P+ and P- of the braking unit to the P and N ends of the servo motor. Open the circuit for the P and D ends, as well as the P and C ends.	
÷	Electrical connection terminal	The contact for the earth	wire of the power supply and motor	
CN1	I/O connector cable	It connects to the upper co	ontroller.	
CN2	Encoder connector	It connects to the motor en	ncoder.	
CN3	Communication connector	It connects to the compute	er.	
CN5	*Analog voltage output terminal*	The monitoring (output) of	of the analog data, including MON1, MON2, GND	

The following must be noted for wire connecting:

1. When the power is cut off, do not touch the six major power lines R, S, T and U, V, W. It is allowed to touch the lines after the charging light goes off.

2. Keep the six major power lines R, S, T and U, V, W away from other signal cables. Try to keep the distance above 30 cm.

3. For extending the connecting line for encoder CN2, use the twisted-pair signal cable with isolated grounding. Keep the cable within 20 m. If its length exceeds 20 m, use the one with the wire diameter twice larger than the current one to keep the signal level from excessive attenuation.

3.1.3. Power wiring

The servo drive and power wiring can be divided into the single- and three-phase. The single-phase can only be used for models with the power equal to 1kW or below. In the diagram, Power On is for Point a. Power Off and ALRM_RY are for Point b. MC indicates the coil of the magnetic contactor and self-holding power. It connects to the power supply of the main circuit.

3.1.4. Specifications for the U, V, W connectors of the motor

Motor number	U, V, W connector				
	Withnot brake connector				
100W~750W IOSMPHA04010M□□□A IOSMPHA06020M□□□A IOSMPHA06040M□□□A IOSMPHA08075M□□□A Series	31 42 With brake connections of the second seco	Pin 1 2 3 4 ctor	Singal U V W PE		
	4 1 5 2 6 3	Pin 1 2 4 5 3 6	Singal U V W PE Brake_24V Brake_0V		
1kW-2kW IOSMPHB131D0M===A IOSMPHB131D5M===A IOSMPHB132D0M===A Series	Withn Withn With	PinSingEPEFUIVBWCN/4DN/4brake connectorPinSingEPEFUIVBWCN/ADN/A	or gal 3 		

100W~750W (Withnot Brake) :

*Note:

1. For 1~2kW motors, if the motor does not have a brake, it is not necessary to connect the Brake_24V and Brake_0V signals.

2. Select the multi-core wire with the knitted wire mesh for the filament. The knitted wire mesh must be connected to the SHIELD end.

3.1.5. Filament selection

The following table shows the filament recommended for each terminal and signal wiring of the LITEON ISA-7X drive:

Drive and corresponding motor number		Power wiring- wire diameter (mm ²) (AWG)					
Drive and correspo	Shufing motor number	L1, L2	R, S, T	U, V, W	P, C		
ISA-7X-010-A1	IOSMPHA04010M	1.3 (AWG16)	2.1 (AWG14)	0.82(AWG18) UL2517	2.1 (AWG14)		
ISA-7X-020-A1	IOSMPHA06020M	1.3 (AWG16)	2.1 (AWG14)	0.82(AWG18) UL2517	2.1 (AWG14)		
ISA-7X-040-A1	IOSMPHA06040M	1.3 (AWG16)	2.1 (AWG14)	0.82(AWG18) UL2517	2.1 (AWG14)		
ISA-7X-075-A1	IOSMPHA08075M	1.3 (AWG16)	2.1 (AWG14)	2.1 (AWG14) UL2733	2.1 (AWG14)		
ISA-7X-100-A1	IOSMPHB131D0M	1.3 (AWG16)	2.1 (AWG14)	2.1 (AWG14) UL2733	2.1 (AWG14)		
ISA-7X-150-A2	IOSMPHB131D5M	1.3 (AWG16)	2.1 (AWG14)	2.1 (AWG14) UL2733	2.1 (AWG14)		

Drive model	Encoder wiring - wire diameter (mm ²) (AWG)						
Drive moder	Size of core wire	Number of core wires	Standards for wire type	Standard wire length			
ISA-7X-010-A1	0.21 (AWG24)	9	UL2464	3M			
ISA-7X-020-A1	0.21 (AWG24)	9	UL2464	3M			
ISA-7X-040-A1	0.21 (AWG24)	9	UL2464	3M			
ISA-7X-075-A1	0.21 (AWG24)	9	UL2464	3M			
ISA-7X-100-A1	0.21 (AWG24)	9	UL2464	3M			
ISA-7X-150-A2	0.21 (AWG24)	9	UL2464	3M			

1. Use the shielded twisted-pair cable for the wiring of the encoder to mitigate the interference of the noise.

2. The wire mesh = must be connected to the SHIELD end.

3. The wiring depends on the filament selected to avoid accidents.

3.2. Basic block diagram of the server system

3.2.1. Models with the power equal to or below 200W (no built-in regenerative resistor or fan)

3.2.2. 400W / 750W model (with regeneration resistor but no fan)

3.2.3. 1kW ~ 2kW model (with regeneration resistor and fan)

3.3. CN1 I/O Signal wiring

3.3.1. CN1 I/O layout of the connector terminal

ISA-7X provides 6 sets of outputs and 9 sets of inputs that can be planned as wish. ISA-7X also offers the signals of the differential output encoder, which are A+, A-, B+, B-, Z+ and Z-. In addition, it provides the analog torque command input, analog speed/position command input and pulse position command input. Its pin-out diagram is as follows:

1	DO4+	Digital output	23	EB-	Encoder B pulse output
2	DO3-	Digital output	24	EZ-	Encoder Z pulse output
3	DO3+	Digital output	25	EB+	Encoder B pulse output
4	DO2-	Digital output	26	DO4-	Digital output
5	DO2+	Digital output	27	DO5-	Digital output
6	DO1-	Digital output	28	DO5+	Digital output
7	DO1+	Digital output	29	S GND	Grounding of the analog input signal

Lite-On Technology Corp. Industrial Automation

8	DI4-	Digital Input	30	DI8-	Digital Input
9	DI1-	Digital Input	31	DI7-	Digital Input
10	DI2-	Digital Input	32	DI6-	Digital Input
11	COM+	Power input end	33	DI5-	Digital Input
		(12~24V)			
12	DI9-	Digital Input	34	DI3-	Digital Input
13	EZ+	Encoder Z pulse	35	OPC	External power supply of the command
		Differential output			pulse
14	COM-	VDD (24V)	36	HOUT-	High speed position
		Grounding of the power supply			Command pulse (-)
15	DO6-	Digital output	37	DIR-	Position command symbol (-)
16	DO6+	Digital output	38	HOUT+	High speed position
					Command pulse (+)
17	24V	+24V power output	39	DIR+	Position command symbol (+)
		(for external I/O)			
18	T Ref	Analog command input torque	40	HDIR-	High speed position
					Command symbol (-)
19	S GND	Grounding of the analog input signal	41	OUT-	Position command pulse (-)
20	V Ref	Analog command input speed (+)	42	HDIR+	High speed position
					Command symbol (+)
21	EA+	Encoder A pulse output	43	OUT+	Position command pulse (+)
22	EA-	Encoder/A pulse output	44	OZC	Encoder Z pulse
					Open collector

3.3.2. CN1 I/O Connector signal

General signal

Name Pi		Pin No	Function	Remark
Analog	V Ref	20	(1) The speed command of the motor $-10V \sim +10V$	
command			indicates the rotation speed -3000~+3000 r/min	
(input)			(default). The corresponding range can be changed	
			via the parameter.	
	T Ref	18	The torque command of the motor $-10V \sim +10V$	
			indicates the rated torque command -100% ~+100%.	
Position	OUT+	43	The position pulse can be input via the line driver	
pulse	OUT-	41	(maximum single-phase pulse frequency 500KHz) or	
command	DIR+	39	open collector (maximum single-phase pulse	
(input)	DIR-	37	frequency 200KHz). Three command forms are	
	OPC(PULL HI)	35	available (forward reverse pulse, pulse and direction,	
			as well as AB phase pulse) and can be selected via the	
			parameter.	
			When the position pulse is input via the open	
			collector, the terminal must be connected to an	
			external power supply for level increasing.	
High speed	HOUT+	38	The high speed position pulse only allows the input	
position	HOUT-	36	via the line driver (+5V). The maximum single-phase	
pulse	HDIR+	42	pulse frequency is 4 MHz. For the command forms,	
command	HDIR-	40	three pulse types are available, which are AB phase,	
(input)			CW+CCW, as well as plus and direction.	
Position	EA+	21	The A, B and Z signals of the encoder are output via	
pulse	EA-	22	the line driver.	
command	EB+	25		
(output)	EB-	23		
	EZ+	13		
	EZ-	24		
	OZC	44	The encoder Z-phase with the open collector	
Power	24V	17	The VDD is the +24V power supply provided by the	
supply			drive. It can be used for the DI and DO signals and it	
			has a resistor of 500mA.	
	COM+	11	The COM+ is the command end for DI voltage input.	
	COM-	14	When the VDD is used for the voltage, the VDD must	
			be connected to COM+. If the VDD is not used, the	
			user must provide the external power supply (+12V \sim	
			+24V). The positive pole of the external power	
			supply must connect to COM+ and the negative pole	
			to COM	
	S GND	19	Grounding of the analog input signal	

The user selects the operating mode based on his or her own need and refers to the DI/DO table to find out the default DI/DO signal in the selected mode and the Pin No of the signal for wiring. The following table lists the default DI/DO signal function and pin number:

Description for the default DO signal

DO Name	Operating Mode	Pin No		Function	Remark
		+	-		
SRDY	ALL	7	6	After the drive is electrified, this input is ON if	
				there is no alarm (ALRM) for the control circuit	
				and motor power circuit.	
SVON				If the input SVON is ON, this input is ON after	
				it is confirmed that the motor servo circuit	
				operates smoothly.	
ZSPD	ALL	5	4	If the rotation speed of the motor is less than	
				the set value of the parameter (PC-20), this	
				input is ON.	
RSPD	ALL (P excluded)			If the actual rotation speed (r/min) of the motor	
				exceeds the set value of the parameter (PD-43),	
				this input is ON.	
INP	P, P-S, P-T	16	15	If the error (PULSE) between the motor	
				command and the actual position is less than the	
				set value of the parameter (PA-20), this input is	
				ON.	
ALM	ALL	28	27	An alarm occurs for the servo drive. (The	
				WARN is input when the positive and negative	
				limits, emergency stop, communication	
				abnormality and low voltage occur.)	
BREAK	ALL			The control contact of the electromagnetic	
				brake	
OLW	ALL			When the overload level setting is reached, the	
				input is ON.	
WARN	ALL			Warning output of the servo drive	
				The warning output is generated when the	
				positive and negative limits, emergency stop,	
				communication abnormality and low voltage	
				occur.	
S_CMP	S, Sn			If the error value between the speed command	
				and motor feedback speed is below the set value	
				of the parameter (PC-23), this input is ON.	
HomOK	Mcc			When the origin return is completed, the output	
	IVISC			is ON.	
MecRusy	Mac			When the Msc function is executed, the output	
mischusy	IVISC			is ON.	
MecDolor	Maa			When the Msc function is executed delay, the	
wischeiay	IVISC			output is ON.	
				When the e-cam drive shaft completes one	
CamPrdOn	Msc			cycle, it will toggle (Toggle) this DO level	
				once.	
The following describes the default DI signal.

DI Name	Operating Mode	Pin No	Function	Remark
SVON	ALL	9	If the mode is ON, the servo circuit is activated and the motor coil is excited.	
ARST	ALL	33	After the alarm (ALRM) occurs, this signal is used to reset the drive to output the Ready (SRDY) signal again.	
GAINUP	ALL		It is used to switch the controller gain.	
CCLR	Р		It is used to clear the error counter.	
ZCLMP	ALL		If this signal is ON and the motor speed is below the set value of the	
			parameter PC-20, the position of the motor is locked to the one that	
			the signal is generated instantly.	
CMDV	T, S		If this signal is ON, the direction that the motor moves to is	
TROI	0.0.	10	reversed.	
	5, 5fl T Tn	10	ON indicates that the speed limiting command is effective.	
SPDA	1, 111 S. Sn	34	The source of the speed command is selected:	
SPD1	9T-S		SPD1 SPD0 Command Source	
51 51	S-T	0	0 0 The S mode is the	
			analog input:	
			0 1 Parameter setting	
			1 0 Parameter setting	
			1 1 Parameter setting	
TCM0	PT,T, Tn,	34	The source of the torque command is selected:	
	PT-T		TCM1 TCM0 Command Source	
TCM1	S-T	8	0 0 The T mode is the	
			analog input;	
			0 1 Parameter setting	
			1 0 Parameter setting	
	.	21	I I Parameter setting	
S-P	P-S	31	It is used for switching of the mixed mode. OFF: Speed; ON: Position	
S-T	S-T	31	It is used for switching of the mixed mode. OFF: Speed; ON: Torque	
Т-Р	P-T	31	It is used for switching of the mixed mode. OFF: Torque; ON: Position	
EMG	ALL	30	B contact is used. This mode must be conducted (ON) often, otherwise the drive shows an alarm (ALRM).	
NL	P, S, T	32	This mode indicates the CCW-limit. B contact is used. This mode	
	Sn, Tn		must be conducted (ON) often, otherwise the drive shows an alarm	
			(ALRM).	
PL	PT, S, T	31	This mode indicates the CW-limit. B contact is used. This mode	
	Sn, Tn		must be conducted (ON) often, otherwise the drive shows an alarm	
			(ALRM).	
ILLM TDI M			It indicates the forward torque limit.	
ICCEN	ΔΙΙ		It allows the selection of the jog function for external terminals	
JOGEN	THE		This signal must be connected to use the jog function for external	
			terminals.	
JOGU	ALL		When the signal is connected, the motor moving forward changes to	
IOCD			When the signal is connected, the motor moving in reverse shares	
JOGD	ALL		to inching rotation.	
GNUM0	P. P-S		Select 0 for the electronic gear ratio. (The numerator of the gear	
	1,1.5		ratio available (PA-11 ~ PA-13))	
GNUM1	P, P-S		Select 1 for the electronic gear ratio. (The numerator of the gear	
			ratio available (PA-11 ~ PA-13))	
INHP	P, P-S		The pulse input is prohibited. In the position mode, the external	

Lite-On Technology Corp. Industrial Automation

		pulse input command is ineffective when this signal is connected.					
MscNo1	Msc						
MscNo2	Msc	Select the source of the Msc command:					
MscNo3	Msc	Map the MscNo1~6 DI status to a specific MSC numbering					
MscNo4	Msc	instruction					
MscNo5	Msc						
		No6 No5 No4 No3 No2 No1 Msc command source					
		0 0 0 0 0 0 No command					
		0 0 0 0 0 1 PG61 set value					
		0 0 0 0 1 0 PG62 set value					
		0 0 0 0 1 1 PG63 set value					
		0 0 0 1 0 0 PG64 set value					
		0 0 0 1 0 1 PG65 set value					
		0 0 0 1 1 0 PG65 set value					
		0 0 1 1 1 PG67 set value					
		0 0 1 0 0 PG68 set value					
		0 0 1 0 0 1 PG69 set value					
MscNo6	Msc	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
WISCINGO	IVISC	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
	N I	Other DI status combinations, see 7.6.5					
Hom	Msc	Origin return					
Org	Msc	Origin signal trigger					
Miscirg	IVISC	Start the Misc command with the Misc No. status					
	M	Msa command course and stort :					
MSCEVI	MISC	Nise command source and start.					
		DI Type Msc Command					
	N C	Upper limit High value					
MSCEV2	Msc	Ev1 Ev1 PG76 set value Low value					
		Lower limit Low value					
		Ev2 Lower limit PG77 set value Low volve					
MscEv3	Msc	Upper limit Low Value					
		Ev3 Lower limit PG78 set value Low value					
		Lower mint Low value					
MscEv4	Msc	Ev4 Ev4 PG79 set value High value					
		Lower minit					
MscStp	Msc	Stop the MSC execution.					
CamOn	Msc	The electronic cam performs the trigger.					
CamZp	Msc	The electronic cam drive shaft phase angle is reset to zero.					
Msc-P	P-Msc	Mixed mode switching. OFF: Position ON: PR.					
Msc-S	S-Msc	Mixed mode switching. OFF: Speed ON: PR					
	Msc						
MscBusy	S-Msc	When the PR position command is executed the signal is triggered	See 7.6.12				
1.1.002.005	P-Msc	in the response command is encoured, the signed is unggoted.	200 / 10.12				
	Msc						
MscStRd	S-Msc	When a non-absolute and indexed position command is executed, the	See7.6.12				
	P-Msc	trigger causes the system to stop the PR command.					

The default DIs and DOs under each operating mode are arranged as follows:

Table for definitions of the default DI input

3.3.3. Table 1 DI definition table of input default.

Name	DI Code	Input function	Р	S	Т	Sn	Tn	PS	PT	ST	Msc	MscP	MscS
DISABLE	0x00	No function	DI9	DI9	DI9	DI9	DI9						
SVON	0x01	Servo on	DI1	DI1									
ARST	0x02	Error reset	DI5										
GAINUP	0x03	Gain switching											
CCLR	0x04	Pulse cleaning	DI2					DI2	DI2				
ZCLMP	0x05	Zero speed clamping											
CMDV	0x06	Command input											
	01100	reverse control											
TRQL	0x07	Torque limit		DI2		DI2				DI2			
SPDL	0x08	Speed limit			DI2		DI2						
SPD0	0x09	Selection of Speed Command 0		DI3		DI3		DI3		DI3			DI3
SPD1	0x0A	Selection of Speed Command 1		DI4		DI4		DI4		DI4			DI4
TCM0	0x0B	Selection of Torque Command 0	DI3		DI3		DI3		DI3	DI6			
TCM1	0x0C	Selection of Torque Command 1	DI4		DI4		DI4		DI4	DI7			
S-P	0x0D	Switching of the speed/position mixed mode						DI9					
S-T	0x0E	Switching of the speed/torque mixed mode								DI9			
T-P	0x0F	Switching of the torque/position mixed mode							DI9				
AENC_E	0x10	Absolute encoder terminal function start											
AENC_C	0x11	Absolute encoder pulse value reset											
AENC_Q	0x12	The position of the hand that is held as a terminal transmission											
EMG	0x15	Emergency stop	DI8	DI5									
NL	0x16	Limit of reverse inhibition	DI6	DI6		DI6		DI6			DI6		DI5
PL	0x17	Limit of forward inhibition	DI7	DI7		DI7		DI7			DI7	DI8	DI8
JOGEN	0x19	Selection of the jog control for the terminal										DI6	DI6
JOGU	0x1A	Forward jog input										DI7	DI7
JOGD	0x1B	Reverse jog input											
MscStRd	0x1F	System stops PR											
MscBusv	0x20	System PR position											
GNUM0	0x21	completed Selection of the											

		Numerator of the							
		Electronic Gear Ratio							
		0							
		Selection of the							
	0.00	Numerator of the							
GNUMI	0x22	Electronic Gear Ratio							
		1							
MaaNa 1	0	Msc command							
WISCINOT	0X20	selection 1							
MscNo2	0x27	Msc command							
	0.1.2.7	selection 2							
MscNo3	0x28	Msc command selection 3							
MaNo4	0x20	Msc command							
IVISCIN04	0X29	selection 4							
MscNo5	0x2A	Msc command							
		selection 5							
MscNo6	0x2B	Msc command							
Hom	$0 v^2 C$	Origin roturn							
Org	0x2C	Origin signal trigger							
Olg	UALD	Msc starts the							
MscTrg	0x2E	command according to							
8		the No1~4 state.							
	0.25	Msc command					DIA		
MSCEVI	UX2F	selection and start 1					DI2		
MscEv2	0x30	Msc command					D19		
MISCE V2	0.00	selection and start 2					DI		
MscEv3	0x31	Msc command						DI2	DI2
		selection and start 3							
MscEv4	0x32	selection and start 4					DI3	DI9	DI9
		Msc command stops							
MscStp	0x33	immediately					DI4		
CamOn	0x34	E-cam execution						DI3	
	0.10	trigger		 	 			210	
		E-cam drive shaft							
Com7n	025	nhase angle zeroine						DI4	

3.3.4. Table 2 DO definition table of output default.

Table for definitions of the default DO output

Name	DO code	Output Function	Р	S	Т	Sn	Tn	PS	РТ	ST	Msc	MscP	MscS
SRDY	0x01	Servo ready	DO1	DO1									
SVON	0x02	Servo on	DO4	DO4									
ZSPD	0x03	Zero speed detection	DO2										
RSPD	0x04	Target speed reached	DO3										
INP	0x05	Target position reached	DO6					DO6	DO6		DO6	DO6	DO6
ALM	0x06	Servo alarm	DO5	DO5									
BREAK	0x07	Electroma gnetic brake											
OLW	0x08	Overload alert											
TQL	0x09	Torque limit											
WARN	0x0A	Servo warning											
SNL	0x0B	Software limit (reverse direction)											
SPL	0x0C	Software limit (forward direction)											
AENC_D	0x0D	Absolute encoder data output pin											
AENC_ERR	0x0E	Absolute encoder related alarm output											
SP_IN	0x0F	Speed reaching output											
HomOk	0x13	Origin return completio									DO2	DO2	DO2

Lite-On Technology Corp. Industrial Automation

		n output							
MscBusy	0x14	Msc command execution output					DO3	DO3	DO3
MscDelay	0x15	Msc command execution output in delay time							
CamPrdOn	0x16	When the e-cam drive shaft completes one cycle, it will toggle (Toggle) this DO level once.							

3.3.5. Interface wiring diagram (CN1)

The analog monitoring output relates to MON1 and MON2. The effective voltage range for the speed and torque analog command input is $-10V \sim +10V$. The command value corresponding to the voltage range may be set via the relevant parameter. The input impedance is 10K. Analog command input for the speed and torque

maiog command input for the speed and torque

Analog monitoring output MON1, MON2

The pulse command can be input via the open collector or line driver. The maximum input pulse for the input via the line driver is 500 Kpps. The maximum input pulse for the open collector is 200 Kpps. The wire length is within 2m.

The pulse input source is the NPN type open collector. The power supply in the drive is used.

The pulse input source is the PNP type open collector. The power supply in the drive is used.

.43

41

D14

OUT+

OUT-

COM-

200Kpps

Max Pulse Frequency

200Kpps

10013

100 Ω

The pulse input source is the NPN type open collector. The external power supply is used.

Note: The double power input is not allowed, otherwise the burning may occur.

The pulse input source is the PNP type open collector. The external power supply is used.

Note: The double power input is not allowed, otherwise the burning may occur.

This is the pulse command input (differential input). This is a 5V system. The 24V power supply is not allowed for input.

This is the pulse command input with high speed (differential input). This is a 5V system. The 24V power supply is not allowed for input.

DO wiring, internal power supply, normal load

DO wiring, internal power supply, inductive load

DO wiring, external power supply, normal load

DO wiring, external power supply, inductive load

DI wiring, internal power supply, SINK mode

DI wiring, external power supply, SINK mode

DI wiring, internal power supply, SOURCE mode

DI wiring, external power supply, SOURCE mode

Encoder position output (line driver)

Encoder position output (photo coupler)

Encoder OCZ output (Z pulseoutput for the open collector)

3.3.6. User-specified DI and DO signals

If the desired DI/DO signal can't be found among the default ones, the user may set new DI/DO. The function of the DI1~9 and DO1~6 signals depend on the parameters PC-01~PC-09 and PC-10~PC-15. Refer to the following table. Input the DI or DO code in the corresponding parameter to set the function of this DI/DO.

Signal N	ama	Din No	Corresponding	
Signar	lame	I III NO	parameter	
	DI1-	CN1-9	PC-01	
	DI2-	CN1-10	PC-02	
	DI3-	CN1-34	PC-03	
	DI4-	CN1-8	PC-04	
Standard DI	DI5-	CN1-33	PC-05	
	DI6-	CN1-32	PC-06	
	DI7-	CN1-31	PC-07	
	DI8-	CN1-30	PC-08	
	DI9	CN1-12	PC-09	

Signal	Name	Pin No	Corresponding parameter
	DO1+	CN1-7	PC 10
	D01-	CN1-6	10-10
	DO2+	CN1-5	DC 11
	DO2-	CN1-4	rC-11
	DO3+	CN1-3	DC 12
Standard	DO3-	CN1-2	FC-12
DO	DO4+	CN1-1	DC 12
	DO4-	CN1-26	rC-15
	DO5+	CN1-28	PC-14
	D05-	CN1-27	10-14
	DO6+	CN1-16	PC-15
	DO6-	CN1-15	10-15

3.4. CN2 Wiring of the the encoder signal 3.4.1. Encoder Connector Specifications

Motor Model	Encoder	Connect	
	74 85 96	1 2 3	
100W~750W	Pin	Signal	
$IOSMPHA04010M\Box\Box\BoxA$ $IOSMPHA06020M\Box\Box\BoxA$	1	DATA+	
	2	DATA-	
IOSMPHA08075MDDA	3	N.C	
	4	N.C	
	5	N.C	
	6	5V	
	7	GND	
	8	Shield	
	9	N.C	

Motor Model	Encoder Con	nect	
1kW~2kW IOSMPHB131D0M□□□A IOSMPHB131D5M□□□A		0	
IOSMPHB132D0M	Pin	Signal	
	$A \cdot B \cdot C \cdot D$	N.C	
	E	DATA+	
	F	DATA-	
	G	GND	
	Н	5V	
	J	Shield	
	$K \mathrel{\scriptstyle{\scriptstyle{\vee}}} L \mathrel{\scriptstyle{\scriptstyle{\vee}}} M \mathrel{\scriptstyle{\scriptstyle{\vee}}} N \mathrel{\scriptstyle{\scriptstyle{\vee}}} R \mathrel{\scriptstyle{\scriptstyle{\vee}}} S \mathrel{\scriptstyle{\scriptstyle{\vee}}} S \mathrel{\scriptstyle{\scriptstyle{\vee}}} T$	N.C	

For the wire selection, please use the multi-core cable with the isolated cable, and the isolated cable should be connected to the SHIELD end.

3.4.2. Encoder cable wiring diagram

100W~750W Single turn absolute wire :

P1	Pin Function	P2		
9-core plastic connector		D-sub connector		
6	5V	7		
7	GND	8		
1	Data+	5		
2	Data-	4		
8	Shield	外殻		

1kW~2kW Single turn absolute wire :

P1	Pin Function	Р2
Military connector		D-sub connector
Н	5V	7
G	GND	8
E	Data+	5
F	Data-	4
J	Shield	外殼

Multi-turn absolute wire (requires connection of battery case) :

Military connector	9-core plastic connector	J4 (connect motor)	Pin Function	J1 (connect driver)	D-sub connector
Н	6	Pin 1	5V	Pin 1	7
G	7	Pin 2	GND	Pin 2	8
E	1	Pin 3	Data+	Pin 3	5
F	2	Pin 4	Data-	Pin 4	4

3.4.3. CN2 Enclosure connector housing connection

(1) The metal isolation mesh and the metal portion of the connector are connected to achieve the effect of a complete metal mask.

(2) As shown in the fugure, fit into the housing of the connector

(3) The locking of the housing is complete.

3.5. CN3 Wiring for the signal of the communication connector

CN3 Layout for the terminal of the communication connector

The drive is connected to the computer via the communication connector. The user uses the MODBUS communication and combines with the assembly language to operate the drive. The user may also use PLC and HMI to operate the drive. We offer two communication interfaces that are commonly used: (1) RS-232 and (2) RS-485. The RS-232 is used more often. The communication distance is about 15 m. If using the RS-485, the transmission distance would be longer. The RS-485 can support simultaneous connections for multiple drives.

CN3 connector (female)

Pin No	Signal Name	Terminal signal	Function and description	
1	RS-232 data	DC 222 TV	Data transfer at the drive end	
1	transmission	KS-232_1A	Connected to the receiving end RS-232 of the PC	
2	DS 222 data reactiving DS 222 DV		Data receipt at the drive end	
2	KS-252 uata receiving	K3-232_KA	Connected to the sending end RS-232 of the PC	
3	Signal grounding	GND	+5V ground to the signal end	
1	RS-485 data	DS 185()	Differential data transfer at the drive end -	
4	transmission	K3-40J(-)		
5	RS-485 data	$RS_{-}/185(+)$	Differential data transfer at the drive and	
5	transmission	N3-403(+)	Differential data transfer at the drive end +	
6	Signal grounding	GND	+5V ground to the signal end	
7	-	-		
8	-	_		

3.6. CN5 Analog voltage output terminal

The CN5 output terminal provides the monitoring analog data. For example, the analog voltage can be used to indicate the rotation speed and current of the motor. ISA-7X provides two channel outputs. The user uses Parameter PD-22 to select the data to be monitored. The signal is based on the grounding (GND) of the power supply.

CN5 output terminal of the drive:

CN5 analog voltage output signal cable:

Pin No	Signal Name	Function and description	Color	Remark
1	MON1	Monitoring analog data 1	Red	
2	GND	Earth wire of the power supply	Red	
3	MON2	Monitoring analog data 2	Red	

3.7. Standard wiring

3.7.1. Standard wiring for the position mode

- *2 Please refer to section 3.3.3 C3, C4 wiring method
- *3 Please refer to Section 3.3.3 C9~C12 SINK/SOURCE Mode Wiring
- *4 No built-in rebound resistor below 200W
- *5 Brake wiring is non-polar

3.7.2. Standard wiring for the speed mode

Note :

- *1 Please refer to Section 3.3.3 C9~C12 SINK/SOURCE Mode Wiring
- *2 No built-in rebound resistor below 200W

*3 Brake wiring is non-polar

3.7.3. Standard wiring for the torque mode

4. Panel and Operation

4.1. Panel display and key description

Name	Function
Display	Five seven-segment displays are used to show the monitoring, parameter and set values.
MODE key	It is used to switch between the monitoring mode, parameter mode and alarm display.
	When editing the mode, press the MODE key to exit to the parameter mode.
SHIFT key	The group code can be changed in the parameter mode. In the editing mode, shift the
	blinking character to the left would be able to modify the higher character value that is set.
	In the monitoring mode, the display of the high/low order digit can be switched.
UP key	It is used to change the monitoring code, parameter code or set value.
DOWN key	It is used to change the monitoring code, parameter code or set value.
SET key	It is used to display and store the set value. In the monitoring mode, it is possible to switch
	to the decimal/hexadecimal number system. In the parameter mode, press the SET key to
	enter the editing mode.

4.2. Panel operating process

- 1. When the power supply of the drive is input, the display continues to display the monitoring mode (the monitoring parameter set by the PD-21) first. The alarm code shows up first if there is any alarm.
- 2. Press the MODE key to switch the parameter display \rightarrow monitoring display \rightarrow error display. The alarm mode is omitted if there is no alarm.
- 3. For any new alarm, it is possible to switch the current mode to the alarm mode instantly. Press the MODE key to switch to other modes.
- 4. In the monitoring display, switch the monitoring variable to press the UP or DOWN key. After selecting the monitoring variable, press the SET key to confirm to enter the display.
- 5. In the parameter display, press the SHIFT key to switch the group code. Press the UP/DOWN key to change the last two character parameter codes.
- 6. In the parameter display, press the SET key to enter the editing setting mode. The display shows the set value of the current parameter. Use the UP/DOWN key to modify the parameter value or press the MODE key to exit the editing setting mode and return to the parameter mode.

- 7. In the editing setting mode, press the SHIFT key to shift the blinking character to the left and use the UP/DOWN key to amend the high byte quickly.
- 8. After revising the set value, press the SET key to save the parameter or execute the command.
- 9. After the parameter setting is finished, the display shows the exit code "SAVED" and returns to the parameter code automatically.

Display text	LED display						
0	C	9	9	i		r	F
1	I I	А	8	J]	S	S
2	2	b	Ъ	K	Y	t	E
3	3	С		L		U	U
4	Ч	d	6	М	N/A	v	U
5	S	E	8	n		W	N/A
6	8	F	۲	0	0	Х	N/A
7		G	5	Р	2	У	Ч
8	8	Н	Н	q	9	Z	

Table4.2.1 Display code

4.3. Status display

4.3.1. Description for the display of status value

Example for the numerical display	Description for the display of status value		
0 1234 (Dec)		If the numerical value is 1234, it displays as 01234 (decimal	
	Hexadecimal	numerical system).	
	data	If the numerical value is $0x1234$, it displays as 1234.	
iCゴゴ (Hex)		(For the hexadecimal numerical system, the first digit does	
		not show.)	
12345 (Dec high)		If the numerical value is 1234567890, the high byte displays	
	22 hit data	as 1234.5 and the low byte as 67890 (decimal numerical	
b ibbii (Dec low)		system).	
5 1234 (How high)	52-011 Uata	If the numerical value is 0x12345678, the high byte displays	
		as h1234 and the low byte as L5678 (hexadecimal	
<u> こうひ び</u> (Hex low)		numerical system).	
	This is the wa	y to display negative values. If the numerical value is -12345,	
13346	it displays as 1.2.345.		
	(Only the decimal numerical system is available. No positive or negative sign		
	shows for the hexadecimal numerical system.)		

1) Dec indicates the decimal numerical system and Hex the hexadecimal numerical system.

2) The above ways of displaying numerical values are applicable to the monitoring and editing setting modes.

3) The Data format of all monitoring variables is 32-bit. For data display, it is possible to switch between the high/low byte and Dec/Hex. Each parameter only supports one display type and no switchover is allowed.

4.3.2. Display of storage setting

After finishing the parameter editing and pressing the SET storage setting key, the panel display continues to show the symbol of setting status for 1 second based on the setting status.

LED display	Content description
Saved	The set value is stored adequately (Saved).
R-Only	It is a read-only parameter (Read-Only).
Lock	The entered password is wrong or no password is entered (Locked).
Err	The set value is wrong or the reserved set value is entered (Write NG).
S-off	The servo is activated and no input is allowed (Please Servo off).
Re-On	The parameter is effective only after restart (Power On).

4.3.3. Display of decimal point

Display symbol	Content description
00000	High/low byte indication: If the data type is 32-bit and the data is in the decimal
	format, the function indicates whether the numerical value displayed is in the high
Low l High l No fu Negat	or low byte format.
yyte in yyte in nction ive sig	Negative sign: If the data is in the decimal format, the two decimal points on the
licatio dicatio n	left indicate the negative sign, regardless the 16- or 32-bit. The value displayed in
5 5	the hexadecimal format is always positive. No negative sign is displayed.

4.3.4. Display of the warning message

Display symbol	Content description
86.000	When the drive generates an error, the warning sign 'AL' and code 'nnn' appear. Refer to the description for the PD-20 parameter in Chapter 7 or Chapter 9 Warning Troubleshooting for the meaning of the sign and code.

4.3.5. Monitoring display

In the monitoring mode, press the UP or DOWN key to select the variable to be monitored and press the SET key for confirmation. Parameter PD-21 can also be modified to designate the monitoring code. For example, "PD-21=4" indicates the motor rotation speed.

PD-21	LED display	Content description	Unit
0	Cd-P	The number of pulses entered for the pulse command (the number of pulses for the command entered to the upper controller)	[user unit]
1	Fb-P	The number of pulses for the motor feedback (the number of pulses fed to the upper controller from the drive)	[user unit]
2	Err-P	The number of differential pulses for the Cd-P and Fb-P	[user unit]
3	Efb-P	The number of pulses for the motor feedback (the number of pulses for the encoder feedback) (131072 pulse/rev)	[pulse]
4	SPEED	Motor rotation speed	[r/min]
5	ECd.P	The number of pulses for the pulse command input (The number of pulses for the command entered to the upper controller * electronic gear ratio)	[pulse]
6	Eer-P	The number of differential pulses for the ECd-P and EFb-P	[pulse]
7	CP-Fr	The pulse command input frequency	[Kpps]
8	C-SP1	The speed input command	[Volt]
9	C-SP2	The speed input command	[r/min]
10	C-tq1	The torque input command	[Volt]
11	C-tq2	The torque input command	[%]
12	PK-L	The peak torque	[%]
13	AvG-L	The average torque	[%]
14	U-buS	The voltage of the main circuit	[Volt]

15	J-L	The load/motor inertia ratio	[double]
16	rSn.fr	The resonance frequency (The low byte is the first resonance point and the high byte is the second resonance point.)	[Hz]
17	diFF.2	This indicates the number of absolute pulses with respect to the encoder Z-phase. Which means, the numerical value at the origin of the Z-phase is 0. The encoder rotates clockwise or counterclockwise for positive/negative 5000 pulses.	[pulse]
18	Drv-t	Drive temperature	[°C]
19	bAtt	Absolute encoder battery voltage	[Volt.]

4.4. Operation of the general function

4.4.1. Operation for displaying the record of the abnormal status

After entering the parameter modes PD-33 ~ PD-37, press the SET key to display the corresponding code of the error history.

4.4.2. Operation for the jog mode

After entering the parameter mode PD-30, execute the jog operating mode according to the following setting methods.

(1) Press the SET key to display the jog speed. The initial value is 20 r/min.

(2) Press the UP or DOWN key to modify the jog speed to the desired value. For the example, the speed is adjusted to 100r/min.

(3)Press the SET key to display JOG and enter the jog mode.

(4) After entering the jog mode, press the UP or DOWN key to make the servo motor to rotate clockwise or counterclockwise. Release the button and the servo motor stops immediately. The jog operation is only effective in the Servo On mode.

Press : The servo motor rotates
counterclockwise.
Press : The servo motor rotates
clockw <u>ise.</u>
Press M to return.
Release the key and the motor stops instantly.
If there is no reaction, check the wiring for the
motor UVW and encoder.

4.4.3. Enforced operation of the digital output

Enter the output diagnosis mode according to the setting method below.

Set "PD-44=006" first and turn on the enforced DO mode. Use the PD-31 to set the enforced DO output via the binary system.

E.g.: DO2 is turned on forcefully when the value is set to 2.

DO1 and DO3 are turned on forcefully when the value is set to 5.

No memory is saved for this mode after power off. The regular DO mode can be resumed after power on or setting "PD-44=106".

The PD-31 is in the hexadecimal format. The numerical value 0 at the fifth digit does not appear.

4.4.4. Operation for the diagnosis of digital input

Enter the input diagnosis mode according to the setting method below.

When the triggering is executed via the external input signals $DI1 \sim DI9$, the panel display shows the corresponding signal. The signal is displayed in the hexadecimal character format.

bit0 corresponds to DI1; bit1 to DI2...etc. The value 1 indicates triggering.

E.g.: If "1A1" shows on the display, the binary value is 110100001b, indicating the triggering for DI1, DI6, DI8 and DI9.

(Hexadecimal display)

4.4.5. Operation for the diagnosis of digital output

Enter the output diagnosis mode according to the setting method below.

As for the electrical conductivity of the output signals DO1 ~ DO6, the signal corresponding to these output signals shows on the panel display. The signal is displayed in the hexadecimal format. bit0 corresponds to DO1; bit1 to DO2...etc. The value 1 indicates triggering.

E.g.: If "3C" shows on the display, the binary value is 00111100b, indicating the triggering for DO3, DO4, DO5 and DO6.

(Hexadecimal display)

5. Steps for Commissioning and Tuning

The chapter is divided into two parts for explaining the commissioning operation. The first part is the noload detection and the second one is the detection for installation in the machine. For safety reasons, the user must conduct the testing for the first part.

5.1. No-load detection

To avoid the damage to the servo drive or mechanism, remove the load connected to the servo motor first. (The coupling and relevant accessories on the axle of the servo motor must also be removed. The reason is to avoid the situation that the accessory not removed from the axle of the servo motor flies off, indirectly causing the personal injury or equipment damage.) If the servo motor operates normally according to the normal operating procedure after the removal of the load connected to the servo motor, connect the load back to the servo motor afterwards.

Strongly recommended: Make the servo motor to go into the normal operation under the unloaded condition and connect the motor to the load afterwards to avoid danger.

Check the items listed below one by one to find out problems and solve them before the motor operation to prevent the damage afterwards:

Detection before operation (no control power supply provided)	 Check the servo drive for evident damage. Insulate the connecting part of the distribution terminal. Check the wiring for completion and accuracy to prevent damage or abnormality. Check if there is any conductive object such as the screw or a sheet metal or any flammable object in the servo drive. Check if the control switch is OFF. The regenerative resistor of the servo drive or the external regenerative resistor must not be placed on any flammable object. To prevent the electromagnetic actuator from becoming ineffective, check if the circuit causing the immediate termination of operation and cutting the power off operates normally. If the electronic instrument near the servo drive suffers from the alectromagnetic interference, use an instrument for mitigation.
	• If the electronic instrument near the servo drive suffers from the
	electromagnetic interference, use an instrument for mitigation.
	• Check if the applied voltage level of the drive is accurate.

	•	Excessive stress should be avoided for the cable of the encoder.
		During motor operation, notice whether the connecting cable
		contacts the machine part, causing wear or dragging.
Detection before	•	For the servo motor, contact the supplier for any vibration or loud
		noise during operation.
	•	Check the setting of each parameter for accuracy. Unexpected
		movements might occur due to mechanical characteristics. Do not
(control power supply		make excessive adjustments to the parameter.
(control power suppry	•	When resetting the parameter, check if the drive operates while the
provided)		servo is turned off (Servo Off), otherwise the drive would cause
		malfunction.
	•	When the relay operates, contact the supplier if no contact sound is
		heard or there is any abnormal sound is generated.
	•	Check if any abnormality occurs to the power indicator and LED
		display.

5.2. Power transmission for the drive

The user must follow the steps below.

- I. Check the relevant wiring between the motor and drive:
 - U, V, W and FG must be connected to red, white, black and green wires, respectively. If the wiring is wrong, the motor operates abnormally. The earth wire FG of the motor must be connected to the grounding protection terminal of the drive.
 - The encoder of the motor is connected to the CN2 correctly.

Warning: Do not connect the power supply end (R, S, T) to the output of the servo drive (U, V, W), otherwise it may result in the damage of the servo drive.

- II. Connection for the power line of the drive: Connect the power supply to the drive. Refer to 3.1.3 for the wiring of the power supply.
- III. Power on: For the power supply of the control circuit (L1, L2) and main circuit (R, S,T), the drive shows the following when the power is turned on:

The digital inputs (DI6~DI8) of the factory setting are the CCW-limit (NL), CW-limit (PL) and emergency stop (EMGS) signals. If the digital inputs (DI6~DI8) of the factory setting are not used, the setting of the parameters PC-06~PC-08 of the digital inputs (DI) must be adjusted. Set the parameter to 0 (the function of this DI disabled) or change it to other functional definitions.

If the parameter (PD-21) showed for the status of the drive is set to the motor speed (04) when the last operation ends, the normal screen should look like:

If no text shows on the screen, check if the voltage is too low for L1 and L2.

1) When the screen shows:

Overvoltage warning:

The input voltage of the main circuit exceeds the allowable voltage or the input power supply is inaccurate.

Solution:

• Use the electricity meter to check the input voltage and adjust it to the allowable range.

2) When the screen shows:

Abnormality of the encoder:

The drive does not receive any encoder data or a data error occurs. Solution:

- Check if the wire distribution for the encoder conforms to the description.
- Check if the connector or line of the encoder is loose.
- Check if the encoder is damaged.

3) When the screen shows:

Emergency stop:

The contact of the digital input is set to emergency stop and it is not conducted. Solution:

- Make sure that the emergency stop (EMGS) signal is conducted. The default setting is DI8.
- If not using the emergency stop function, set the input to Contact b and the default PC-08 to 115. Another way is to set DI8 (which is PC-08) to other functions.
- 4) When the screen shows:

Abnormality of the CCW-limit:

The contact of the digital input is set to CCW-limit and it is not conducted. Solution:

- Make sure that the CCW-limit (NL) signal is conducted. The default setting is DI6.
- If not using the emergency stop function, set the input to Contact b and the default PC-06 to 116. Another way is to set DI6 (which is PC-06) to other functions.
- 5) When the screen shows:

RL 853

Abnormality of the CW-limit:

The contact of the digital input is set to CW-limit and it is not conducted.

Solution:

- Make sure that the CW-limit (PL) signal is conducted. The default setting is DI7.
- If not using the emergency stop function, set the input to Contact b and the default PC-07 to 117. Another way is to set DI7 (which is PC-07) to other functions.
- 6) When the screen shows:

Overcurrent warning: The output current of the drive is too high. Solution:

- Check the connection of the motor.
- Check if the lead wire or motor is shorted.

7) When the screen shows:

Low voltage warning:

The input voltage of the main circuit is too low.

The input voltage of the main circuit exceeds the allowable voltage or the input power supply is inaccurate.

Solution:

• Use the electricity meter to check the input voltage and adjust it to the allowable range.

5.3. No-load jog test

We propose the jog method to trial the motor and drive. The user does not need any extra distribution line, which is really convenient. For safety reasons, it is suggested to jog the motor at low rotation speed. As for the jog mode, the motor is set to move in constant velocity based on the set jog speed. The following is the description we provided.

<u>STEP 1</u>: Set Parameter PD-30. Enter the jog speed (unit: r/min) and press the SET key so that the drive enters JOG mode.

<u>STEP 2</u>: Press the Up key so that the motor turns clockwise. Press the "Down" key so that the motor turns counterclockwise.

<u>STEP 3</u>: Press the MODE key to exit JOG mode.

The following figure demonstrates the operation of the jog mode. Adjust the default initial value 20 rpm to 100rpm.

If there is no reaction, check the wiring for the motor UVW and encoder.

LITEON

5.4. No-load speed test

Before the no-load speed test, secure the motor base as tight as possible to prevent the danger caused by the counter force generated due to the variation in motor rotation speed.

<u>STEP1</u>: Set the control mode of the drive to the speed mode (PA-00 set to 1). Restart the machine after

alteration to update the operating mode.

Digital Input	Parameter Set value	Description for the	CN1 Pin No
		Functional Definition	
DI1	PC-01 = 101	Servo on	Pin9
DI2	PC-02 = 107	Torque limit	Pin10
DI3	PC-03 = 109	Selection of the speed	Pin34
		command	
DI4	PC-04 = 10A	Selection of the speed	Pin8
		command	
DI5	PC-05 = 102	Error reset	Pin33
DI6	PC-06 = 0	No function	Pin32
DI7	PC-07 = 0	No function	Pin31
DI8	PC-08 = 0	No function	Pin30
DI9	PC-09 = 0	No function	Pin12

STEP 2: After restart, modify the setting of the digital input DI as follows:

In the table above, the functions of the factory set values CCW-limit (DI6), CW-limit (DI7) and emergency stop (DI8) are canceled. The parameters PC-06~PC-09 are set to 0 (Disabled).

After the setting is complete, the motor must be restarted or the abnormality must be reset if any irregular signal appears for the drive. If the abnormality is reset, the DI5 pin must be conducted to eliminate the abnormality. The restart or reset is required because the factory set value includes the CCW-limit, CW-limit and emergency stop functions.

<u>STEP 3 :</u>

- 1) The user makes the digital input DI1 conducted and the servo activated (Servo On).
- 2) Open the circuit for the digital inputs DI3 (SPD0) and DI4 (SPD1). The motor operates based on the analog voltage command.
- 3) Only the digital input DI3 (SPD0) is conducted. The command of the motor rotation speed is the set value of PA-14.
- 4) Only the digital input DI4 (SPD1) is conducted. The command of the motor rotation speed is the set value of PA-15.
- 5) The digital input DI3 (SPD0) and DI4 (SPD1) are conducted simultaneously. The command of the motor rotation speed is the set value of PA-16.
- 6) Steps (3), (4) and (5) may be repeated as wish. The user may also alter the set values of PA-14~PA-16 to change the rotation speed.
- 7) To stop the drive, open the circuit for the digital input DI1 (Servo Off).

5.5. Tuning steps

5.5.1. Process of the tuning steps

5.5.2. Flowchart of the tuning steps in the semi-auto gain mode

Set PB-32 (response bandwidth of the speed loop in the auto and semi-audit gain adjustment mode). The bandwidth value is 80 (by default).

Set PB-33 to 2 (semi-auto mode, non-persistent adjustment). The adjustment starts after the the revolution speed command is entered manually.(The Jogmode or the upper controller can be used to enter the rotation speed command). LEDwill display the calculated inertia value during the process. After the adjustment is performed for a while, stop the calculation when the the inertia of the system becomes stable and save the calculated load inertia ratio toPB-35. The rigidity and bandwidth settings in PB-32 are referred to during the process of the calculation.

PB-32 is the setting of the response bandwidth for the speed loop in the auto and semi-auto gain adjustment mode:

1~50Hz: Low rigidity, low response.

51~250Hz: Intermediate rigidity, intermediate response.

251~550Hz: High rigidity, high response.

Higher value for faster response

Use the Jog mode to enter the speed command

PB-32 sets the target respond bandwidth for the speed loop.

PB-33 is set to 2.

PD-30 sets the jogspeed to enter semi-auto adjustment gain mode.

Press the "Up/ Down" key repeatedly (at least held for 2 seconds) to speed up/down the motor operation. LED displays the present calculation of the inertia value during the process. Keep pressing until the value becomes stable.

Press MODE to exit from the semi-auto gain adjustment mode.

5.5.3. Flowchart of the tuning steps in the automatic gain mode

Set PB-32 (response bandwidth of the speed loop in the auto and semi-audit gain adjustment mode). The bandwidth value is 80 (by default).

Set PB-33 to 1 (semi-auto mode, non-persistent adjustment).

The server system will calculate the load inertia every half an hour and set gain parameters automatically according to the bandwidth settings.

PB-32 is the setting of the response bandwidth for the speed loop in the auto and semi-auto gain adjustment mode:

1~50Hz: Low rigidity, low response.

51~250Hz: Intermediate rigidity, intermediate response.

251~550Hz: High rigidity, high response.

Higher value for faster response

5.5.4. Manual adjustment of gain parameters

In addition to the automatic/semi-auto adjustment mode, the user can enter the control gains for the position and speed loops manually.

Generally, precise machining needs higher rigidity and response frequency, but higher response frequency may cause mechanical resonance easily.

Therefore, the gain must be increased gradually during the tuning process and trial run must be conducted. Reduce the gain value when resonance is generated.

The tuning principles in terms of the gain are described below:

■ The proportion gain for position control (KPP,PB-20)

The KPP parameter determines the characteristic of the position loop response. The higher the numerical value, the faster the position loop response, the lower the command following and tuning errors, and the shorter the tuning duration. However, when the value is set to high, the machine may jitter.

The calculation method of the position loop response frequency is described below:

Position loop response frequency (Hz) = $\frac{KPP}{2\pi}$

■ Position feed-forward gain(PFG, PB-22)

Position feed-forward gain can increase the response when the command changes and reduce the command following error and the tuning duration.

However, vibration may occur if the set value is too high.

The proportion gain for speed control (KVP, PB-24)

The KVP parameter determines the feature of the speed loop response. The higher the value, the faster the response and the lower the command following error. However, mechanical resonance if the value is set too high. The speed loop response frequency must be 4~6times the position loop response frequency. The machine may jitter occur if both frequencies are too close.

The calculation method of the position loop response frequency is described below:

Position loop response frequency (Hz) = $\frac{KVP}{2\pi}$

The proportion gain for speed control (KVI, PB-26)
 Higher KVI is better at removing the speed steady-state error, but the machine may jigger if the value is set to high.

The suggested setting is:

KVI $\leq 1.5 \times$ speed loop response frequency

5.5.5. Relationship of the gain adjustment mode with the parameters

Gain adjustment mode	PB-33	Automatic parameter setting	User-adjusted parameter	Gain state
Manual gain adjustment	0 (Default value)	None	 PB-35 (Motor load inertia ratio) PB-20 (Position control proportion gain) PB-24 (Speed control proportion gain) PB-26 (Speed control integration compensation) PB-17 (Resonance suppression low-pass filter) PB-28 (External interference resistance gain) 	Fixed
Automatic gain adjustment (Persistent calculation of the inertia ratio)	1	PB-35 PB-20 PB-22 PB-24 PB-26 PB-17 PB-28 PB-19	PB-32 Automatic adjustment mode and responsive setting (Response level)	Persistent adjustment (Adjusted automatically every30 minutes)
Semi-auto gain adjustment (Non-persistent inertia calculation)	2	PB-35 PB-20 PB-22 PB-24 PB-26 PB-17 PB-28 PB-19	PB-32 Automatic adjustment mode and responsive setting (Response level)	Non-persistent adjustment (The user adjusts after entering the operation command.)

When the semi-auto mode (PB-33=2) is changed to the manual mode (PB-33=0), PB-20, PB-22, PB-24, PB-26, PB-17, PB-28 and PB-19 will be automatically updated to the parameters adjusted in the semi-auto mode.

5.5.6. Solutions for mechanical resonance

ISA-7X provides three sets of Notch filters for users to suppress the mechanical HF resonance.

Analyze the resonance frequency using the computer software and enter the frequency value in PB-10, PB-12 or PB-14. Try to keep the machine running repeatedly to test the effect on the resonance suppression. If the resonance remains, use PB-11, PB-13 and PB-15 to increase the filter depth.

Please note that the system will be unstable if the filter depth is excessive and the resonance won't be suppressed efficiently. In this case, it is suggested to reduce the speed bandwidth.

6. Parameters and Functions

6.1. Definitions of parameters

Definitions of parameters are grouped into four. The first letter behind the initial code of the parameter P is the group character and the two letters after the group character are parameter characters. The communication address is a 16-bit value comprised of the group character and two parameter characters. Definitions of the parameters are described below:

1	
GroupA: Basic parameters	(e.g. PA-xx)
GroupB: Gain/filter parameters	(e.g. PB-xx)
GroupC: I/O configuration parameters	(e.g. PC-xx)
GroupD: Expansion parameters	(e.g. PD-xx)
GroupG: Msc parameters	(e.g.PG-xx)
GroupH: Msc command parameters	(e.g.PH-xx)
GroupJ: Msc command parameters	(e.g.PJ-xx)
GroupL: E-cam parameters	(e.g.PL-xx)

Control mode description:

- P is the position control mode. (The position command is entered via the CN1 Port.)
- S is the speed control mode
- T is the torque control mode

Description of the special symbols behind the parameter code:

- (R-only) This is a read-only register for the state value, e.g. PD-15, PD-16 etc.
- (S-off) Setting is possible only when Servo Off is set to Off, e.g. PA-01, PA-02 etc.
- (Re-on) The parameter is valid only after reboot, e.g. PA-00 and PD-00 etc.
- (N-keep) This parameter does not memorize the property value of the setting when power is turned off, e.g. PD-06 and PD-20 etc.

6.2. Parameters overview

6.2.1. Parameter list

D			T •/• T T	* * •/		Cont	t <mark>rol m</mark> o	de	
Parameter	Abbr.	Function	Initial value	Unit	Р	S	Т	Msc	Remark
PA-00	CTLM	Setting for the input source of the control mode and command	000h	-	0	0	0	0	(S-off) (Re-on)
PA-01	CMPT	Setting for the input format of the external pulse train	0002h	-	0			0	(S-off)
PA-02	STL	The setting for the speed and torque limit	00h	-	0	0	0	0	(S-off)
PA-03	ITQ1	Internal Torque Limit 1/Internal Torque Command 1	100	%	0	Ο	0	0	
PA-04	ITQ2	Internal Torque Limit 2/Internal Torque Command 2	100	%	0	0	0	0	
PA-05	ITQ3	Internal Torque Limit 3/Internal Torque Command 3	100	%	0	Ο	0	0	
PA-06	EOUT	The setting for the detector output of the pulse value	8192	pulse/rev	0	0	0	0	(S-off)
PA-07	MSPL	Maximum speed limit	Based on the model	r/min	0	0	0	0	(S-off)
PA-08	PCLR	Pulse cleaning mode	00h	-	0			0	(S-off)
PA-09	GRM1	Numerator of the Electronic Gear Ratio (N1)	1	pulse	0			0	
PA-10	GRD	Denominator of the Electronic Gear Ratio (M)	1	pulse	0			0	(S-off)
PA-11	GRM2	Numerator of the Electronic Gear Ratio (N2)	1	pulse	0			0	
PA-12	GRM3	Numerator of the Electronic Gear Ratio (N3)	1	pulse	0			0	
PA-13	GRM4	Numerator of the Electronic Gear Ratio (N4)	1	pulse	0			0	
PA-14	ISP1	Internal Speed Command 1/Internal Speed Limit 1	Based on the model	0.1 r/min		Ο	0		
PA-15	ISP2	Internal Speed Command 2/Internal Speed Limit 2	Based on the model	0.1 r/min		0	0		
PA-16	ISP3	Internal Speed Command 3/Internal Speed Limit 3	Based on the model	0.1 r/min		0	0		
PA-17	CVM	The maximum rotation speed of the analog speed command	Based on the model	r/min		0	0		(S-off)
PA-18	СТМ	The limited maximum output of the analog torque	100	%	0	0	0	0	(S-off)
PA-19			-	-	-	-	-	-	
PA-20	INP	Confirmation of the range when the position is reached	10400	pulse	0			0	
PA-21	ATL	Response level for automatic negotiation	20	-	0	0		0	
PB-00	SFIL	The acceleration-deceleration smoothing constant of the analog speed command	0	ms		0			

	Abba	Erro Alton	T	TT		Domonia			
Parameter	Abbr.	Function	Initial value	Unit	Р	S	Т	Msc	Remark
PB-01	TFIL	Smoothing constant of the analog torque command	0	ms			0		
PB-02	PFIL	Constant of the low-pass filtering for the position command	0	10 ms	0			0	
PB-03	STAC	Acceleration constant of the smooth S- curve	200	ms		0			
PB-04	STDC	Deceleration constant of the smooth S- curve	200	ms		0			
PB-05	STL	Smooth constant of the smooth S-curve	0	ms		0			
PB-06	MFIL	The constant of the linear filtering for the analog speed command	0	0.1 ms		0			
PB-07	FRCL	Ratio of friction compensation	0	%	0	0		0	(S-off)
PB-08	FRCT	Smooth constant of friction compensation	0	ms	0	0		0	(S-off)
PB-09	PFLT2	The constant of the linear filtering for the position command	0	ms	0			0	(S-off)
PB-10	NCF1	Notch filter for resonance suppression (1)	1000	Hz	0	0	0	0	
PB-11	NCD1	Notch filter for the attenuation rate of the resonance suppression (1)	0	dB	0	0	0	0	
PB-12	NCF2	Notch filter for resonance suppression (2)	1000	Hz	0	0	0	0	
PB-13	NCD2	Notch filter for the attenuation rate of the resonance suppression (2)	0	dB	0	0	0	0	
PB-14	NCF3	Notch filter for resonance suppression (3)	1000	Hz	0	0	0	0	
PB-15	NCD3	Notch filter for the attenuation rate of the resonance suppression (3)	0	dB	0	0	0	Ο	
PB-16	NCFA	Setting for the suppression mode of auto- resonance	0	-	0	0	0	Ο	
PB-17	NCLA	The setting for the sensitivity suppression of auto-resonance	100	%	0	0	0	Ο	
PB-18	NLP	The low-pass filtering for resonance suppression	9	0.1 ms	0	0	0	0	
PB-19	SCJT	The filter bandwidth for the speed detection	2500	Hz	0	0	0	0	
PB-20	KPP	The gain of the position control	125	rad/s	0			0	
PB-21	PGR	Ratio for the gain variation of the position control	100	%	0			0	
PB-22	PFG	The feed forward gain for the position control	50	%	0			О	
PB-23	PFC	The smooth constant of the feed forward gain for the position control	5	ms	0			0	
PB-24	KVP	The proportional gain for speed control	502	rad/s	0	0	0	0	
PB-25	SPR	The ratio for the gain variation of the speed control	100	%	0	0	0	Ο	
PB-26	KVI	The integral compensation for the speed control	50	rad/s	0	0	0	Ο	
PB-27	KVF	The feed forward gain for the speed control	0	%	0	0	0	Ο	

Da	A 1-1	Darm ett om	T	TT *4		Cont	rol mo	de	Damasıla
Parameter	ADDr.	Function	Initial value	Umt	Р	S	Т	Msc	кешагк
PB-28	DSG	The resistance gain for the external interference	50	rad/s	0	0	0	0	
PB-29	GCM	Condition of the gain switch and the selection for the switch method	10	-	0	0	0	0	
PB-30	GCT	The time constant for the gain switch	1	10 ms	0	0	0	0	
PB-31	GCC	The condition of the gain switch	0	Pulse, Kpps, r/min	0	0	0	0	
PB-32	AUTB	The setting for the response bandwidth of the speed loop in the automatic and semi- automatic modes	80	Hz	0	0	0	О	
PB-33	AUTM	The method for gain adjustment	0	-	0	0	0	Ο	(S-off) (N- keep)
PB-34			-	-	-	-	-	-	
PB-35	GSI	The ratio of load inertia to servo motor inertia	0	0.1 times	0	0	0	0	
PB-36	VSF1	Frequency for the vibration suppression of low frequency (1)	1000	0.1 Hz	0			0	
PB-37	VSG1	Gain for the vibration suppression of low frequency (1)	0	-	0			Ο	
PB-38	VSF2	Frequency for the vibration suppression of low frequency (2)	1000	0.1 Hz	0			Ο	
PB-39	VSG2	Gain for the vibration suppression of low frequency (2)	0	-	0			Ο	
PB-40	KPI	The integral compensation of the position	0	Hz	0	0	0	0	
PB-41	JSL	The level for the stability determination of inertia estimation	15	0.1 times	0	0	0	Ο	
PB-42	AVSM		0	-	0			0	(N-keep)
PB-43	VCL		500	pulse	0			0	
PB-44	NCBW1		50	%	0	0	0	0	
PB-45	NCBW2		50	%	0	0	0	0	
PB-46	NCBW3		50	%	0	0	0	0	
PC-00	DIRT	The time for response filtering of the digital input	2	2 ms	0	0	0	0	
PC-01	DI1	The function planning for Pin DI1 of the digital input	Based on the control model	-	0	0	0	0	
PC-02	DI2	Function planning for Pin DI2 of the digital input	Based on the control model	-	0	0	0	0	
PC-03	DI3	Function planning for Pin DI3 of the digital input	Based on the control model	-	0	0	0	0	
PC-04	DI4	Function planning for Pin DI4 of the digital input	Based on the control model	-	0	0	0	0	

		T (1	T 1/1 1 1	T T •4	Cont			itrol mode			
Parameter	Abbr.	Function	Initial value	Unit	Р	S	Т	Msc	Remark		
PC-05	DI5	The function planning for Pin DI5 of the digital input	Based on the control model	-	0	о	0	0			
PC-06	DI6	The function planning for Pin DI6 of the digital input	Based on the control model	-	0	0	0	О			
PC-07	DI7	The function planning for Pin DI7 of the digital input	Based on the control model	-	0	0	0	0			
PC-08	DI8	The function planning for Pin DI8 of the digital input	Based on the control model	-	0	0	0	0			
PC-09	DI9	The function planning for Pin DI9 of the digital input	Based on the control model	-	0	0	0	0			
PC-10	DO1	Function planning for Pin DO1 of the digital output	Based on the control model	-	0	0	0	0			
PC-11	DO2	Function planning for Pin DO2 of the digital output	Based on the control model	-	0	0	0	Ο			
PC-12	DO3	Function planning for Pin DO3 of the digital output	Based on the control model	-	0	0	0	0			
PC-13	DO4	Function planning for Pin DO4 of the digital output	Based on the control model	-	0	0	0	0			
PC-14	DO5	Function planning for Pin DO5 of the digital output	Based on the control model	-	0	0	0	0			
PC-15	DO6	Function planning for Pin DO6 of the digital output	Based on the control model	-	0	0	0	0			
PC-16			-	-	-	-	-	-			
PC-17			-	-	-	-	-	-			
PC-18			-	-	-	-	-	-			
PC-19			-	-	-	-	-	-			
PC-20	ZSPD	The level for zero speed detection	100	0.1 r/min	0	0	0	0	(S-off)		
PC-21	BTOD	The turn-on delay time for the electromagnetic brake	0	ms	Ο	0	Ο	Ο			
PC-22	BTCD	The turn-off delay time for the electromagnetic brake	0	ms	Ο	0	0	0			
PC-23	SPOK	The level for detection of the speed comparison	10	r/min		0					
PC-24	PUUres	Position error in analog monitoring resolution (PUU units)	10000	pulse	0	0	0	0	(S-off)		
PC-25	POL	The output level for the expected overload	0	%	0	0	0				
PD-00	ADR	The setting of the branch number	7Fh	-	0	0	0	0	(S-off) (Re-on)		
PD-01	BRT	The communication transmission rate	33h	-	0	0	0	0	(S-off)		
PD-02	PTL	The protocol	6	-	0	0	0	0	(S-off)		
PD-03	CFP	The handling of the communication error	0	-	0	0	0	0	(S-off)		

	Abba	Even et an	Tuitial value	Tin:4		Domonia			
Parameter	Abbr.	Function	Initial value	Unit	Р	S	Т	Msc	Remark
PD-04	СОТ	The setting for the communication timeout	0	sec	0	0	0	Ο	(S-off)
PD-05			-	-	-	-	-	-	
PD-06	SWDI	Control switch for the source of the input contact (DI)	0	-	0	0	0	0	(N-keep)
PD-07	CDT	The time for the delay of the communication response	0	1 ms	0	0	0	Ο	
PD-08			-	-	-	-	-	-	
PD-09			-	-	-	-	-	-	
PD-10			-	-	-	-	-	-	
PD-11	VER	The firmware version	The factory setting	-	0	0	0	0	(R-only)
PD-12			The factory setting	-	0	0	0	Ο	(R-only)
PD-13			-	-	-	-	-	-	
PD-14			-	-	-	-	-	-	
PD-15	MON1	Display for Status Monitoring Register 1	-	-	0	0	0	Ο	(R-only) (N-keep)
PD-16	MON2	Display for Status Monitoring Register 2	-	-	0	0	0	Ο	(R-only) (N-keep)
PD-17	MON3	Display for Status Monitoring Register 3	-	-	0	0	0	Ο	(R-only) (N-keep)
PD-18	MON4	Display for Status Monitoring Register 4	-	-	0	0	0	0	(R-only) (N-keep)
PD-19	MON5	Display for Status Monitoring Register 5	-	-	0	0	0	0	(R-only) (N-keep)
PD-20	ALD	The display for the error status of the drive	-	-	0	0	0	0	(N-keep)
PD-21	SSD	Display for the status of the drive	0	-	0	0	0	0	1
PD-22	VMON	The analog output monitoring	01h	-	0	0	0	0	
PD-23	CM1	The selection for the content of the display for Status Monitoring Register 1	0	-	0	0	0	0	(S-off)
PD-24	CM2	The selection for the content of the display for Status Monitoring Register 2	0	-	0	0	0	Ο	(S-off)
PD-25	CM3	The selection for the content of the display for Status Monitoring Register 3	0	-	О	О	0	0	(S-off)
PD-26	CM4	The selection for the content of the display for Status Monitoring Register 4	0	-	0	0	0	Ο	(S-off)
PD-27	CM5	The selection for the content of the display for Status Monitoring Register 5	0	-	О	О	0	0	(S-off)
PD-28	VMR1	The ratio for MON1 analog monitoring output	100	%	0	0	0	Ο	(S-off)
PD-29	VMR2	The ratio for MON2 analog monitoring output	100	%	0	0	0	О	(S-off)
PD-30	JOG	The jog control of the servo motor	20	r/min	0	0	0	0	<u> </u>
PD-31	FDO	The status and setting of the digital output	Based on the control model	-	0	0	0	0	(S-off) (N-keep)

		The sector of	T. 41.1 .1 .	T T . •4		Cont	rol mo	de	Doursel
Parameter	Abbr.	Function	Initial value	Unit	Р	S	Т	Msc	- Remark
PD-32	DISF	The status and setting of the digital input	Based on the control	_	0	0	0	0	(N-keep)
PD-33	ALH1	Record of the Abnormal Status (N)	0	-	0	0	0	0	(R-only)
PD-34	ALH2	The record of the abnormal condition (N-1)	0	-	0	0	0	О	(R-only)
PD-35	ALH3	The record of the abnormal condition (N-2)	0	_	0	0	0	О	(R-only)
PD-36	ALH4	The record of the abnormal condition (N-3)	0	_	0	0	0	Ο	(R-only)
PD-37	ALH5	The record of the abnormal condition (N- 4)	0	-	0	0	0	0	(R-only)
PD-38			-	-	-	-	-	-	
PD-39	AOUT	The setting for the polarity of the pulse output for the detector	0	mV	0	0	0	О	
PD-40	РСМ	The status monitoring register (for PC software)	0	mV	0	0	0	О	
PD-41	PCMS	The content selection of the status monitoring register (for PC software)	0	-	0	0	0	0	
PD-42	MSTP	The function of the motor stop mode	00h	-	0	0	0	0	(S-off)
PD-43	TSPD	The level for the detection of the target rotation speed	Based on the model	r/min	0	0	0	О	
PD-44	RegMisc1	The write-in of the special parameter	0000h	-	Ο	0	0	0	(S-off) (N-keep)
PD-45	RES	The value of the regenerative resistor	Based on the model	ohm	0	0	0	0	(S-off)
PD-46	RESC	The capacity of the regenerative resistor	Based on the model	watt	0	0	0	0	(S-off)
PD-47	CRSR	The collision protection for the motor (torque percentage)	0	%	Ο	0	0	Ο	
PD-48	CRST	The collision protection for the motor (protection time)	1	ms	Ο	0	0	Ο	
PD-49	EXREG	The selection of the external braking unit	0	-	0	0	0	0	
PD-50	AUTS	The status of inertia adjustment in the semi-auto mode	0	-	0	0	0	0	(S-off) (N-keep)
PD-51	INH	The auxiliary function	-	-	-	-	-	-	
PD-52	PLOSS	The detection of the input phase failure	0	-	0	0	0	0	
PD-53	OSPW	The condition for the overspeed warning	Based on the model	rpm	0	0	0	0	
PD-54	PCF	The condition for giving warnings of the excessive error regarding the position control	6400000	pulse	0			Ο	
PD-55	LVF	The level for the error of the low voltage	160	Vrms	0	0	0	0	
PD-56	ENCType	Encoder type setting	0	-	0	0	0	0	(Re-on)
PD-57	INFOS	Message reading selection	0	-	0	0	0	0	
PD-58	ABSRST	Absolute position reset	000h	-	0	0	0	0	(N-keep)
PD-59	AENCSTS	Absolute coordinate system status	00h	-	0	0	0	0	(R-only) (N-keep)

D	A b b	Function	Initial value	TIn:4		Domoniz			
Parameter	Abbr.	Function	Initial value	Unit	Р	S	Т	Msc	кетагк
PD-60	APREV	Encoder absolute position - number of turns	0	rev	0	0	0	0	(R-only) (N-keep)
PD-61	APREV	Encoder absolute position –Single turn pulse number or PUU	0	pulse / PUU	0	0	0	0	(R-only) (N-keep)
PD-62	ZPWID	Z phase width adjustment	1	100 us	0	0	0	0	
PG-00	HmCtrl	Home position return main function setting	Oh	-				0	
PG-01	HmHSpd	Return-to-origin high speed	7000	0.1 r/min				0	
PG-02	HmLSpd	Return-to-origin low speed	1000	0.1 r/min				0	
PG-03	HmHAcc	Return-to-origin high speed acceleration time	100	1 ms				0	
PG-04	HmHDec	Return-to-origin high-speed deceleration time	100	1 ms				0	
PG-05	HmLAcc	Return-to-origin low-speed acceleration time	100	1 ms				0	
PG-06	HmLDec	Return-to-origin low-speed deceleration time	100	1 ms				0	
PG-07	ZpCount	Return-to-origin to find Z times	-1	-				0	
PG-08	HmDef	Return-to-origin to origin definition	0	pulse				0	
PG-09	OrgEnc	Return-to-origin to complete the origin encoder reading	Oh	pulse				0	(R-only)
PG-10	PNLDec	Deceleration time of return-to-origin limit return	10	1 ms				0	
PG-11	SWTrig	Msc software startup trigger	0	-				0	(N-keep)
PG-12	AcDe00	Msc acceleration and deceleration time data group 01	1	1 ms				0	
PG-13	AcDe01	Msc acceleration and deceleration time data group 02	2	1 ms				0	
PG-14	AcDe02	Msc acceleration and deceleration time data group 03	4	1 ms				0	
PG-15	AcDe03	Msc acceleration and deceleration time data group 04	6	1 ms				0	
PG-16	AcDe04	Msc acceleration and deceleration time data group 05	8	1 ms				0	
PG-17	AcDe05	Msc acceleration and deceleration time data group 06	10	1 ms				0	
PG-18	AcDe06	Msc acceleration and deceleration time data group 07	20	1 ms				0	
PG-19	AcDe07	Msc acceleration and deceleration time data group 08	40	1 ms				0	
PG-20	AcDe08	Msc acceleration and deceleration time data group 09	60	1 ms				0	
PG-21	AcDe09	Msc acceleration and deceleration time data group 10	80	1 ms				0	
PG-22	AcDe0A	Msc acceleration and deceleration time data group 11	100	1 ms				0	
PG-23	AcDe0B	Msc acceleration and deceleration time data group 12	200	1 ms				0	
PG-24	AcDe0C	Msc acceleration and deceleration time data group 13	400	1 ms				0	
PG-25	AcDe0D	Msc acceleration and deceleration time data group 14	600	1 ms				0	

D				T T •/		Cont	t <mark>rol m</mark> o	de	Domesi
Parameter	Abbr.	Function	Initial value	Unit	Р	S	Т	Msc	Remark
PG-26	AcDe0E	Msc acceleration and deceleration time	800	1 ms				0	
PG-27	AcDe0F	Msc acceleration and deceleration time data group 16	1000	1 ms				0	
PG-28	Dely00	Msc delay time data group 01	0	1 ms				0	
PG-29	Dely01	Msc delay time data group 02	5	1 ms				0	
PG-30	Dely02	Msc delay time data group 03	10	1 ms				0	
PG-31	Dely03	Msc delay time data group 04	20	1 ms				0	
PG-32	Dely04	Msc delay time data group 05	30	1 ms				0	
PG-33	Dely05	Msc delay time data group 06	50	1 ms				0	
PG-34	Dely06	Msc delay time data group 07	70	1 ms				0	
PG-35	Dely07	Msc delay time data group 08	100	1 ms				0	
PG-36	Dely08	Msc delay time data group 09	200	1 ms				0	
PG-37	Dely09	Msc delay time data group 10	300	1 ms				0	
PG-38	Dely0A	Msc delay time data group 11	500	1 ms				0	
PG-39	Dely0B	Msc delay time data group 12	700	1 ms				0	
PG-40	Dely0C	Msc delay time data group 13	1000	1 ms				0	
PG-41	Dely0D	Msc delay time data group 14	2000	1 ms				0	
PG-42	Dely0E	Msc delay time data group 15	3000	1 ms				0	
PG-43	Dely0F	Msc delay time data group 16	5000	1 ms	-			0	
PG-44	Sped00	Msc target speed data group 01	1	0.1 r/min				0	
PG-45	Sped01	Msc target speed data group 02	10	0.1 r/min	-			0	
PG-46	Sped02	Msc target speed data group 03	30	0.1 r/min				0	
PG-47	Sped03	Msc target speed data group 04	50	0.1 r/min				0	
PG-48	Sped04	Msc target speed data group 05	70	0.1 r/min				0	
PG-49	Sped05	Msc target speed data group 06	100	0.1 r/min				0	
PG-50	Sped06	Msc target speed data group 07	300	0.1 r/min				0	
PG-51	Sped07	Msc target speed data group 08	500	0.1 r/min				0	
PG-52	Sped08	Msc target speed data group 09	700	0.1 r/min				0	
PG-53	Sped09	Msc target speed data group 10	1000	0.1 r/min				0	
PG-54	Sped0A	Msc target speed data group 11	3000	0.1 r/min				0	
PG-55	Sped0B	Msc target speed data group 12	5000	0.1 r/min				0	
PG-56	Sped0C	Msc target speed data group 13	7000	0.1 r/min				0	
PG-57	Sped0D	Msc target speed data group 14	10000	0.1 r/min				0	
PG-58	Sped0E	Msc target speed data group 15	20000	0.1 r/min				0	
PG-59	Sped0F	Msc target speed data group 16	30000	0.1 r/min				0	
PG-60	ExIsr	Msc program interrupt settings	Oh	-				0	
PG-61	DiNo01	Msc command selector - DI number 01	1	-				0	
PG-62	DiNo02	Msc command selector - DI number 02	2	-				0	
PG-63	DiNo03	Msc command selector - DI number 03	3	-				0	
PG-64	DiNo04	Msc command selector - DI number 04	4	-				0	
PG-65	DiNo05	Msc command selector - DI number 05	5	-				0	
PG-66	DiNo06	Msc command selector - DI number 06	6	-				0	
PG-67	DiNo07	Msc command selector - DI number 07	7	-				0	
PG-68	DiNo08	Msc command selector - DI number 08	8	-				0	
PG-69	DiNo09	Msc command selector - DI number 09	9	-				0	
PG-70	DiNo0A	Msc command selector - DI number 10	10	-				0	

D (T (1	T •/• T •	₩ ₹ •/		Cont	t rol m o	de	
Parameter	Abbr.	Function	Initial value	Unit	Р	S	Т	Msc	Remark
PG-71	DiNo0B	Msc command selector - DI number 11	11	-				0	
PG-72	DiNo0C	Msc command selector - DI number 12	12	-				0	
PG-73	DiNo0D	Msc command selector - DI number 13	13	-				0	
PG-74	DiNo0E	Msc command selector - DI number 14	14	-				0	
PG-75	DiNo0F	Msc command selector - DI number 15	15	-				0	
PG-76	DiEv01	Msc command trigger - Di-Ev1	0	-				0	
PG-77	DiEv02	Msc command trigger - Di-Ev2	0	-				0	
PG-78	DiEv03	Msc command trigger - Di-Ev3	0	-				0	
PG-79	DiEv04	Msc command trigger - Di-Ev4	0	-				0	
PG-80	InxStrok	Msc indexing total stroke	109	PUU				0	
PG-81	FrqRat	Msc mode pulse wave frequency analogy rate denominator	107	PUU				0	
PG-82	1stAbsLat	Position coordinate monitoring parameters when Msc starts	0	PUU				0	(R-only) (N-keep)
PG-83	AbsCrd	Msc current position coordinate monitoring parameters	0	PUU				0	(R-only) (N-keep)
PG-84	1stInxLat	Indexing coordinate monitoring parameters when Msc starts	0	PUU				0	(R-only) (N-keep)
PG-85	InxCrdPuu	Msc current indexing coordinate monitoring parameters	0	PUU				Ο	(R-only) (N-keep)
PG-86	AbsOrgDo ne	Multi-turn absolute motor origin return state	Oh	-				0	(R-only)
PH-00	MscSet01	Msc command 01 set value	Oh	-				0	
PH-01	MscDat01	Msc command 01 data value	0	-				0	
PH-02	MscSet02	Msc command 02 set value	Oh	-				0	
PH-03	MscDat02	Msc command 02 data value	0	_				0	
PH-04	MscSet03	Msc command 03 set value	Oh	-				0	
PH-05	MscDat03	Msc command 03 data value	0	-				0	
PH-06	MscSet04	Msc command 04 set value	Oh	-				0	
PH-07	MscDat04	Msc command 04 data value	0	-				0	
PH-08	MscSet05	Msc command 05 set value	Oh	-				0	
PH-09	MscDat05	Msc command 05 data value	0	-				0	
PH-10	MscSet06	Msc command 06 set value	Oh	-				0	
PH-11	MscDat06	Msc command 06 data value	0	-				0	
PH-12	MscSet07	Msc command 07 set value	Oh	-				0	
PH-13	MscDat07	Msc command 07 data value	0	-				0	
PH-14	MscSet08	Msc command 08 set value	Oh	-				0	
PH-15	MscDat08	Msc command 08 data value	0	-				0	
PH-16	MscSet09	Msc command 09 set value	Oh	-				0	
PH-17	MscDat09	Msc command 09 data value	0	-				0	
PH-18	MscSet10	Msc command 10 set value	Oh	-				0	
PH-19	MscDat10	Msc command 10 data value	0	-				0	
PH-20	MscSet11	Msc command 11 set value	Oh	-				0	
PH-21	MscDat11	Msc command 11 data value	0	-				0	
PH-22	MscSet12	Msc command 12 set value	Oh	-				0	
PH-23	MscDat12	Msc command 12 data value	0	-				0	
PH-24	MscSet13	Msc command 13 set value	Oh	-				0	

-					Control			de	-
Parameter	Abbr.	Function	Initial value	Unit	Р	S	Т	Msc	Remark
PH-25	MscDat13	Msc command 13 data value	0	-				0	
PH-26	MscSet14	Msc command 14 set value	Oh	-				0	
PH-27	MscDat14	Msc command 14 data value	0	-				0	
PH-28	MscSet15	Msc command 15 set value	Oh	-				0	
PH-29	MscDat15	Msc command 15 data value	0	-				0	
PH-30	MscSet16	Msc command 16 set value	Oh	-				0	
PH-31	MscDat16	Msc command 16 data value	0	-				0	
PH-32	MscSet17	Msc command 17 set value	Oh	-				0	
PH-33	MscDat17	Msc command 17 data value	0	-				0	
PH-34	MscSet18	Msc command 18 set value	Oh	-				0	
PH-35	MscDat18	Msc command 18 data value	0	-				0	
PH-36	MscSet19	Msc command 19 set value	Oh	-				0	
PH-37	MscDat19	Msc command 19 data value	0	-				0	
PH-38	MscSet20	Msc command 20 set value	Oh	-				0	
PH-39	MscDat20	Msc command 20 data value	0	-				0	
PH-40	MscSet21	Msc command 21 set value	Oh	-				0	
PH-41	MscDat21	Msc command 21 data value	0	-				0	
PH-42	MscSet22	Msc command 22 set value	Oh	-				0	
PH-43	MscDat22	Msc command 22 data value	0	-				0	
PH-44	MscSet23	Msc command 23 set value	Oh	-				0	
PH-45	MscDat23	Msc command 23 data value	0	-				0	
PH-46	MscSet24	Msc command 24 set value	Oh	-				0	
PH-47	MscDat24	Msc command 24 data value	0	-				0	
PH-48	MscSet25	Msc command 25 set value	Oh	-				0	
PH-49	MscDat25	Msc command 25 data value	0	-				0	
PH-50	MscSet26	Msc command 26 set value	Oh	-				0	
PH-51	MscDat26	Msc command 26 data value	0	-				0	
PH-52	MscSet27	Msc command 27 set value	Oh	-				0	
PH-53	MscDat27	Msc command 27 data value	0	-				0	
PH-54	MscSet28	Msc command 28 set value	Oh	-				0	
PH-55	MscDat28	Msc command 28 data value	0	-				0	
PH-56	MscSet29	Msc command 29 set value	Oh	-				0	
PH-57	MscDat29	Msc command 29 data value	0	-				0	
PH-58	MscSet30	Msc command 30 set value	Oh	-				0	
PH-59	MscDat30	Msc command 30 data value	0	-				0	
PH-60	MscSet31	Msc command 31 set value	Oh	-				0	
PH-61	MscDat31	Msc command 31 data value	0	-				0	
PH-62	MscSet32	Msc command 32 set value	Oh	-				0	
PH-63	MscDat32	Msc command 32 data value	0	-				0	
PH-64	MscSet33	Msc command 33 set value	Oh	-				0	
PH-65	MscDat33	Msc command 33 data value	0	-				0	
PH-66	MscSet34	Msc command 34 set value	Oh	-				0	
PH-67	MscDat34	Msc command 34 data value	0	-				0	
PH-68	MscSet35	Msc command 35 set value	Oh	-				0	
PH-69	MscDat35	Msc command 35 data value	0	-				0	
PH-70	MscSet36	Msc command 36 set value	Oh	-				0	

-					Control n		rol mo	de		
Parameter	Abbr.	Function	Initial value	Unit	Р	S	Т	Msc	Remark	
PH-71	MscDat36	Msc command 36 data value	0	-				0		
PH-72	MscSet37	Msc command 37 set value	Oh	-				0		
PH-73	MscDat37	Msc command 37 data value	0	-				0		
PH-74	MscSet38	Msc command 38 set value	Oh	-				0		
PH-75	MscDat38	Msc command 38 data value	0	-				0		
PH-76	MscSet39	Msc command 39 set value	Oh	-				0		
PH-77	MscDat39	Msc command 39 data value	0	-				0		
PH-78	MscSet40	Msc command 40 set value	Oh	-				0		
PH-79	MscDat40	Msc command 40 data value	0	-				0		
PH-80	MscSet41	Msc command 41 set value	Oh	-				0		
PH-81	MscDat41	Msc command 41 data value	0	-				0		
PH-82	MscSet42	Msc command 42 set value	Oh	-				0		
PH-83	MscDat42	Msc command 42 data value	0	-				0		
PH-84	MscSet43	Msc command 43 set value	Oh	-				0		
PH-85	MscDat43	Msc command 43 data value	0	-				0		
PH-86	MscSet44	Msc command 44 set value	Oh	-				0		
PH-87	MscDat44	Msc command 44 data value	0	-				0		
PH-88	MscSet45	Msc command 45 set value	Oh	-				0		
PH-89	MscDat45	Msc command 45 data value	0	-				0		
PH-90	MscSet46	Msc command 46 set value	Oh	-				0		
PH-91	MscDat46	Msc command 46 data value	0	-				0		
PH-92	MscSet47	Msc command 47 set value	Oh	-				0		
PH-93	MscDat47	Msc command 47 data value	0	-				0		
PH-94	MscSet48	Msc command 48 set value	Oh	-				0		
PH-95	MscDat48	Msc command 48 data value	0	-				0		
PH-96	MscSet49	Msc command 49 set value	Oh	-				0		
PH-97	MscDat49	Msc command 49 data value	0	-				0		
PH-98	MscSet50	Msc command 50 set value	Oh	-				0		
PH-99	MscDat50	Msc command 50 data value	0	-				0		
PJ-00	MscSet51	Msc command 51 set value	Oh	-				0		
PJ-01	MscDat51	Msc command 51 data value	0	-				0		
PJ-02	MscSet52	Msc command 52 set value	Oh	-				0		
PJ-03	MscDat52	Msc command 52 data value	0	-				0		
PJ-04	MscSet53	Msc command 53 set value	Oh	-				0		
PJ-05	MscDat53	Msc command 53 data value	0	-				0		
PJ-06	MscSet54	Msc command 54 set value	Oh	-				0		
PJ-07	MscDat54	Msc command 54 data value	0	-				0		
PJ-08	MscSet55	Msc command 55 set value	Oh	-				0		
PJ-09	MscDat55	Msc command 55 data value	0	-				0		
PJ-10	MscSet56	Msc command 56 set value	Oh	-				0		
PJ-11	MscDat56	Msc command 56 data value	0	-				0		
PJ-12	MscSet57	Msc command 57 setting	Oh	-				0		
PJ-13	MscDat57	Msc command 57 data value	0	-				0		
PJ-14	MscSet58	Msc command 58 set value	Oh	-				0		
PJ-15	MscDat58	Msc command 58 data value	0	-				0		
PJ-16	MscSet59	Msc command 59 set value	Oh	-				0		

-				TT	Control mode				
Parameter	Abbr.	Function	Initial value	Unit	Р	S	Т	Msc	Remark
PJ-17	MscDat59	Msc command 59 data value	0	-				0	
PJ-18	MscSet60	Msc command 60 set value	Oh	-				0	
PJ-19	MscDat60	Msc command 60 data value	0	-				0	
PJ-20	MscSet61	Msc command 61 set value	Oh	-				0	
PJ-21	MscDat61	Msc command 61 data value	0	-				0	
PJ-22	MscSet62	Msc command 62 set value	Oh	-				0	
PJ-23	MscDat62	Msc command 62 data value	0	-				0	
PJ-24	MscSet63	Msc command 63 set value	Oh	-				0	
PJ-25	MscDat63	Msc command 63 data value	0	-				0	
PJ-26	MscSet64	Msc command 64 set value	Oh	-				0	
PJ-27	MscDat64	Msc command 64 data value	0	-				0	
PJ-28	MscSet65	Msc command 65 set value	Oh	-				0	
PJ-29	MscDat65	Msc command 65 data value	0	-				0	
PJ-30	MscSet66	Msc command 66 set value	Oh	-				0	
PJ-31	MscDat66	Msc command 66 data value	0	-				0	
PJ-32	MscSet67	Msc command 67 set value	Oh	-				0	
PJ-33	MscDat67	Msc command 67 data value	0	-				0	
PJ-34	MscSet68	Msc command 68 set value	Oh	-				0	
PJ-35	MscDat68	Msc command 68 data value	0	-				0	
PL-00	CamCtrl	Electronic cam main function setting	Oh	-				0	
PL-01	CamSpd	Virtual master axis command – speed command	0	0.1 r/min				0	
PL-02	CamPos	Virtual master axis command – position command	0	pulse				0	
PL-03	CamAcc	Virtual master axis command acceleration time	50	ms				0	
PL-04	CamDec	Virtual master axis command deceleration time	50	ms				0	
PL-05	CamBlk	Main axis command mask amount	0	pulse				0	
PL-06	CamRes	Active shaft single turn resolution	1000	pulse				0	
PL-07	CamCyl	When the drive shaft turns one week, Number of rotations of the driven shaft	1	rev				0	
PL-08	CamPhs	Spindle phase angle adjustment	0	0.1 deg				0	
PL-09	CamOfs	Cam curve table offset	0	pulse				0	
PL-10	CamGan	Cam curve magnification	1000	0.001x				0	
PL-11	CamSec	Cam curve original data points	17	Number				0	(R-only)
PL-12	CamTyp	Cam curve output command type	1h	-				0	
PL-13	CamMaM on	Cam drive shaft analog monitor switching	Oh	-				0	
PL-14	CamSvMo n	Cam slave axis analog monitor switching	Oh	-				0	

6.2.2. Classification of the parameter function

Parameters for the monitoring and the general output setting										
						С	on	trol	Remark	
Parameter	Abbr.	Function	Initial value	Unit	l		mode			
					P	S	Т	MSC		
PD-11	VER	The firmware version	The factory setting	-	0	0	0	0	(R-only)	
PD-12	FPGAVER	FPGA firmware version	The factory setting		0	0	0	0	(R-only)	
PD-15	MON1	Display for Status Monitoring Register 1	0	-	0	0	0	0	(R-only) (N-keep)	
PD-16	MON2	Display for Status Monitoring Register 2	0	-	0	0	0	0	(R-only) (N-keep)	
PD-17	MON3	Display for Status Monitoring Register 3	0	-	0	0	0	0	(R-only) (N-keep)	
PD-18	MON4	Display for Status Monitoring Register 4	0	-	0	0	0	0	(R-only) (N-keep)	
PD-19	MON5	Display for Status Monitoring Register 5	0	-	0	0	0	0	(R-only) (N-keep)	
PD-20	ALD	The display for the error status of the drive (seven- segment display)	-	-	0	0	0	0	(N-keep)	
PD-21	SSD	Display for the status of the drive	0	-	0	0	0	0		
PD-22	VMON	The analog output monitoring	01h	-	0	0	0	0		
PD-23	CM1	The selection for the content of the display for Status Monitoring Register 1	0	-	0	0	0	0	(S-off)	
PD-24	CM2	The selection for the content of the display for Status Monitoring Register 2	0	-	0	0	0	0	(S-off)	
PD-25	CM3	The selection for the content of the display for Status Monitoring Register 3	0	-	0	0	0	0	(S-off)	
PD-26	CM4	The selection for the content of the display for Status Monitoring Register 4	0	-	0	0	0	0	(S-off)	
PD-27	CM5	The selection for the content of the display for Status Monitoring Register 5	0	-	0	0	0	0	(S-off)	
PD-28	VMR1	The ratio for MON1 analog monitoring output	100	%	0	0	0	0	(S-off)	
PD-29	VMR2	The ratio for MON2 analog monitoring output	100	%	0	0	0	0	(S-off)	

(R-only) This indicates the read-only register, which can only be used for reading status values.

(S-off) This indicates Servo Off, which can be set only when the servo is off.

(Re-on) This implies that the parameter is valid when the servo is booted again.

Parameters related to the filter smoothness and resonance suppression											
			Initial			С	on	trol	Remar k		
Parameter	Abbr.	Function	value	Unit		1	no	de			
			Value		Р	S	Т	MSC			
	SEII	The acceleration-deceleration smoothing constant of the	0	ma		0					
PD-00	SFIL	analog speed command	0	ms		U					
PB-01	TFIL	Smoothing constant of the analog torque command	0	ms			0				
PB-02	PFIL	Constant of the low-pass filtering for the position command	0	10 ms	0			0			
PB-03	STAC	The acceleration constant of the S-shaped speed curve	200	ms		0					
PB-04	STDC	The deceleration constant of the S-shaped speed curve	200	ms		0					
PB-05	STL	The smoothing constant of the S-shaped speed curve	0	ms		0					
DB 06	MEII	The constant of the linear filtering for the analog speed	0	0.1		0					
I D-00		command	0	ms		U					
PB-07	FRCL	The friction compensation	0	%	0	0		0	(S-off)		
PB-08	FRCT	The friction compensation	0	ms	0	0		0	(S-off)		
PB-09	PFLT2	The constant of the linear filtering for the position command	0	ms	0			0	(S-off)		
PB-10	NCF1	Notch filter for resonance suppression (1)	1000	Hz	0	0	0	0			
DR 11	NCD1	Notch filter for the attenuation rate of the resonance	0	dB	0	0	0	0			
I D-11	NCD1	suppression (1)	0	uD	U	U	U	0			
PB-12	NCF2	Notch filter for resonance suppression (2)	1000	Hz	0	0	0	0			
DR 13	NCD2	Notch filter for the attenuation rate of the resonance	0	dB	0	0	0	0			
I D-15	IICD2	suppression (2)	0	uD	U	0	U	0			
PB-14	NCF3	Notch filter for resonance suppression (3)	1000	Hz	0	0	0	0			
DD 15	NCD3	Notch filter for the attenuation rate of the resonance	0	٩D	0	0	0	0			
I D-15	IICD3	suppression (3)	0	uD	U	0	U	0			
PB-16	NCFA	Setting for the suppression mode of auto-resonance	0	-	0	0	0	0			
PB-17	NCLA	The setting for the sensitivity suppression of auto-resonance	100	%	0	0	0	0			
PB-18	NLP	The low-pass filtering for resonance suppression	9	0.1	0	0	0	0			
PB-19	SCJT	The filtering for the speed detection and the suppression of micro-vibration	2500	Hz	0	0	0	0			

(S-off) This indicates Servo Off, which can be set only when the servo is off.

(Re-on) This implies that the parameter is valid when the servo is booted again.

|--|

	Parameters related to gain and switch											
Parameter	Abbr.	Function	Initial	Unit		C I	on no	trol de	Remark			
			Value		P	S	Т	MSC				
PA-21	ATL	Response level for automatic negotiation	20	-	0	0		0				
PB-20	KPP	The gain of the position control	125	rad/s	0			0				
PB-21	PGR	Ratio for the gain variation of the position control	100	%	0			0				
PB-22	PFG	The feed-forward gain for location	50	%	0			0				
PB-23	PFC	The smooth constant of the feed-forward gain for the position	5	ms	0			0				
PB-24	KVP	The gain of the speed control	502	rad/s	0	0	0	0				
PB-25	SPR	The ratio for the gain variation of the speed control	100	%	0	0	0	0				
PB-26	KVI	The integral compensation of the speed	50	rad/s	0	0	0	0				
PB-27	KVF	The feed-forward gain for speed	0	%	0	0	0	0				
PB-28	DSG	The resistance gain for the external interference	50	rad/s	0	0	0	0				
PB-29	GCM	Condition of the gain switch and the selection for the switch method	10	-	0	0	0	0				
PB-30	GCT	The time constant for the gain switch	1	10 ms	0	0	0	0				
PB-31	GCC	The condition of the gain switch	0	pulse Kpps r/min	0	0	0	0				
PB-32	AUTB	The setting for the response bandwidth of the speed loop in the automatic and semi-automatic modes	80	Hz	0	0	0	0				
PB-33	AUTM	Gain adjustment mode	0	-	0	0	0	0	(S-off) (N- keep)			
PB-40	KPI	The integral compensation of the position	0	Hz	0	0	0	0				

(S-off) This indicates Servo Off, which can be set only when the servo is off.

(Re-on) This implies that the parameter is valid when the servo is booted again.

	Parameters related to the position control											
Parameter	Abbr.	Function	Initial value	Unit		C	on no	trol de	Remark			
					P	S	Т	MSC				
PA-00	CTLM	Setting for the input source of the control mode and command	000h	-	0	0	0	0	(S-off) (Re-on)			
PA-01	CMPT	The setting for the input format of the external pulse	0002h	-	0			0	(S-off)			
PA-02	STL	The setting for the speed and torque limit	00h	-	0	0	0	0	(S-off)			
PA-03	ITQ1	Internal Torque Limit 1	100	%	0	0	0	0				
PA-04	ITQ2	Internal Torque Limit 2	100	%	0	0	0	0				
PA-05	ITQ3	Internal Torque Limit 3	100	%	0	0	0	0				
PA-06	EOUT	The setting for the detector output of the pulse value	8192	pulse/rev	0	0	0	0	(S-off)			
PA-07	MSPL	Maximum speed limit	Based on model	r/min	0	0	0	0	(S-off)			
PA-09	GRM1	Numerator of the Electronic Gear Ratio (N1)	1	pulse	0			0				
PA-10	GRD	Denominator of the Electronic Gear Ratio (M)	1	pulse	0			0	(S-off)			
PA-11	GRM2	Numerator of the Electronic Gear Ratio (N2)	1	pulse	0			0				
PA-12	GRM3	Numerator of the Electronic Gear Ratio (N3)	1	pulse	0			0				
PA-13	GRM4	Numerator of the Electronic Gear Ratio (N4)	1	pulse	0			0				
PA-21	ATL	Response level for automatic negotiation	20	-	0	0		0				

(S-off) This indicates Servo Off, which can be set only when the servo is off.

(Re-on) This implies that the parameter is valid when the servo is booted again.

	Parameters related to the speed control										
Parameter	Abbr.	Function	Initial value	Unit		C	on no	trol de	Remark		
]	P	S	Т	MSC			
PA-00	CTLM	Setting for the input source of the control mode and command	000h	-	0	0	0	0	(S-off) (Re-on)		
PA-02	STL	The setting for the speed and torque limit	00h	-	0	0	0	0	(S-off)		
PA-03	ITQ1	Internal Torque Limit 1	100	%	0	0	0	0			
PA-04	ITQ2	Internal Torque Limit 2	100	%	0	0	0	0			
PA-05	ITQ3	Internal Torque Limit 3	100	%	0	0	0	0			
PA-06	EOUT	The setting for the detector output of the pulse value	8192	pulse/rev	0	0	0	0	(S-off)		
PA-07	MSPL	Maximum speed limit	Based on model	r/min	0	0	0	0	(S-off)		
PA-14	ISP1	Internal Speed Command 1	Based on model	0.1 r/min		0	0				
PA-15	ISP2	Internal Speed Command 2	Based on model	0.1 r/min		0	0				
PA-16	ISP3	Internal Speed Command 3	Based on model	0.1 r/min		0	0				
PA-17	CVM	The maximum rotation speed of the analog speed command	Based on model	r/min		0	0		(S-off)		
PA-18	CTM	The limited maximum output of the analog torque	100	%	0	0	0	0	(S-off)		
PA-21	ATL	Response level for automatic negotiation	20	-	0	0		0			

(S-off) This indicates Servo Off, which can be set only when the servo is off.

(Re-on) This implies that the parameter is valid when the servo is booted again.

	Parameters related to the torque control										
Parameter	Abbr.	Function	Initial value	Unit		C	on no	trol de	Remark		
					P	S	Т	MSC			
PA-00	CTLM	Setting for the input source of the control mode and command	000h	-	0	0	0	0	(S-off) (Re-on)		
PA-02	STL	The setting for the speed and torque limit	00h	-	0	0	0	0	(S-off)		
PA-03	ITQ1	Internal Torque Limit 1	100	%	0	0	0	0			
PA-04	ITQ2	Internal Torque Limit 2	100	%	0	0	0	0			
PA-05	ITQ3	Internal Torque Limit 3	100	%	0	0	0	0			
PA-06	EOUT	The setting for the detector output of the pulse value	8192	pulse/rev	0	0	0	0	(S-off)		
PA-07	MSPL	Maximum speed limit	Based on model	r/min	0	0	0	0	(S-off)		
PA-14	ISP1	Internal Speed Command 1	Based on model	0.1 r/min		0	0				
PA-15	ISP2	Internal Speed Command 2	Based on model	0.1 r/min		0	0				
PA-16	ISP3	Internal Speed Command 3	Based on model	0.1 r/min		0	0				
PA-17	CVM	The maximum rotation speed of the analog speed command	Based on model	r/min		0	0		(S-off)		
PA-18	CTM	The limited maximum output of the analog torque	100	%	0	0	0	0	(S-off)		

(S-off) This indicates Servo Off, which can be set only when the servo is off.

(Re-on) This implies that the parameter is valid when the servo is booted again.

		Parameters related to the MSC	control			$\overline{\alpha}$	4	1	
-						UC m	ontr	:01	
Parameter	Abbr.	Function	Initial value	Unit	D		iou T	e	Remark
					P	S	1	Msc	
PA-00	CTLM	Setting for the input source of the control	000h	-	0	0	0	0	(S-off)
		mode and command							(Re-on)
PA-01	CMPT	Setting for the input format of the external	0002h	-	0			0	(S-off)
PA-02	STL	The setting for the speed and torque limit	00h	_	0	0	0	0	(S-off)
111 02	011	Internal Torque Limit 1/Internal Torque	0011		Ŭ	0	Ŭ	0	(5 011)
PA-03	ITQ1	Command 1	100	%	0	0	0	0	
		Internal Torque Limit 2/Internal Torque							
PA-04	ITQ2	Command 2	100	%	0	0	0	0	
		Internal Torque Limit 3/Internal Torque							
PA-05	ITQ3	Command 3	100	%	0	0	0	0	
		The setting for the detector output of the pulse							
PA-06	EOUT	value	8192	pulse/rev	0	0	0	0	(S-off)
			Based on the						
PA-07	MSPL	Maximum speed limit	model	r/min	0	0	0	0	(S-off)
PA-09	GRM1	Numerator of the Electronic Gear Ratio (N1)	1	pulse	0			0	
PA-10	GRD	Denominator of the Electronic Gear Ratio (M)	1	pulse	0			0	(S-off)
PA-11	GRM2	Numerator of the Electronic Gear Ratio (N2)	1	pulse	0			0	× /
PA-12	GRM3	Numerator of the Electronic Gear Ratio (N3)	1	pulse	0			0	
PA-13	GRM4	Numerator of the Electronic Gear Ratio (N4)	1	pulse	0			0	
PA-21	ATL	Response level for automatic negotiation	20	-	0	0		0	
PG-00	HmCtrl	Home position return main function setting	0	-	-	-		0	
PG-01	HmHSpd	Return-to-origin high speed	7000	0.1 r/min				0	
PG-02	HmLSpd	Return-to-origin low speed	1000	0.1 r/min				0	
PG-03	HmHAcc	Return-to-origin high speed acceleration time	100	1 ms				0	
PG-04	HmHDec	Return-to-origin high-speed deceleration time	100	1 ms				0	
PG-05	HmLAcc	Return-to-origin low-speed acceleration time	100	1 ms				0	
PG-06	HmLDec	Return-to-origin low-speed deceleration time	100	1 ms				0	
PG-07	ZpCount	Return-to-origin to find Z times	-1	_				0	
PG-08	HmDef	Return-to-origin to origin definition	0	nulse				0	
10-00		Return to origin to complete the origin	0	puise				0	(R-
PG-09	OrgEnc	encoder reading	0	pulse				0	only)
DC 10	DNI Daa	Deceleration time of return-to-origin limit	10	1				0	
PG-10	FNLDEC	return	10	1 ms				0	
PG-11	SWTrig	Msc software startup trigger	0	_				0	(N-
1011	211118		0					U	keep)
PG-12	AcDe00	Msc acceleration and deceleration time data	1	1 ms				0	
		group 01 Msa acceleration and deceleration time data		1 mg					
PG-13	AcDe01	group 02	2	1 1115				0	
	A D 02	Msc acceleration and deceleration time data		1 ms					
PG-14	AcDe02	group 03	4					0	
PG 15	AcDe03	Msc acceleration and deceleration time data	6	1 ms				0	
10-15	100005	group 04	0					0	
PG-16	AcDe04	Msc acceleration and deceleration time data	8	1 ms				0	
		group US		1	\square				
PG-17	AcDe05	group 06	10	1 ms				0	
		1810up 00		1					

		Parameters related to the MISC control					
					C	Control	
Parameter	Abbr.	Function	Initial value	Unit	1	mode	Remark
					P S	T Msc	
DC 19	A aDa06	Msc acceleration and deceleration time data	20	1 ms			
PG-18	AcDeoo	group 07	20			0	
DC 10	$\Lambda a D a 07$	Msc acceleration and deceleration time data	40	1 ms			
PG-19	ACDe07	group 08	40			0	
DC 20	A aDa09	Msc acceleration and deceleration time data	(0)	1 ms			
PG-20	ACDEU8	group 09	00			0	
DC 21	A cDe00	Msc acceleration and deceleration time data	80	1 ms			
PG-21	AcDc0)	group 10	80			0	
PG 22	AcDe0A	Msc acceleration and deceleration time data	100	1 ms			
FU-22	Rebeom	group 11	100			0	
PG-23	A cDe0B	Msc acceleration and deceleration time data	200	1 ms		0	
10-23	TREBCOB	group 12	200			0	
PG-24	AcDeOC	Msc acceleration and deceleration time data	400	1 ms		0	
10-24	nebece	group 13	+00			0	
PG-25	AcDe0D	Msc acceleration and deceleration time data	600	1 ms		0	
10.25	THEBCOB	group 14	000			Ŭ	
PG-26	AcDe0E	Msc acceleration and deceleration time data	800	1 ms		0	
10.20	1102 002	group 15	000		\square	Ŭ	
PG-27	AcDe0F	Msc acceleration and deceleration time data	1000	1 ms		0	
10.27	1102 001	group 16	1000		\square	Ŭ	
PG-28	Dely00	Msc delay time data group 01	0	1 ms		0	
PG-29	Dely01	Msc delay time data group 02	5	1 ms		0	
PG-30	Dely02	Msc delay time data group 03	10	1 ms		0	
PG-31	Dely03	Msc delay time data group 04	20	1 ms		0	
PG-32	Delv04	Msc delay time data group 05	30	1 ms		0	
PC 22	Dely01	Msc delay time data group 06	50	1 ms			
PG-55	Dely03		50	1 1115		0	
PG-34	Dely06	Misc delay time data group 07	70	1 ms		0	
PG-35	Dely07	Msc delay time data group 08	100	1 ms		0	
PG-36	Dely08	Msc delay time data group 09	200	1 ms		0	
PG-37	Dely09	Msc delay time data group 10	300	1 ms		0	
PG-38	Dely0A	Msc delay time data group 11	500	1 ms		0	
PG-39	Delv0B	Msc delay time data group 12	700	1 ms		0	
PG 40	Delv0C	Msc delay time data group 12	1000	1 ms			
DC 41	Dely0C	Maa dalay time data group 14	1000	1 ms		0	
PG-41	DelyoD	Misc delay time data group 14	2000	1 1115		0	
PG-42	Dely0E	Msc delay time data group 15	3000	1 ms	\vdash	0	
PG-43	Dely0F	Msc delay time data group 16	5000	1 ms		0	
PG-44	Sped00	Msc target speed data group 01	1	0.1 r/min		0	
PG-45	Sped01	Msc target speed data group 02	10	0.1 r/min		0	
PG-46	Sped02	Msc target speed data group 03	30	0.1 r/min		0	
$PG_{-}47$	Sped03	Msc target speed data group 04	50	0.1 r/min		0	
DC 49	Sped04	Msc target speed data group 05	70		\vdash		
PO-48	Speu04	Masteriat speed data group 05	/0	0.1 //1111	\vdash		
PG-49	SpedUS	ivisc target speed data group 06	100	0.1 r/min	\square	0	
PG-50	Sped06	Msc target speed data group 07	300	0.1 r/min		0	
PG-51	Sped07	Msc target speed data group 08	500	0.1 r/min		O	
PG-52	Sped08	Msc target speed data group 09	700	0.1 r/min		0	
PG-53	Sped09	Msc target speed data group 10	1000	0.1 r/min	\square	0	
PG-54	Sped0A	Msc target speed data group 11	3000	0.1 r/min		0	
10.7	~P*****	under opera unun Broup 11	5000	5.1 I/IIIII			

		Parameters related to the MISC control		Control				
Doromotor	Abbr	Function	Initial value	Unit		mo	le	Domoriz
	ADDI.	runction	IIIIIIai value	Unit	P S	Т	Msc	Kennark
PG-55	Sped0B	Msc target speed data group 12	5000	0.1 r/min	- L	-		
PG-56	Sped0C	Msc target speed data group 12	7000	0.1 r/min		-	0	
PG-57	Sped0D	Msc target speed data group 14	10000	0.1 r/min			0	
PG-58	Sped0E	Msc target speed data group 15	20000	0.1 r/min			0	
PG-59	Sped0F	Msc target speed data group 16	30000	0.1 r/min			0	
PG-60	ExIsr	Msc program interrupt settings	0	-			0	
PG-61	DiNo01	Msc command selector - DI number 01	1	_			0	
PG-62	DiNo02	Msc command selector - DI number 02	2	-			0	
PG-63	DiNo03	Msc command selector - DI number 03	3	-			0	
PG-64	DiNo04	Msc command selector - DI number 04	4	-			0	
PG-65	DiNo05	Msc command selector - DI number 05	5	-			0	
PG-66	DiNo06	Msc command selector - DI number 06	6	-			0	
PG-67	DiNo07	Msc command selector - DI number 07	7	-			0	
PG-68	DiNo08	Msc command selector - DI number 08	8	-			0	
PG-69	DiNo09	Msc command selector - DI number 09	9	-			0	
PG-70	DiNo0A	Msc command selector - DI number 10	10	-			0	
PG-71	DiNo0B	Msc command selector - DI number 11	11	-			0	
PG-72	DiNo0C	Msc command selector - DI number 12	12	-			0	
PG-73	DiNo0D	Msc command selector - DI number 13	13	-			0	
PG-74	DiNo0E	Msc command selector - DI number 14	14	-			0	
PG-75	DiNo0F	Msc command selector - DI number 15	15	-		_	0	
PG-76	DiEv01	Msc command trigger - Di-Evl	0	-			0	
PG-77	DiEv02	Msc command trigger - Di-Ev2	0	-		-	0	
PG-78	DIEV03	Msc command trigger - DI-EV3	0	-		-	0	
PG-79	DIEV04	Misc command trigger - DI-EV4	0		_	+	0	
PG-80	IIIXSUOK	Misc indexing total stroke	109	PUU		-	0	
PG-81	FrqRat	denominator	107	PUU			0	
PG-82	1stAbsLat	Position coordinate monitoring parameters when Msc starts	0	PUU			0	(R- only) (N- keep)
PG-83	AbsCrd	Msc current position coordinate monitoring parameters	0	PUU			0	(R- only) (N- keep)
PG-84	1stInxLat	Indexing coordinate monitoring parameters when Msc starts	0	PUU			0	(R- only) (N- keep)
PG-85	InxCrdPuu	Msc current indexing coordinate monitoring parameters	0	PUU			0	(R- only) (N- keep)
PG-86	AbsOrgDone	Multi-turn absolute motor origin return state	0	-			0	(R- only)
PH-00	MscSet01	Msc command 01 set value	0	-			0	

Parameters related to the MSC control									
	Abbr.	Function	Initial value	Unit	Control		ntrol	Remark	
Parameter					mode		ode		
					Ρ	S [T Msc		
PH-01	MscDat01	Msc command 01 data value	0	-			0		
PH-02	MscSet02	Msc command 02 set value	0	-			0		
PH-03	MscDat02	Msc command 02 data value	0	-			0		
PH-04	MscSet03	Msc command 03 set value	0	-			0		
PH-05	MscDat03	Msc command 03 data value	0	-			0		
PH-06	MscSet04	Msc command 04 set value	0	-			0		
PH-07	MscDat04	Msc command 04 data value	0	-			0		
PH-08	MscSet05	Msc command 05 set value	0	-			0		
PH-09	MscDat05	Msc command 05 data value	0	-			0		
PH-10	MscSet06	Msc command 06 set value	0	-			0		
PH-11	MscDat06	Msc command 06 data value	0	-			0		
PH-12	MscSet07	Msc command 07 set value	0	_			0		
PH-13	MscDat07	Msc command 07 data value	0	_			0		
PH-14	MscSet08	Msc command 08 set value	0	-			0		
PH-15	MscDat08	Msc command 08 data value	0	-			0		
PH-16	MscSet09	Msc command 09 set value	0	_			0		
PH-17	MscDat09	Msc command 09 data value	0	_			0		
PH-18	MscSet10	Msc command 10 set value	0	_			0		
PH-19	MscDat10	Msc command 10 data value	0	_			0		
PH-20	MscSet11	Msc command 11 set value	0	_			0		
PH-21	MscDat11	Msc command 11 data value	0	-			0		
PH_22	MscSet12	Msc command 12 set value	0	-			0		
PH-23	MscDat12	Msc command 12 data value	0	-			0		
PH_24	MscSet13	Msc command 13 set value	0		$\left \right $		0		
PH_25	MscDat13	Msc command 13 data value	0		$\left \right $		0		
PH-26	MscSet14	Msc command 14 set value	0	-			0		
PH_27	MscDat14	Msc command 14 data value	0	_			0		
PH_28	MscSet15	Msc command 15 set value	0		$\left \right $		0		
PH_20	MscDat15	Msc command 15 data value	0		$\left \right $		0		
PH_30	MscSet16	Msc command 16 set value	0		$\left \right $		0		
DH 31	MscDat16	Msc command 16 data value	0	_	\vdash		0		
DU 22	MscSet17	Msc command 17 set value	0				0		
ГП-32 DU 22	MscDat17	Mise command 17 set value	0		$\left \right $		0		
ГП-33 DU 24	MscSet18	Mise command 17 data value	0		$\left \right $		0		
ГП-34 DII 25	MscDat18	Mise command 18 data value	0	-	\vdash	_	0		
РП-33 DII 26	MscDat10	Msc command 10 set value	0	-	\vdash		0		
PH-30	MscSet19	Mac command 19 set value	0	-	$\left \right $	_	0		
PH-37	MscDat19	Msc command 19 data value	0	-	$\left \right $	_	0		
PH-58	MacDet20	Mag command 20 data value	0	-	\square	+			
PH-39	MacEat21	Mac command 21 get value	0	-	\square	-			
PH-40	MacDet21	Mac command 21 data value	0	-	\square	+	0		
PH-41	MacDat21	Mac command 21 data Value	0	-	\square	-	0		
PH-42	MacD (22	Nisc command 22 set value	0	-	\square		0		
PH-43	MscDat22	Nisc command 22 data value	0	-		_	0		
PH-44	MscSet23	Msc command 23 set value	0	-			0		

Parameters related to the MSC control									
					(Con	ıtrol		
Parameter	Abbr.	Function	Initial value	e Unit ¹			ode	Remark	
					P S	5 1	Г Msc		
PH-45	MscDat23	Msc command 23 data value	0	-			0		
PH-46	MscSet24	Msc command 24 set value	0	-			0		
PH-47	MscDat24	Msc command 24 data value	0	-			0		
PH-48	MscSet25	Msc command 25 set value	0	-			0		
PH-49	MscDat25	Msc command 25 data value	0	-			0		
PH-50	MscSet26	Msc command 26 set value	0	-			0		
PH-51	MscDat26	Msc command 26 data value	0	-			0		
PH-52	MscSet27	Msc command 27 set value	0	-			0		
PH-53	MscDat27	Msc command 27 data value	0	-			0		
PH-54	MscSet28	Msc command 28 set value	0	-			0		
PH-55	MscDat28	Msc command 28 data value	0	-			0		
PH-56	MscSet29	Msc command 29 set value	0	-			0		
PH-57	MscDat29	Msc command 29 data value	0	-			0		
PH-58	MscSet30	Msc command 30 set value	0	-			0		
PH-59	MscDat30	Msc command 30 data value	0	-			0		
PH-60	MscSet31	Msc command 31 set value	0	-			0		
PH-61	MscDat31	Msc command 31 data value	0	-			0		
PH-62	MscSet32	Msc command 32 set value	0	-			0		
PH-63	MscDat32	Msc command 32 data value	0	-			0		
PH-64	MscSet33	Msc command 33 set value	0	-			0		
PH-65	MscDat33	Msc command 33 data value	0	-			0		
PH-66	MscSet34	Msc command 34 set value	0	-			0		
PH-67	MscDat34	Msc command 34 data value	0	-			0		
PH-68	MscSet35	Msc command 35 set value	0	-			0		
PH-69	MscDat35	Msc command 35 data value	0	-			0		
PH-70	MscSet36	Msc command 36 set value	0	-			0		
PH-71	MscDat36	Msc command 36 data value	0	-			0		
PH-72	MscSet37	Msc command 37 set value	0	-	H		0		
PH-73	MscDat37	Msc command 37 data value	0	-	H		0		
PH-74	MscSet38	Msc command 38 set value	0	-	H		0		
PH-75	MscDat38	Msc command 38 data value	0	_			0		
PH-76	MscSet39	Msc command 39 set value	0	_			0		
PH-77	MscDat39	Msc command 39 data value	0	_	\vdash		0		
PH-78	MscSet40	Msc command 40 set value	0	_	\vdash		0		
PH-79	MscDat40	Msc command 40 data value	0	_	\vdash		0		
PH-80	MscSet41	Msc command 41 set value	0	_			0		
PH_81	MscDat41	Msc command 41 data value	0	_	\vdash		0		
PH_82	MscSet42	Msc command 42 set value	0	_	\vdash	+	0		
PH-83	MscDat42	Msc command 42 data value	0	_	\vdash	+	0		
PH-8/	MscSet43	Msc command 43 set value	0	_	\vdash	+	0		
PH-85	MscDat43	Msc command 43 data value	0	_	\vdash	+	0		
PH_86	MscSet44	Msc command 44 set value	0	_	\vdash	+	0		
рц 97	MscDat44	Msc command 44 data value	0	_	\vdash	+	0		
ГП-0/ DU 00	MscSat/15	Msc command 45 set value	0	-	\vdash	+	0		
гп-ðð	115050145	wise command 45 set value	U	-			U		

LITEON

Parameters related to the MSC control									
					C	onti	rol		
Parameter	Abbr.	Function	Initial value	Unit	1	nod	le	Remark	
					P S	Т	Msc		
PH-89	MscDat45	Msc command 45 data value	0	-			0		
PH-90	MscSet46	Msc command 46 set value	0	-			0		
PH-91	MscDat46	Msc command 46 data value	0	-			0		
PH-92	MscSet47	Msc command 47 set value	0	-			0		
PH-93	MscDat47	Msc command 47 data value	0	-			0		
PH-94	MscSet48	Msc command 48 set value	0	-			0		
PH-95	MscDat48	Msc command 48 data value	0	-			0		
PH-96	MscSet49	Msc command 49 set value	0	-			0		
PH-97	MscDat49	Msc command 49 data value	0	-			0		
PH-98	MscSet50	Msc command 50 set value	0	-			0		
PH-99	MscDat50	Msc command 50 data value	0	-			0		
PJ-00	MscSet51	Msc command 51 set value	0	-			0		
PI-01	MscDat51	Msc command 51 data value	0	_			0		
PI-02	MscSet52	Msc command 52 set value	0	_			0		
PI-03	MscDat52	Msc command 52 data value	0	_			0		
DI 04	MscSet53	Msc command 53 set value	0			-	0		
DI 05	MscDat53	Msc command 53 data value	0				0		
DI 06	MscSet54	Mise command 55 data value	0				0		
PI 07	MscDat54	Mise command 54 data value	0				0		
PJ-07	MacSat55	Mac command 55 act value	0	-		_	0		
PJ-08	MscSet33	Mise command 55 data value	0	-			0		
PJ-09	MacSat56	Mise command 55 data value	0	-			0		
PJ-10	MscSet30	Max command 50 set value	0	-			0		
PJ-11	MscDat56	Mise command 50 data value	0	-			0		
PJ-12	MscSet37	Misc command 57 setting	0	-			0		
PJ-13	MscDat57	Misc command 57 data value	0	-			0		
PJ-14	MscSet58	Msc command 58 set value	0	-			0		
PJ-15	MscDat58	Msc command 58 data value	0	-			0		
PJ-16	MscSet59	Msc command 59 set value	0	-			0		
PJ-17	MscDat59	Msc command 59 data value	0	-			0		
PJ-18	MscSet60	Msc command 60 set value	0	-			0		
PJ-19	MscDat60	Msc command 60 data value	0	-			0		
PJ-20	MscSet61	Msc command 61 set value	0	-			0		
PJ-21	MscDat61	Msc command 61 data value	0	-			0		
PJ-22	MscSet62	Msc command 62 set value	0	-			0		
PJ-23	MscDat62	Msc command 62 data value	0	-			0		
PJ-24	MscSet63	Msc command 63 set value	0	-			0		
PJ-25	MscDat63	Msc command 63 data value	0	-			0		
PJ-26	MscSet64	Msc command 64 set value	0	-	$\lfloor \top$		0		
PJ-27	MscDat64	Msc command 64 data value	0	-			0		
PJ-28	MscSet65	Msc command 65 set value	0	-			0		
PJ-29	MscDat65	Msc command 65 data value	0	-			0		
PJ-30	MscSet66	Msc command 66 set value	0	-			0		
PJ-31	MscDat66	Msc command 66 data value	0	-			0		
PJ-32	MscSet67	Msc command 67 set value	0	-			0		

Parameters related to the MSC control									
					C	Con	trol		
Parameter	Abbr.	Function	Initial value	Unit	_	mode		Remark	
					P S	5 1	[Msc		
PJ-33	MscDat67	Msc command 67 data value	0	-			0		
PJ-34	MscSet68	Msc command 68 set value	0	-			0		
PJ-35	MscDat68	Msc command 68 data value	0	-			0		
PL-00	CamCtrl	Electronic cam main function setting	0	-			0		
PL-01	CamSpd	Virtual master axis command – speed command	0	0.1 r/min			0		
PL-02	CamPos	Virtual master axis command – position command	0	pulse			0		
PL-03	CamAcc	Virtual master axis command acceleration time	50	ms			0		
PL-04	CamDec	Virtual master axis command deceleration time	50	ms			0		
PL-05	CamBlk	Main axis command mask amount	0	pulse			0		
PL-06	CamRes	Active shaft single turn resolution	1000	pulse			0		
PL-07	CamCyl	When the drive shaft turns one week, Number of rotations of the driven shaft	1	rev			0		
PL-08	CamPhs	Spindle phase angle adjustment	0	0.1 deg			0		
PL-09	CamOfs	Cam curve table offset	0	pulse			0		
PL-10	CamGan	Cam curve magnification	1000	0.001x			0		
PL-11	CamSec	Cam curve original data points	17	Number			0	(R- only)	
PL-12	CamTyp	Cam curve output command type	1	-			0	-	
PL-13	CamMaMon	Cam drive shaft analog monitor switching	0	-			0		
PL-14	CamSvMon	Cam slave axis analog monitor switching	0	-			0		

		Parameters for the planning of the digital I/O pin a	and for the setting	related	d to	o t	he	outpu	t
				Con		trol	Remark		
Parameter	Abbr.	Function	Initial value	Unit		I	no	de	
					P	S	Т	MSC	
PA-20	INP	Confirmation of the range when the position is reached	10400	pulse	0			0	
PC-00	DIRT	The time for response filtering of the digital input	2	2 ms	0	0	0	0	
PC-01	DI1	The function planning for Pin DI1 of the digital input	Based on the control mode	-	0	0	0	0	
PC-02	DI2	Function planning for Pin DI2 of the digital input	Based on the control mode	-	0	0	0	0	
PC-03	DI3	Function planning for Pin DI3 of the digital input	Based on the control mode	-	0	0	0	0	
PC-04	DI4	Function planning for Pin DI4 of the digital input	Based on the control mode	-	0	0	0	0	
PC-05	DI5	Function planning for Pin DI5 of the digital input	Based on the control mode	-	0	0	0	0	
PC-06	DI6	Function planning for Pin DI6 of the digital input	Based on the control mode	-	0	0	0	0	
PC-07	DI7	Function planning for Pin DI7 of the digital input	Based on the control mode	-	0	0	0	0	
PC-08	DI8	Function planning for Pin DI8 of the digital input	Based on the control mode	-	0	0	0	0	
PC-09	DI9	Function planning for Pin DI9 of the digital input	Based on the control mode	-	0	0	0	0	
PC-10	DO1	Function planning for Pin DO1 of the digital output	Based on the control mode	-	0	0	0	0	
PC-11	DO2	Function planning for Pin DO2 of the digital output	Based on the control mode	-	0	0	0	0	
PC-12	DO3	Function planning for Pin DO3 of the digital output	Based on the control mode	-	0	0	0	0	
PC-13	DO4	Function planning for Pin DO4 of the digital output	Based on the control mode	-	0	0	0	0	
PC-14	DO5	Function planning for Pin DO5 of the digital output	Based on the control mode	-	0	0	0	0	
PC-15	DO6	Function planning for Pin DO6 of the digital output	Based on the control mode	-	0	0	0	0	
PC-21	BTOD	The turn-on delay time for the electromagnetic brake	0	ms	0	0	0	0	
PC-22	BTCD	The turn-off delay time for the electromagnetic brake	0	ms	0	0	0	0	
PC-23	SPOK	The level for detection of the speed comparison	10	r/min		0			
PC-24	PUUres	Position error in analog monitoring resolution (PUU units)	10000	pulse	0	0	0	0	(S-off)
PC-25	POL	The output level for the expected overload	0	%	0	0	0	0	
PD-43	TSPD	The level for the detection of the target rotation speed	Based on model	r/min	0	0	0	0	
(R-only)	Th	is indicates the read-only register, which can only be u	used for reading stat	us valu	ies.	•			
(S-off)	Th	is indicates Servo Off, which can be set only when the	e servo is off.						
(Re-on)	Th	is implies that the parameter is valid when the servo is	s booted again.						

(N-keep) The set content value won't be memorized by the parameter after power off.

	Communication parameters									
Donomotor	Abba	Function	Tuitial malma	TT \$4	C	ont	ro	l mode	Remark	
rarameter	AUDI.	Function			P	S	Т	MSC		
PD-00	ADR	The setting of the branch number	0x7F	_ (0	0	0	0	(S-off)	
		<u> </u>			_	_		_	(Re-on)	
PD-01	BRT	The communication transmission rate	0x33	-	0	Ο	Ο	0	(S-off)	
PD-02	PTL	The protocol	6	-	0	0	0	0	(S-off)	
PD-03	CFP	The handling of the communication error	0	-	0	0	0	0	(S-off)	
PD-04	COT	The setting for the communication timeout	0	sec	0	0	0	0	(S-off)	
PD-06	SWDI	Control switch for the source of the input contact (DI)	0	I	0	0	0	0	(N-keep)	
PD-07	CDT	The time for the delay of the communication response	0	1 ms	0	0	0	0		

(R-only) This indicates the read-only register, which can only be used for reading status values.

(S-off) This indicates Servo Off, which can be set only when the servo is off.

(Re-on) This implies that the parameter is valid when the servo is booted again.

(N-keep) The set content value won't be memorized by the parameter after power off.

	Diagnostic parameters										
Parameter	Abbr.	Abbr. Function Initial value		Function Initial value U		Unit	Control mode				Remark
					Р	S	Т	MSC			
PD-30	JOG	The jog control of the servo motor	20	r/min	0	0	0	0			
PD-31	FDO	The DO data register of the software (readable and writable)	e DO data register of the software (readable d writable) Based on the control mode		0	0	0	0	(S-off) (N- keep)		
PD-32	DISF	The multi-function for the contact of the digital input	Based on the control mode	-	0	0	0	0	(N- keep)		
PD-33	ALH1	Record of the Abnormal Status (N)	0	-	0	0	0	0	(R-only)		
PD-34	ALH2 The record of the abnormal condition (N-1) 0		0	-	0	0	0	0	(R-only)		
PD-35	ALH3 The record of the abnormal condition (N-2) 0		-	0	0	0	0	(R-only)			
PD-36	ALH4	The record of the abnormal condition (N-3)	0	-	0	0	0	0	(R-only)		
PD-37	ALH5	The record of the abnormal condition (N-4)	0	-	0	0	0	0	(R-only)		

(R-only) This indicates the read-only register, which can only be used for reading status values.

(S-off) This indicates Servo Off, which can be set only when the servo is off.

(Re-on) This implies that the parameter is valid when the servo is booted again.

(N-keep) The set content value won't be memorized by the parameter after power off.

6.3. Parameter description

6.3.1. PA-XX (Basic parameter)

PA-00 (Re-on)	CTLM	Setting for the and command	input source of the control mode	Communic address: 0000H 0001H	cation
		Initial value	000h		
		Control mode	ALL		
		Unit	-		
		Configuration	000h ~ 109h (Msc versior	n 000h ~	
		range	10Ah)		
		Data size	16 bit		
		Data format	HEX		

The setting of the control mode

. The control over the direction of torque output

Setting of the control mode

Mode	Set value	Description
Р	0x00	
S	0x01	Single mode
Т	0x02	
PS	0x05	
PT	0x06	
ST	0x07	Mixed mode
MscP	0x0B	
MscS	0x0C	
Sn	0x08	Single mode
Tn	0x09	Single mode

- Single mode:
 - P: Position control mode
 - S: Speed control mode (The command comes from the external analog voltage/internal register, and can be selected with D1: SPD0, SPD1.)
 - T: Torque control mode (The command comes from the external analog voltage/ the internal register, and can be selected with D1: TCM0, TCM1.)
 - Sn: Speed control mode (The command source comes from the the internal register and can be selected with D1: SPD0, SPD1. If (SPD0,SPD1) = (0,0), the speed command is zero.)
 - Tn: Torque control mode (the command source comes from the internal register, and can be chosen with D1: TCM0, TCM 1. If (TCM0,TCM1) = (0,0), the torque command is zero.)

- LITEON
 - Msc (motion timing control mode): The source of the command is the internal scratchpad, which can be selected by DI:MscNo1~4, MscEv1~4 or by the electronic cam.

Mixed mode:

Modes can be switched using the external DI (Digital Input). For example, when the PS mode is set (with the control mode setting 05), DI:S-P (Table 7.1) can be used to switch between modes.

> Control over the direction of the torque output

PA-01 (S-off)	CMPT	Setting for the input format of the external pulse train	Communication address: 0002H 0003H
	Initial value	0002	
	Control mode	T / P	
	Unit	N/A	
	Configuration	$0 \sim 0 \times 1142$	
	range	0 * 071142	
	Data size	16bit	
	Data format	Hex	

Pulse type

Filter width

Logic type

Source of the external pulse input

Pulse type

- 0: AB-phase pulse train (4x)
- 1: CW-pulse and CCW-pulse trains
- 2: Pulse train and symbol

➢ Filter width

	Low-speed filter	High-speed filter
Set value	width	width
Set value	(minimum pulse width	(minimum pulse width
	*Note 1)	*Note 1)
0	600 Kpps (600 ns)	2.8 Mpps (150 ns)
1	165 Kpps (2.4 us)	0.72 Mpps (600 ns)
2	85 Kpps (4.8 us)	360 Kpps (1.2 us)
3	42 Kpps (9.6 us)	170 Kpps (2.4 us)
4	No filtering	No filtering
L.	<150	

The high-level pulse will be ignored when its width is less than 150 ns.

The low-level pulse of the pulse will be ignored when its length is less than 150 ns.

Note 1: The pulse reception can be ensured if the signal comes with the 4Mpps high-speed pulse and the set value of the pulse is 4.

Logic type

	High- and low-speed pulse input								
Logic		Pulse type	Clockwise rotation	Counterclockwise rotation					
			Pulse phase advance	Pulse phase delay					
0	tive logic	AB-phase pulse train	PAGE						
	Posi	CW-pulse and CCW-pulse trains	»						

	High-speed pulse input								
Logic Pulse type			Clockwise rotation	Counterclockwise rotation					
	0		High sign	Low sign					
0	Positive logic	Pulse train + Symbol	~~ ~						

	Low-speed pulse input						
Logic		Pulse type	Clockwise rotation	Counterclockwise rotation			
			Low sign	High sign			
0	Positive logic	Pulse train + Symbol	PMre				

In a digital circuit, 0 and 1 usually represent for the high and low voltage. 1 and 0 represent high and low voltage in "Positive Logic", respectively. On the other hand, 1 and 0 represent low and high voltage in "Negative Logic", respectively.

Source of the external pulse input

0: Low-speed optical coupling (CN1 pin: OUT, DIR)

1: High-speed differential (CN1 pin: HOUT, HDIR)

PA-02 (S-off)	STL	Setting for the speed and torque limit	Communication address: 0004H 0005H
	Initial value	00h	
	Control mode	ALL	
	Unit	-	
	Configuration	00h ~ 11h	
	range		
	Data size	16 bit	
	Data format	HEX	

Start and stop of the speed limit function (valid only in T mode)

: On and off for torque limit function (valid in P / S mode)

- > On and off for speed limit function(1: on; 0: off)
 - Speed limit function can be turned on and off with DI terminal (SPDLM) Parameters and DI (SPDLM) belong to OR operation.
 - The speed limit configuration source is determined by DI terminal (SPD0, SPD1) state Can select the speed analog command or the parameter value PA-14 ~ PA-16.
- Start and stop of the torque limit function (1: on; 0: off)
 - The torque limit function can be turned on and off by DI terminal (TRQLM). Parameters and DI (TRQLM) belong to OR operation.
 - The source of the torque limit setting is determined by the state of the DI terminals (TCM0,TCM1). Can select the torque analog command or the parameter value PA-03 ~ PA-05.

PA-03	ITQ1	Internal torque limit1/Internal Torque Command 1	Communication address: 0006H 0007H
	Initial value	100	
	Control mode	ALL	
	Unit	%	
	Configuration	300	
	range	-300 ~ +300	
	Data size	16 bit	
	Data format	DEC	

Internal Torque Command 1: The setting of the internal torque command in the first segment (TCM0, TCM1) = (1,0).

Internal Torque Limit 1: The setting of the internal torque limit in the first segment (TCM0, TCM1) = (1,0).

PA-04	ITQ2	Internal torque limit 2/internal torque command 2	Communication address: 0008H 0009H
	Initial value	100	
	Control mode	ALL	
	Unit	%	
	Configuration	300 300	
	range	-500 ~ +500	
	Data size	16 bit	
	Data format	DEC	

Internal Torque Command 2: The setting of the internal torque command in the second segment (TCM0,TCM1) = (0,1).

Internal torque limit 2: The second configuration for the internal torque limit (TCM0, TCM1) = (0, 1).

PA-05	ITQ3	Internal torque limit 3/internal torque command 3	Communication address: 000AH 000BH
	Initial value	100	
	Control mode	ALL	
	Unit	%	
	Configuration	300 + 300	
	range	-500 ~ +500	
	Data size	16 bit	
	Data format	DEC	

Internal torque command 3: The setting of the internal torque command in the third segment (TCM0, TCM1) = (1,1).

Internal torque limit 3: The setting of the internal torque limit in the third segment (TCM0, TCM1) = (1,1).

PA-06 (S-off)	EOUT	The setting for t value	The setting for the detector output of the pulse value		ation
		Initial value	8192		
		Control mode	ALL		
		Unit	pulse/rev		
		Configuration	4 - 262144		
		range	4~202144		
		Data size	16 bit		
		Data format	DEC		

PA-07	MSPL	Maximum speed	limit	Communic address: 000EH 000FH	ation
		Initial value	By Rated		
		Control mode	ALL		
		Unit	r/min		
		Configuration	0 - max Speed		
		range	0 ~ max. Speed		
		Data size	16bit		
		Data format	Dec		

This is the maximum operating speed of the servo motor. The initial value is set to the rated rotation speed.

PA-08	PCLR	Pulse cleaning m	ode	Communication address: 0010H 0011H
		Initial value	00h	
		Control mode	P / Msc	
		Unit	-	
		Configuration range	00h ~ 11h	
		Data size	16 bit	
		Data format	HEX	
_				

Trigger method

Function Selection

The pulse cleaning function is valid when the control input contact (DI) is set as PCLR.

When the signal of the CCLR is conducted, the accumulated pulse error magnitude of the drive position is

cleaned up as 0.

Setting of the trigger method:

0: CCLR trigger method is the positive edge type

1: CCLR trigger method is the level type

Function selection:

0: The accumulated pulse error magnitude of the drive position is cleaned up as 0 when the CCLR is conducted.

1: The Feed Back PUU of the drive is cleaned up to 0 when CCLR is being conducted.

PA-09 (S-off)	GRM1	Numerator of the	Numerator of the Electronic Gear Ratio (N1) 0012H 0013H		ation
		Initial value	1		
		Control mode	P / Msc		
		Unit	pulse		
		Configuration range	1~(2 ²⁶ -1)		
		Data size	32 bit		
		Data format	DEC		

Multi-step configuration for the numerator of electronic gear ratio

The numerator of the electronic gear ratio can be selected and switched via these two input pins: GNUM0, GNUM1. It is set to PA-09 if they are not defined. Switch the numerator when the machine stops to avoid vibration during switching.

PA-10 (S-off)	GRD	Denominator of	tor of the Electronic Gear Ratio (M)		ation
		Initial value	1		
		Control mode	P / Msc		
		Unit	pulse		
		Configuration	$1 (2^{3} 1)$		
		range	$1 \sim (2^{-1})$		
		Data size	32 bit		
		Data format	DEC		

The servo motor is easy to rotate violently when there is a configuration error. The setting must follow the rules below.

Setting for the input ratio of the command pulse

Command pulse input(p1) ×
$$\frac{N}{M}$$
 = Position command(p2); (p1) × $\frac{N}{M}$ = (p2)

Scope for the input ratio of the command pulse: $1/50 < \frac{N_{\chi}}{M} < 25600 \ (x = 1, 2, 3, 4)$

PA-11 (S-off)	GRM2	Numerator of the	e Electronic Gear Ratio (N2)	Communic address: 0016H 0017H	eation
		Initial value	1		
		Control mode	P / Msc		
		Unit	pulse		
		Configuration	$1 \sim (2^{26} - 1)$		
		range	1 (2 1)		
		Data size	32bit		
		Data format	Dec		

Refer to PA-09.

PA-12 (S-off)	GRM3	The numerator o	The numerator of the electronic gear ratio (N3)		ation
		Initial value	1		
		Control mode	P / Msc		
		Unit	pulse		
		Configuration	$1 \sim (2^{26} - 1)$		
		range	1 (2 1)		
		Data size	32bit		
		Data format	Dec		

Refer to PA-09.

PA-13 (S-off)	GRM4	Numerator of the	Electronic Gear Ratio (N4) Communic address: 001AH 001BH		ation
		Initial value	1		
		Control mode	P / Msc		
		Unit	pulse		
		Configuration	$1 \sim (2^{26} - 1)$		
		range	1 (2 1)		
		Data size	32bit		
		Data format	Dec		

Refer to PA-09.

PA-14	ISP1	Internal Speed C 1	Communic Command 1/Internal Speed Limit address: 001CH 001DH		ation
		Initial value	By rated		
		Control mode	S / T		
		Unit	0.1 r/min		
		Configuration range	0 ~ +/-max. Speed		
		Data size	32 bit		
		Data format	DEC		

Internal Speed Command 1: The setting of the internal torque command in the first segment (SPD0,SPD1) =

(1,0).

Internal Speed Limit 1: The setting of the internal torque limit in the first segment (SPD0, SPD1) = (1,0).

PA-15	ISP2	Internal Speed C 2	ommand 2/Internal Speed Limit address: 001EH 001FH		ation
		Initial value	By rated		
		Control mode	S / T		
		Unit	0.1 r/min		
		Configuration	0 / man Smart		
		range	0 ~ +/-max. Speed		
		Data size	32 bit		
		Data format	DEC		

Internal Speed Command 2: The setting of the internal torque command in the second segment (SPD0, SPD1) = (0,1).

Internal Speed Limit 2: The setting of the internal torque limit in the second segment (SPD0, SPD1) = (0, 1).

PA-16	ISP3	Internal Speed C 3	Internal Speed Command 3/Internal Speed Limit		ation
		Initial value	By rated		
		Control mode	S / T		
		Unit	0.1 r/min		
		Configuration	0 / max Speed		
		range	0 ~ +/-max. Speed		
		Data size	32 bit		
		Data format	DEC		

Internal Speed Command 3: The setting of the internal torque command in the third segment (SPD0,SPD1) =

(1,1).

Internal Speed Limit 3: The setting of the internal torque limit in the third segment (SPD0, SPD1) = (1, 1).

PA-17 (S-off)	CVM	The maximum recommand	The maximum rotation speed of the analog speed command		eation
		Initial value	By Rated		
		Control mode	Control mode T / S		
		Unit	r/min		
		Configuration	$0 \sim \max$ Speed		
		range	range 0 ~ max. speed Data size 16bit		
		Data size			
		Data format	Dec		

Maximum rotation speed of the analog speed command:

• In the speed mode, this indicates the setting of the rotation speed while the maximum voltage (10V) is input for the analog speed command.

If the speed is set to 3000 and 10V is input for external voltage, the speed control command is 3000r/min. 5V implies that the speed control command is 1500r/min.

Speed control command = Input voltage value x Set value/10

• In the torque mode, the parameter represents the command for analog speed limit.

Speed limit command = Input voltage value x Set value/10

PA-18 (S-off)	СТМ	Limited maxin	Limited maximum output of the analog torque		ication
		Initial value	100		
		Control mode	ALL		
		Unit	%		
		Configuration	0 ~ 300		
		range			
		Data size	16bit		
		Data format	Dec		

Maximum output of the analog torque command:

• In the torque mode, this indicates the setting of the torque while the maximum voltage (10V) is input for the analog torque command.

If the initial value is set to 100 and 10 V is input for external voltage, the torque control command is 100%

rated torque. 5V implies that the torque control command is 50% rated torque.

Torque control command = Input voltage value x Set value/10 (%)

• In the speed and position modes, the parameter represents the command for analog torque limit.

Torque limit command = Input voltage value x Set value/10 (%)

PA-20	INP	Confirmation of reached	Confirmation of the range when the position is eached		ication
		Initial value	10400		
		Control mode	P / Msc		
		Unit	Pulse		
		Configuration	0 - 1048576		
		range	0~1040370		
		Data size	Data size 32 bit		
		Data format	DEC		

In the position mode (P) and the number of differential pulses is below the position range for the set value of the parameter, the signal for position reaching (TPOS) is output.

PA-21 (S-off)	ATL	Response level	for automatic negotiation Commun address: 002AH 002BH		ication
		Initial value	20		
		Control mode	P/S/Msc		
		Unit	-		
		Configuration	1 40		
		range	1~40		
		Data size	16 bit		
		Data format	DEC		

The parameter is the setting for the response bandwidth.

Based on the set value of the parameter and the value of PB-35 (the ratio of load inertia to servo motor

inertia), the corresponding gain value is calculated automatically.

The parameters affected are PB-18(NLPF), PB-19(SCJT), PB-20(KPP), PB-24(KVP), PB-26(KVI) and PB-

28(DSG). The set value and corresponding bandwidth are shown in the following table.

Set value	Response bandwidth value Hz	Set value	Response bandwidth value Hz
1	5	21	100
2	6	22	120
3	8	23	140
4	10	24	160
5	13	25	180
6	15	26	200
7	18	27	220
8	21	28	240
9	24	29	260
10	27	30	280
11	30	31	310
12	33	32	340
13	36	33	370
14	40	34	400
15	45	35	430
16	50	36	460
17	55	37	490
18	60	38	520
19	70	39	550
20	80	40	600

6.3.2. **PB-XX** (Gain/filtering parameter)

PB-00	SFIL	The acceleration-dece constant of the analog	deceleration smoothing address: halog speed command 0100H 0101H		ation
		Initial value	0		
		Control mode	S		
		Unit	ms		
		Configuration range	$0 \sim 1000$ (0: The functio	n is turned	
			off.)		
		Data size	16bit		
		Data format	Dec		

PB-01	TFIL	Smoothing constant of command	Smoothing constant of the analog torque address command 0102H 0103H		ation
		Initial value	0		
		Control mode	Т		
		Unit	ms		
		Configuration range	$0 \sim 1000$ (0: The function	on is turned	
			off.)		
		Data size	16bit		
		Data format	Dec		

PB-02	PFIL	Constant of the low-p position command	t of the low-pass filtering for the address command 0104H 0105H		ation
		Initial value	0		
		Control mode	P / Msc		
		Unit	10ms		
		Configuration range	$0 \sim 1000$ (0: The function	n is turned	
			off.)		
		Data size	16bit		
		Data format	Dec		

PB-03	STAC	Acceleration constant	of the smooth S-curve Communic address: 0106H 0107H		ation
		Initial value	200		
		Control mode	S		
		Unit	ms		
		Configuration range	1 ~ 20000		
		Data size	16bit		
		Data format	Dec		

Constant for speed acceleration: As for PB-03, PB-04 and PB-05, the time required for acceleration from 0 to 3000r/min can be set separately.

NOTE 1) If the source of the speed command is an analog source or PB-05 is set to 0, turn off the smooth function for S-shaped acceleration-deceleration.

PB-04	STDC	Deceleration constant	of the smooth S-curve Communica address: 0108H 0109H		ion
		Initial value	200		
		Control mode	S		
		Unit	ms		
		Configuration range	1 ~ 20000		
		Data size	16bit		
		Data format	Dec		

Constant for speed acceleration: As for PB-03, PB-04 and PB-05, the time required for acceleration from 0 to 3000r/min can be set separately.

NOTE 1) If the source of the speed command is an analog source or PB-05 is set to 0, turn off the smooth function for S-shaped acceleration-deceleration.

PB-05	STL	Smooth constant of th	le smooth S-curve Communica 010AH 010BH		ation
		Initial value	0		
		Control mode	S		
		Unit	ms		
		Configuration range	0 ~ 10000		
		Data size	16bit		
		Data format	Dec		

PB-03: It is used to set the acceleration time for trapezoidal speed command.

PB-04: It is used to set the deceleration time for trapezoidal speed command.

PB-05: It is used to set the smooth time of the S-shaped acceleration-deceleration.

PB-03, Pb-04 and PB-05 can be configured independently.

NOTE 1) If the source of the speed command is an analog source or PB-05 is set to 0, turn off the smooth

function for S-shaped acceleration-deceleration.

PB-06	MFIL	The constant of the lin speed command	The constant of the linear filtering for the analog speed command		ication
		Initial value	0		
		Control mode	S		
		Unit	0.1ms		
		Configuration range	0 ~ 40		
		Data size	16bit		
		Data format	Dec		
		Input example	10 = 1.0 ms		

The filter is a moving filter. The parameter PB-00 is a low-pass filter. The difference is that the smoothing effect occurs at the beginning and end of the step command for the moving filter. On the other hand, the smoothing effect only occurs at the end of the step command for the low-pass filter.

Recommendation: If the speed loop receives the command from the upper computer to form the control of the position loop, the low-pass filter can be used. For simple speed control, the moving filter can be used for better smoothing effects.

PB-07	FRCL	Ratio of friction comp	ensation Communiaddress: 010EH 010FH		ication
		Initial value	0		
		Control mode	P / S /Msc		
		Unit	%		
		Configuration range	0 ~ 100		
		Data size	16bit		
		Data format	Dec		

This indicates the value for friction compensation. (As for the percentage of the rated torque, set 0 to turn off the

function for friction compensation and set 1 to turn it on.)

PB-08	FRCT	Smooth constant of fr	iction compensation 0110H 0111H		ication
		Initial value	0		
		Control mode	P / S /Msc		
		Unit	ms		
		Configuration range	0 ~ 1000		
		Data size	16bit		
		Data format	Dec		

This is used to set the smooth constant of friction compensation.

PB-09	PFLT2	The constant of the lin position command	ear filtering for the address: 0112H 0113H		ication
		Initial value	0		
		Control mode	P / Msc		
		Unit	ms		
		Configuration range	0 ~ 100		
		Data size	16bit		
		Data format	Dec		

For the moving filter, the smoothing effect occurs at the beginning and end of the step command. However, the

effect results in the delay of the command.

PB-10	NCF1	Notch filter for resona	Ince suppression (1) Communi address: 0114H 0115H		ication
		Initial value	1000		
		Control mode	ALL		
		Unit	Hz		
		Configuration range	50 ~ 1000		
		Data size	16 bit		
		Data format	DEC		

PB-11	NCD1	Notch filter for the att resonance suppression	communication rate of the address: 1 (1) 0116H 0117H		ication
		Initial value	0		
		Control mode	ALL		
		Unit	dB		
		Configuration range	0 ~ 32		
		Data size	16 bit		
		Data format	DEC		

PB-12	NCF2	Notch filter for resona	Ince suppression (2) Communi Address: 0118H 0119H		ication
		Initial value	1000		
		Control mode	ALL		
		Unit	Hz		
		Configuration range	50 ~ 2000		
		Data size	16 bit		
		Data format	DEC		

PB-13	NCD2	Notch filter for the att resonance suppression	tenuation rate of the address: n (2) 011AH 011BH		ication
		Initial value	0		
		Control mode	ALL		
		Unit	dB		
		Configuration range	0 ~ 32		
		Data size	16 bit		
		Data format	DEC		

PB-14	NCF3	Notch filter for resona	Ince suppression (3) Commun address: 011CH 011DH		ication
		Initial value	1000		
		Control mode	ALL		
		Unit	Hz		
		Configuration range	50 ~ 2000		
		Data size	16 bit		
		Data format	DEC		

PB-15	NCD3	Notch filter for the att resonance suppression	tenuation rate of the address: n (3) 011EH 011FH		ication
		Initial value	0		
		Control mode	ALL		
		Unit	dB		
		Configuration range	0 ~ 32		
		Data size	16 bit		
		Data format	DEC		

PB-16	NCFA	Setting for the suppreserved resonance	ession mode of auto- 0120H 0121H		ication
		Initial value	0		
		Control mode	ALL		
		Unit	-		
		Configuration range	0~2		
		Data size	16 bit]
		Data format	DEC]

PB-17	NCLA	The setting for the ser auto-resonance	sensitivity suppression of address: 0122H 0123H		ication
		Initial value	100		
		Control mode	ALL		
		Unit	%		
		Configuration range	1 ~ 300		
		Data size	16 bit		
		Data format	DEC		

PB-18	NLPF	The low-pass filtering	g for resonance suppression Commun address: 0124H 0125H		ication
		Initial value	9		
		Control mode	ALL		
		Unit	0.1 ms		
		Configuration range	0 ~ 100		
		Data size	16 bit		
		Data format	DEC		

PB-19	SCJT	The filter bandwidth f	he filter bandwidth for the speed detection 0126H 0127H		ication
		Initial value	2500		
		Control mode	ALL		
		Unit	Hz		
		Configuration range	10 ~ 2500		
		Data size	16bit		
		Data format	Dec		

This is used to set the filter bandwidth for speed estimation.

PB-20	KPP	The gain of the position	on control	Commun address: 0128H 0129H	ication
		Initial value	125		
		Control mode	P / Msc		
		Unit	rad/s		
		Configuration range	0 ~ 2047		
		Data size	16bit		
		Data format	Dec		

When the gain of the position control is increased, the position response is increased and the error magnitude of

the position control is reduced. Vibratio	n and noise occurs easil	ly if the gain is set to a	an excessive value.
---	--------------------------	----------------------------	---------------------

PB-21	PGR	Ratio for the gain vari control	Ratio for the gain variation of the position controlCommu address 012AH 012BH		ication
		Initial value	100		
		Control mode	P / Msc		
		Unit	%		
		Configuration range	10 ~ 500		
		Data size	16bit		
		Data format	Dec		

This is used to switch the change rate regarding the gain of the position control based on the condition of gain switch.

PB-22	PFG	The feed forward gain	n for the position control Commun address: 012CH 012DH		ication
		Initial value	50		
		Control mode	P / Msc		
		Unit	%		
		Configuration range	0 ~ 100		
		Data size	16bit		
		Data format	Dec		

For smooth change of the position control command, the increase in gain improves the magnitude of the following error for the position. For unsmooth change of the position control command, the decrease in gain mitigates the vibration of the mechanism during operation.

PB-23	PFC	The smooth constant of for the position control	of the feed forward gain address: 012EH 012FH		ication
		Initial value	5		
		Control mode	P / Msc		
		Unit	ms		
		Configuration range	2 ~ 100		
		Data size	16bit		
		Data format	Dec		

For smooth change of the position control command, the decrease in smooth constant improves the magnitude of the following error for the position. For unsmooth change of the position control command, the increase in smooth constant mitigates the vibration of the mechanism during operation.

PB-24	KVP	The proportional gain	for speed control	Commun address: 0130H 0131H	ication
		Initial value	502		
		Control mode	ALL		
		Unit	rad/s		
		Configuration range	0 ~ 8191		
		Data size	16bit		
		Data format	Dec		

The speed response is increased when the gain of the speed control is increased. Vibration and noise occurs easily if the gain is set to an excessive value.

PB-25	SPR	The ratio for the gain control	The ratio for the gain variation of the speed control		ication
		Initial value	100		
		Control mode	ALL		
		Unit	%		
		Configuration range	10 ~ 500		
		Data size	16bit		
		Data format	Dec		

This is used to switch the change rate regarding the gain of the speed control based on the condition of gain switch.

PI	B-26	KVI	The integral compense	The integral compensation for the speed control		ication
			Initial value	50		
			Control mode	ALL		
			Unit	rad/s		
			Configuration range	0 ~ 1023		
			Data size	16bit		
			Data format	Dec		

When the integral value of the speed control is increased, the position response is increased and the error magnitude of the speed control is reduced. Vibration and noise occurs easily if the gain is set to an excessive value.

PB-27	KVF	The feed forward gair	The feed forward gain for the speed control		ication
		Initial value	0		
		Control mode	ALL		
		Unit	%		
		Configuration range	0 ~ 100		
		Data size	16bit		
		Data format	Dec		

For smooth change of the speed control command, the increase in gain improves the magnitude of the following error for the speed. For unsmooth change of the speed control command, the decrease in gain mitigates the vibration of the mechanism during operation.

PB-28	DSG	The resistance gain fo	The resistance gain for the external interference		ication
		Initial value	50		
		Control mode	ALL		
		Unit	rad/s		
		Configuration range	0 ~ 1023		
		Data size	16bit		
		Data format	Dec		

If the parameter is increased, the resistance of the speed circuit increases. It is suggested to set the value of the parameter equal to that of PB-26 (KVI).

It is suggested to refer to the rules below for adjustment:

1. In the speed mode, increase the parameter could reduce the speed overshoot.

2. In the position mode, decrease the parameter could reduce the position overshoot

PB-29	GCM	Condition of the gain for the switch method	Condition of the gain switch and the selection for the switch method		ication
		Initial value	10		
		Control mode	ALL		
		Unit	N/A		
		Configuration range	0 ~ 18		
		Data size	16bit		
		Data format	Dec		

Condition of the gain switch:

0: The gain switch function is off.

1: The signal (GAINUP) for gain switch is ON.

2: In the position control mode, the magnitude of the position error is greater than the set value of the parameter PB-31 (GCC).

3: The frequency of the position command is greater than the set value of the parameter PB-31 (GCC).

4: The rotation speed of the servo motor is greater than the set value of the parameter PB-31 (GCC).

5: The signal (GAINUP) for gain switch is OFF.

6: In the position control mode, the magnitude of the position error is less than the set value of the parameter PB-31 (GCC).

7: The frequency of the position command is less than the set value of the parameter PB-31 (GCC).

8: The rotation speed of the servo motor is less than the set value of the parameter PB-31 (GCC).

Method for gain switching:

00: Switching of the gain scale

10: Switching of the integrator (P -> PI)

PB-30	GCT	The time constant for the	onstant for the gain switch 013CH 013DH		ication
		Initial value	1		
		Control mode	ALL		
		Unit	10ms		
		Configuration range	$0 \sim 1000$ (0: The fu	inction is	
			turned off.)		
		Data size	16bit		
		Data format	Dec		

The switch time constant is used for the change of the smooth gain.

PB-31	GCC	The condition of the gain switch		Commun address: 013EH 013FH	ication
		Initial value	0		
		Control mode	ALL		
		Unit	pulse , Kpps , r/min		
		Configuration range	0 ~ 3840000		
		Data size	32bit		
		Data format	Dec		

The setting of the switching condition (pulse error, Kpps and r/min) depends on the item (PB-29) selected for switching condition.

PB-32	AUTB	The setting for the response bandwidth of the speed loop in the automatic and semi-automatic modes		Commun address: 0140H 0141H	ication
		Initial value	80		
		Control mode	ALL		
		Unit	Hz		
		Configuration range	1 ~ 1000		
		Data size	16bit		
		Data format	Dec		

1~50 Hz: Low rigidity and response

51~250 Hz: Medium rigidity and response

251~550 Hz: High rigidity and response

NOTE 1) The function is turned on through the parameter PB-33. For the bandwidth corresponding to the setting, refer to Secs. 5 and 6 in Chapter 5 for the description of tuning steps.

PB-33 (S-off)	AUTM	The method for gain adjustment		Communic address: 0142H 0143H	ation
		Initial value	0		
		Control mode	ALL		
		Unit	N/A		
		Configuration range	0 ~ 2		
		Data size	16bit		
		Data format	Dec		

0: Manual mode

- 1: Auto mode (persistent adjustment)
- 2: Semi-auto mode (non-persistent adjustment)

PB-35	GSI	The ratio of load inertia to servo motor inertia		Communic address: 0146H 0147H	ation
		Initial value	0		
		Control mode	ALL		
		Unit	0.1 times		
		Configuration range	0 ~ 2000		
		Data size	16bit		
		Data format	Dec		

Ratio of load inertia to servo motor inertia (rotation motor): (J_load/J_motor)

J_motor: The moment of inertia for the servo motor

J_load: The moment of inertia for the overall equivalence of the external mechanical load

PB-36	VSF1	Frequency for the vibration suppression of low frequency (1)		Communic address: 0148H 0149H	ation
		Initial value	1000		
		Control mode	Р		
		Unit	0.1Hz		
		Configuration range	10 ~ 10000		
		Data size	16bit		
		Data format	Dec		

This is the parameter for setting the frequency of the first filter for vibration suppression of low

frequency. If PB-37 is set to 0, the first filter for vibration suppression of low frequency is turned off.

PB-37	VSG1	Gain for the vibration support frequency (1)	Gain for the vibration suppression of low frequency (1)		ation
		Initial value	0		
		Control mode	P / Msc		
		Unit	-		
		Configuration range	0~9		
		Data size	16 bit		
		Data format	DEC		

This is the parameter for setting the gain of the first filter for vibration suppression of low frequency. The greater the gain the better the vibration suppression. The excessive setting may result in uneven operation of the motor. It is suggested to increase the setting gradually.

PB-38	VSF2	Frequency for the vibration suppression of low frequency (2)		Communic address: 014CH 014DH	ation
		Initial value	1000		
		Control mode	P / Msc		
		Unit	0.1Hz		
		Configuration range	10 ~ 10000		
		Data size	16bit		
		Data format	Dec		

This is the parameter for setting the frequency of the second filter for vibration suppression of low

frequency. If PB-39 is set to 0, the second filter for vibration suppression of low frequency is turned off.

PB-39	VSG2	Frequency for the vibration suppression of low frequency (2)		Communic address: 014EH 014FH	ation
		Initial value	0		
		Control mode	P / Msc		
		Unit	-		
		Configuration range	0~9		
		Data size	16 bit		
		Data format	DEC		

This is the parameter for setting the gain of the second filter for vibration suppression of low frequency. The greater the gain the better the vibration suppression. The excessive setting may result in uneven operation of the motor. It is suggested to increase the setting gradually.

PB-40	KPI	The integral compensation of the position 0150H 0151H			ation
		Initial value	0		
		Control mode	ALL		
		Unit	Hz		
		Configuration range	0 ~ 1023		
		Data size	16bit		
		Data format	Dec		

If the integral value of the position control increases, the magnitude of the steady-state error of the position is reduced. If the setting is excessive, position overshoot and noise may occur.

PB-41	JSL	The level for the stability determination of inertia estimationCommunic address: 0152H 0153H		ation	
		Initial value	15		
		Control mode	ALL		
		Unit	0.1times		
		Configuration range	0 ~ 2000		
		Data size	16bit		
		Data format	Dec		

Parameter function: In the semi-auto mode, the inertia estimated is assumed complete if the scope of the variation in inertia estimation is less than the one for PB-41 for a period of time.

PB-41	AVSM	The setting for low frequency automatic suppression mode		Communica address: 0154H 0155H	ation
		Initial value	15		
		Control mode	ALL		
		Unit	0.1times		
		Configuration range	0 ~ 2000		
		Data size	16bit		
		Data format	Dec		

Parameter function:

0: Fixed.

1: Automatic suppression.

Automatic suppression mode description:

When set to 1, the vibration is automatically suppressed. When no frequency is found or found, it is automatically set to 0, and the searched frequency is stored to the PB-36.

6.3.3. PC-XX (I/O configuration parameters)

PC-00	DIRT	The time for response filter input	The time for response filtering of the digital input		ation
		Initial value	2		
		Control mode	ALL		
		Unit	2ms		
		Configuration range	0 ~ 20		
		Data size	16bit		
		Data format	Dec		

For louder ambient noise, the control reliability may be enhanced by the increase in setting. The response time may be affected if the setting is too high.

PC-01	DI1	The function planning for l input	The function planning for Pin DI1 of the digital input		
		Initial value	Based on the control	mode	
		Control mode	ALL		
		Unit	N/A		
		Configuration range	000h ~ 125h (Msc v	ersion 000h	
			~ 135h)		
		Data size	16bit		
		Data format	Hex		
		lection of the input function			

Selection of the input function

Attribute of the input contact

- Selection of the input function: Refer to "Table for definitions of the default DI input" for the function this selection represents.
- Attribute of the input contact: The attribute is Contact a or b.

0: The input contact is set as NC Contact b.

1: The input contact is set as NO Contact a.

After modifying the parameter, restart the power supply to ensure that the function is in normal operation.

Parameter PD-06 may be used to plan whether DI is controlled by the external terminal or

Communication Method PD-32.

PC-02	DI2	Function planning for Pin DI2 of the digital input		Communic address: 0204H 0205H	ation
		Initial value	Based on the control	mode	
		Control mode	ALL		
		Unit	N/A		
		Configuration range	000h ~ 125h (Msc ve	ersion 000h	
			~ 135h)		
		Data size	16bit		
		Data format	Hex		

Refer to the description for PC-01.

PC-03	DI3	Function planning for Pin DI3 of the digital input		Communic address: 0206H 0207H	ation
		Initial value	Based on the control mode		
		Control mode	ALL		
		Unit	Unit N/A		
		Configuration range	000h ~ 125h (Msc ve	ersion 000h	
			~ 135h)		
		Data size	16bit		
		Data format	Hex		

Refer to the description for PC-01.

PC-04	DI4	Function planning for Pin DI4 of the digital input		Communic address: 0208H 0209H	ation
		Initial value	Based on the control mode		
		Control mode	ALL		
		Unit	N/A		
		Configuration range	000h ~ 125h (Msc v	ersion 000h	
			~ 135h)		
		Data size	16bit		
		Data format	Hex		

Refer to the description for PC-01.

PC-05	DI5	The function planning for Pin DI5 of the digital input		Communic. address: 020AH 020BH	ation
		Initial value	Based on the control	mode	
		Control mode	ALL		
		Unit	N/A		
		Configuration range	000h ~ 125h (Msc v	ersion 000h	
			~ 135h)		
		Data size	16bit		
		Data format	Hex		

Refer to the description for PC-01.

PC-06	DI6	The function planning for Pin DI6 of the digital input		Communic address: 020CH 020DH	ation
		Initial value	Based on the control	mode	
		Control mode	ALL		
		Unit	N/A		
		Configuration range	000h ~ 125h (Msc v	ersion 000h	
			~ 135h)		
		Data size	16bit		
		Data format	Hex		

Refer to the description for PC-01.

PC-07	DI7	The function planning for Pin DI7 of the digital input		Communication address: 020EH 020FH	
		Initial value	Based on the control	mode	
		Control mode	ALL		
		Unit	N/A		
		Configuration range	000h ~ 125h (Msc v	ersion 000h	
			~ 135h)		
		Data size	16bit		
		Data format	Hex		

Refer to the description for PC-01.

PC-08	DI8	The function planning for Pin DI8 of the digital input		Communic address: 0210H 0211H	ation
		Initial value	Based on the control	mode	
		Control mode	ALL		
		Unit	N/A		
		Configuration range	000h ~ 125h (Msc v	ersion 000h	
			~ 135h)		
		Data size	16bit		
		Data format	Hex		

Refer to the description for PC-01.

PC-09	DI9	The function planning for Pin DI9 of the digital input		Communica address: 0212H 0213H	ation
		Initial value	Based on the control	mode	
		Control mode	ALL		
		Unit	N/A		
		Configuration range	000h ~ 125h (Msc v	ersion 000h	
			~ 135h)		
		Data size	16bit		
		Data format	Hex		

Refer to the description for PC-01.

Attribute of the input contact

• Selection of the input function: Refer to "Table for definitions of the default DO output" for the function this selection represents.

• Attribute of the input contact: The attribute is Contact a or b.

0: The input contact is set as NC Contact b.

1: The input contact is set as NO Contact a.

After modifying the parameter, restart the power supply to ensure that the function is in normal operation.

Parameter PD-44 may be used to plan whether DO is controlled by the external terminal or Communication Method PD-31.

PC-11	DO2	Function planning for Pin DO2 of the digital output		Communica address: 0216H 0217H	ation
		Initial value	Based on the control	mode	
		Control mode	ALL		
		Unit	N/A		
		Configuration range	$0 \sim 0 \times 10 F$ (Msc ver	rsion 000h ~	
			116h)		
		Data size	16bit		
		Data format	Hex		

Refer to the description for PC-10.

PC-12	DO3	Function planning for Pin DO3 of the digital output		Communica address: 0218H 0219H	ation
		Initial value	Based on the control m	ode	
		Control mode	ALL		
		Unit	N/A		
		Configuration range	$0 \sim 0x10F$ (Msc vers	sion 000h ~	
			116h)		
		Data size	16bit		
		Data format	Hex		

Refer to the description for PC-10.

PC-13	DO4	Function planning for Pin DO4 of the digital output		Communica address: 021AH 021BH	ition
		Initial value	Based on the control m	ode	
		Control mode	ALL		
		Unit	N/A		
		Configuration range	$0 \sim 0x10F$ (Msc vers	sion 000h ~	
			116h)		
		Data size	16bit		
		Data format	Hex		

Refer to the description for PC-10.

PC-14	DO5	Function planning for Pin DO5 of the digital output		Communication address: 021CH 021DH	
		Initial value	Based on the control m	ode	
		Control mode	ALL		
		Unit	N/A		
		Configuration range	$0 \sim 0x10F$ (Msc vers	sion 000h ~	
			116h)		
		Data size	16bit		
		Data format	Hex		

Refer to the description for PC-10.

PC-15	DO6	Function planning for Pin DO6 of the digital output		Communica address: 021EH 021FH	ation
		Initial value	Based on the control m	ode	
		Control mode	ALL		
		Unit	N/A		
		Configuration range	$0 \sim 0 \times 10 F$ (Msc vers	sion 000h ~	
			116h)		
		Data size	16bit		
		Data format	Hex		

Refer to the description for PC-10.

PC-16 (Re-on)	Msctime	Msc time delay selector	Communication address : 0220H 0221H
	Initial value	0	
	Control mode	Msc 、 MscP 、 MscS	
	Unit	-	
	Configuration range	0~1	
	Data size	16 bit	
	Data format	DEC	

Set the time delay for executing the PR command in milliseconds or seconds. After setting, please power on

again to ensure the parameters are set properly.

0: millisecond (ms).

1: second (s).

PC-18 (Re-on)	DisOrg	Origin return and start selection	Communication address : 0224H 0225H
	Initial value	0	
	Control mode	Msc 、 MscP 、 MscS	
	Unit	-	
	Configuration range	0~1	
	Data size	16 bit	
	Data format	DEC	

In the Msc related mode, whether to perform the origin position return, please turn it back on after the setting to ensure the setting is completed.

0: Must be executed.

1: Not executed.

When the selection does not perform the return-to-origin, the system only guarantees that the relative coordinate system is normal, and it does not guarantee the normal positioning of the absolute and indexing coordinate system.

PC-20	ZSPD	The level for zero speed detection Communication Communica		Communica address: 0228H 0229H	ation
		Initial value	100		
		Control mode	ALL		
		Unit	0.1 r/min		
		Configuration range	0 ~ 2000		
		Data size	16bit		
		Data format	Dec		

This is used to set the output range for the zero speed signal (ZSPD). If the clockwise and counterclockwise

rotation speed of the motor is below the set value, the zero speed signal is formed and the output pin is enabled.

PC-21	BTOD	The turn-on delay time fo brake	r the electromagnetic Communication address: 022AH 022BH		ation
		Initial value	0		
		Control mode	ALL		
		Unit	ms		
		Configuration range	0 ~ 1000		
		Data size	16bit		
		Data format	Dec		

Parameter function: It sets the time delayed from the the time servo is activated to the time that the interlock

signal of the electromagnetic brake (DO code 0x07, BREAK) is turned on.

PC-22	BTCD	The turn-off delay time for the electromagnetic brake		Communica address: 022CH 022DH	ation
		Initial value	0		
		Control mode	ALL		
		Unit	ms		
		Configuration range	-1000 ~ 1000		
		Data size	16bit		
		Data format	Dec		

Parameter function: It sets the time delayed from the the time servo is ready and turned off to the time that the interlock signal of the electromagnetic brake (DO code 0x07, BREAK) is turned off. (Refer to 7.5.4 for the use of the electromagnetic brake.)

- When the BTCD delay time is not over and the motor rotation speed is below the one for PC-20, the interlock signal of the electromagnetic brake (BREAK) is turned off.
- When the BTCD delay time is over and the motor rotation speed is above the one for PC-20, the interlock signal of the electromagnetic brake (BREAK) is turned off.
- If the alarm or EMGS occurs causes the servo to be turned off, the negative value of BTCD will not become effective if a negative value is assigned to BTCD.

PC-23	SPOK	The level for detection of the speed comparison		Communica address: 022EH 022FH	ation
		Initial value	10		
		Control mode	S		
		Unit	r/min		
		Configuration range	0 ~ 300		
		Data size	16 bit		
		Data format	DEC		

This is equivalent to the situation that BTCD is set to zero.

When the error value between the speed command and motor feedback speed is below the one for this parameter, the digital output DO: SP_OK (DO code 0x0F) is on.

PC-24 (S-off)	PUUres	Position error in analog monitoring resolution (PUU units)	Communication address : 0230H 0231H
	Initial value	10000	
	Control mode	Р	
	Unit	pulse	
	Configuration	$1 \sim (2^{26} - 1)$	
	range	1 - (2 - 1)	
	Data size	32 bit	
	Data format	DEC	

The parameter uses the upper control single-turn resolution. It needs to be linked with the electronic gear ratio of PA-09, 10, 11, and 12. When the parameter PD-22 is set to MON1 or MON2 = 8, it will be based on the position error before the electronic gear ratio. The ratio between this set value corresponds to the voltage level.

for example:

If the single-turn resolution of the host controller used is 10000pulse, after setting the electronic gear ratio and setting this parameter to the same resolution as the upper controller, the voltage observed by MON is (+/-8V) corresponding to (+/-10000 pulse) error, in order to calculate.

PC-25	POL	The output level for the exp	bected overload Communicate address: 0232H 0233H		ation
		Initial value	0		
		Control mode	ALL		
		Unit	%		
		Configuration range	0 ~ 100		
		Data size	16bit		
		Data format	Dec		

If the setting is between 0 and 100 and the continuous output load of the servo motor is above the set ratio (PC-25), the warning signal for expected overload will be output (DO set to 10, OLW). Cancel the function if the set value is above 100.

6.3.4. PD-XX (Expansion parameter)

PD-00 (Re-on)	ADR	The setting of the branch number		Communica address: 0300H 0301H	ation
		Initial value	7F		
		Control mode	ALL		
		Unit	N/A		
		Configuration range	01h ~ 7Fh		
		Data size	16bit		
		Data format	Hex		

When RS-232/RS-485 is used for communication, only one branch number may be set per servo drive. If one branch number is set for multiple drives, the communication would not work properly. The station number implies the absolute address communication network. It is also applicable to RS-232/485.

The following shows the definition of the set value:

- 0:4800
- 1:9600
- 2:19200
- 3:38400
- 4:57600
- 5:115200

PD-02	PTL	The protocol		Communi address: 0304H 0305H	ication
		Initial value	6		
		Control mode	ALL		
		Unit	N/A		
		Configuration range	6 ~ 8		
		Data size	16bit		
		Data format	Dec		

RS232 and RS485 share the same setting.

The following shows the definition of the set value:

6 = 8, N, 2(MODBUS, RTU)

7 = 8, E, 1(MODBUS, RTU)

8 = 8, O, 1(MODBUS, RUT)

PD-03	CFP	The handling of the commu	inication error Communi address: 0306H 0307H		ication
		Initial value	0		
		Control mode	ALL		
		Unit	N/A		
		Configuration range	0 ~ 1		
		Data size	16bit		
		Data format	Dec		

The following shows the definition of the set value:

0: A warning is issued and the operation proceeds.

1: A warning is issued and the operation is decelerated to stop. (The termination mode is set in Parameter PD-

42.)

PD-04	СОТ	The setting for the commun	nication timeout O308H O309H		ation
		Initial value	0		
		Control mode	ALL		
		Unit	Sec		
		Configuration range	0 ~ 20		
		Data size	16bit		
		Data format	Dec		

If the set value is not 0, turn on the communication timeout immediately; otherwise, turn it off.

PD-06 (N-keep)	SWDI	Control switch for the source contact (DI)	ce of the input	Communica address: 030CH 030DH	ation
		Initial value	0		
		Control mode	ALL		
		Unit	N/A		
		Configuration range	0 ~ 1		
		Data size	16bit		
		Data format	Dec		

0: The DI status is controlled by the external contact.

1: The DI status is controlled by the software. (The DI status can be set via PD-32.)

PD-07	CDT	The time for the delay of th response	e communication	Communica address: 030EH 030FH	ation
		Initial value	0		
		Control mode	ALL		
		Unit	1ms		
		Configuration range	0 ~ 1000		
		Data size	16bit		
		Data format	Dec		

This delays the communication time needed for the drive to respond to the upper controller.

PD-11 (R-only)	VER	The firmware version		Communica address: 0316H 0317H	ation
		Initial value	The factory setting		
		Control mode	ALL		
		Unit	N/A		
		Configuration range	N/A		
		Data size	16bit		
		Data format	Dec		

PD-12 (R-only)	FPGAVER	FPGA FW version	通訊位置: 0318H 0319H
	Initial value	The factory setting	
	Control mode	ALL	
	Unit	N/A	
Configuration		N/A	
	range	1.0.7.X	
	Data size	16bit	
	Data format	Dec	

PD-15 (R-only)	MON1	The display for Condition Monitoring Register 1		Communic address: 031EH 031FH	ation
		Initial value	-		
		Control mode	ALL		
		Unit	N/A		
		Configuration range	-		
		Data size	32bit		
		Data format	Dec		

The status value to be read by PD-23 can be set via the panel or communication. (Refer to PD-21.) The status data must be read from the communication address through the port.

Example:

If PD-23 is set to 3, the "total pulse numbers for the motor with encoder feedback" is read when PD-15 is read. If the content displayed is read via the MODBUS communication, two sets of 16-bit data from communication addresses 0012H and 0013H is read, respectively. The contents of these two sets form the 32-bit data.

PD-16 (R-only)	MON2	The display for Condition Monitoring Register 2		Communic address: 0320H 0321H	ation
		Initial value	-		
		Control mode	ALL		
		Unit	N/A		
		Configuration range	-		
		Data size	32bit		
		Data format	Dec		

The status value to be read by PD-24 can be set via the panel or communication. (Refer to PD-21.) The status

data must be read from the communication address through the port.

PD-17 (R-only)	MON3	The display for Condition Monitoring Register 3 0. 0		Communic. address: 0322H 0323H	ation
		Initial value	-		
		Control mode	ALL		
		Unit	N/A		
		Configuration range	-		
		Data size	32bit		
		Data format	Dec		

The status value to be read by PD-25 can be set via the panel or communication. (Refer to PD-21.) The status

data must be read from the communication address through the port.

PD-18 (R-only)	MON4	The display for Condition Monitoring Register 4		Communic address: 0324H 0325H	ation
		Initial value	-		
		Control mode	ALL		
		Unit	N/A		
		Configuration range	-		
		Data size	32bit		
		Data format	Dec		

The status value to be read by PD-26 can be set via the panel or communication. (Refer to PD-21.) The status data must be read from the communication address through the port.

PD-19 (R-only)	MON5	The display for Condition Monitoring Register 5 0326H 0327H		Communica address: 0326H 0327H	ation
		Initial value	-		
		Control mode	ALL		
		Unit	N/A		
		Configuration range	-		
		Data size	32bit		
		Data format	Dec		

The status value to be read by PD-27 can be set via the panel or communication. (Refer to PD-21.) The status

data must be read from the communication address through the port.

PD-20 (N-keep)	ALD	The display for the error status of the drive 0328 0329		Communica address: 0328H 0329H	ation
		Initial value	-		
		Control mode	ALL		
		Unit	N/A		
		Configuration range	0~58 (The alarm can	be cleared	
			by writing in 0.)		
		Data size	16bit		
		Data format	Dec		

Display of the hexadecimal value: The alarm code is displayed. (Refer to Chapter 9 Warning Troubleshooting for the code definition.)

PD-21	SSD	Display for the status of the drive		Communica address: 032AH 032BH	ation
		Initial value	0		
		Control mode	ALL		
		Unit	N/A		
		Configuration range	0 ~ 19		
		Data size	16bit		
		Data format	Dec		

Setting of the default monitoring parameter after power on:

Parameter function:

00:	Cd-P ,	The number of pulses entered for the pulse command (the number	[user unit]
		of pulses for the command entered to the upper controller)	
01:	Fb-P ,	The number of pulses for the motor feedback (the number of	[user unit]
		pulses fed to the upper controller from the drive)	
02:	Err-P,	The number of differential pulses for the Cd-P and Fb-P	[user unit]
03 :	Efb-P,	The number of pulses for the motor feedback (the number of	[pulse]
		pulses for the encoder feedback)	
04 :	SPEED,	Motor rotation speed	[r/min]
05 :	ECd.P,	The number of pulses entered for the pulse command (the number	[pulse]
		of pulses for the command entered to the upper controller* the	
		electronic gear ratio)	
06:	Eer-P,	The number of differential pulses for the ECd-P and EFb-P	[pulse]
07:	CP-Fr,	The pulse command input frequency	[Kpps]
08:	C-SP1,	The speed input command	[Volt]
09:	C-SP2,	The speed input command	[r/min]
10:	C-tq1,	The torque input command	[Volt]
11:	C-tq2,	The torque input command	[%]
12 :	PK-L ,	The peak torque	[%]
13 :	AvG-L,	The average torque	[%]
14 :	U-buS,	The voltage of the main circuit	[Volt]
15 :	J-L ,	The load/motor inertia ratio	[double]
16 :	rSn.fr,	The resonance frequency (The low byte is the first resonance	[Hz]
		point and the high byte is the second resonance point.)	
17:	diFF.2,	This indicates the number of absolute pulses with respect to the	[pulse]
		encoder Z-phase. Which means, the numerical value at the origin	
		of the Z-phase is 0. The encoder rotates clockwise or	
		counterclockwise for positive/negative 5000 pulses.	
18 :	Drv-t,	Drive temperature	[°C]
19 :	bAtt	battery voltage	[Volt]

PD-22	VMON	The analog output monitori	ng	Communication address: 032CH 032DH
		Initial value	01	
		Control mode	ALL	
		Unit	N/A	
		Configuration range	00h ~ 55h (Msc ver	rsion 00h ~
			88h)	
		Data size	16bit	
		Data format	Hex	

	MON2
--	------

Settings of MON1 and MON2	Description	
0	Motor speed (+/-8 volts/maximum rotation speed)	
1	Motor torque (+/-8 volts/maximum torque)	
2	Pulse command frequency (+8 volts/4.5 Mpps)	
3	Speed command (+/-8 volts/maximum speed command)	
4	Torque command (+/-8 volts/maximum torque command)	
5	VBUS voltage (+/-8 volts/464 V)	
6	Electronic cam drive shaft angular speed monitoring PL-13 = 1: Angle monitoring (+/-8 Volts / 360 degrees) PL-13 = 0: speed monitoring (+/-8 Volts / 6000 rpm)	
7	Electronic cam driven shaft output monitoring PL-14 = 1: Actual output monitoring of the slave axis (+/-8 Volts / PG81) PL-14 = 0: cam curve output monitoring (+/-8 Volts / PG81)	
8	Position error output monitoring (+/-8 Volts / PC24)	

PD-23	CM1	Selection for the content of the display for a Status Monitoring Register 1 a		Communica address: 032EH 032FH	ation
		Initial value	0		
		Control mode	ALL		
		Unit	N/A		
		Configuration range	0 ~ 19		
		Data size	16bit		
		Data format	Dec		

For the settings, refer to PD-21.

Example:

If PD-23 is set to 04, the "motor rotation speed (r/min)" is read if PD-23 is read.

PD-24	CM2	Selection for the content of the display for Status Monitoring Register 2		Communica address: 0330H 0331H	ation
		Initial value	0		
		Control mode	ALL		
		Unit	N/A		
		Configuration range	0 ~ 19		
		Data size	16bit		
		Data format	Dec		

For the settings, refer to PD-21.

PD-25	CM3	Selection for the content of the display for Status Monitoring Register 3Comm addre 0332 0333		Communica address: 0332H 0333H	ation
		Initial value	0		
		Control mode	ALL		
		Unit	N/A		
		Configuration range	0 ~ 19		
		Data size	16bit		
		Data format	Dec		

For the settings, refer to PD-21.

PD-26	CM4	Selection for the content of Condition Monitoring Regi	tion for the content of the display for ition Monitoring Register 4 0334H 0335H		ation
		Initial value	0		
		Control mode	ALL		
		Unit	N/A		
		Configuration range	0 ~ 19		
		Data size	16bit		
		Data format	Dec		

For the settings, refer to PD-21.

PD-27	CM5	The display content of Condition Monitoring Register 5 is selected.		Communica address: 0336H 0337H	ation
		Initial value	0		
		Control mode	ALL		
		Unit	N/A		
		Configuration range	0 ~ 19		
		Data size	16bit		
		Data format	Dec		

For the settings, refer to PD-21.

PD-28	VMR1	The ratio for MON1 analog monitoring output		Communica address: 0338H 0339H	ation
		Initial value	100		
		Control mode	ALL		
		Unit	%		
		Configuration range	0 ~ 100		
		Data size	16bit		
		Data format	Dec		

Example:

PD-22 = 01 (MON1 is the analogue output of motor speed while MON2 is the analogue output of motor torque.)

MON1 output voltage=	$8 * \frac{\text{Motor rotation speed}}{(\text{Max.speed}*\frac{\text{PD}-28}{100})}$	unit: volts
MON2 output voltage=	$8 * \frac{\text{Motor torque}}{(\text{Max.torque}*\frac{\text{PD}-29}{100})}$	unit: volts

PD-29	VMR2	The ratio for MON2 analog monitoring output		Communica address: 033AH 033BH	ation
		Initial value	100		
		Control mode	ALL		
		Unit	%		
		Configuration range	0 ~ 100		
		Data size	16bit		
		Data format	Dec		

Example:

PD-22 = 01 (MON1 is the analogue output of motor speed while MON2 is the analogue output of motor torque.)

MON1 output voltage=
$$8 * \frac{\text{Motor rotation speed}}{(\text{Max.speed}*\frac{\text{PD}-28}{100})}$$
 unit: volts
MON2 output voltage= $8 * \frac{\text{Motor torque}}{(\text{Max.torque}*\frac{\text{PD}-29}{100})}$: volts

PD-30	JOG	The jog control of the servo motor		Communic address: 033CH 033DH	ation
		Initial value	20		
		Control mode	ALL		
		Unit	r/min		
		Configuration range	0 ~ max.Speed		
		Data size	16bit		
		Data format	Dec		

Parameter function:

When a jog speed is set for the drive panel control parameter PD-30, the "JOG" icon will display on the panel. Press the "UP" key to control normal jog running. Press the DOWN key to control reverse jog running. Release the key to stop jog running. No running is possible if any error is displayed in this setting. The max. jog speed is the max. servo motor speed.

PD-31 (S-off) (N-keep)	FDO	The status and setting of the digital output		Communica address: 033EH 033FH	ation
		Initial value	Based on the control	mode	
		Control mode	ALL		
		Unit	N/A		
		Configuration range	00h ~ 3Fh		
		Data size	16bit		
		Data format	Hex		

For the setting <u>not</u> configured when the software specifies a DO status (PD-44 is not set to 006), this parameter displays the DO status (read-only).

For the setting configured when the software specifies a DO status (PD-44 = 006), this parameter may force to specify the DO status. Bit0 ~Bit5 corresponds to DO1~DO6, respectively.

PD-32	DISF	The status and setting of the digital input		Communication address: 0340H 0341H
		Initial value	Based on the control	mode
		Control mode	ALL	
		Unit	N/A	
		Configuration range	000h~ 1FFh	
		Data size	16bit	
		Data format	Hex	

For the setting <u>not</u> configured when the software specifies a DI status (PD-06 = 0), this parameter displays the DI status (read-only).

For the setting configured when the software specifies a DI status (PD-06 = 1), this parameter may force to specify the DI status. Bit0 ~Bit8 corresponds to DI1~DI9, respectively.

PD-33 (R-only)	ALH1	The record of the abnormal condition (N)		Communica address: 0342H 0343H	ation
		Initial value	0		
		Control mode	ALL		
		Unit	N/A		
		Configuration range			
		Data size	16bit		
		Data format	Dec		

Parameter function: The latest abnormal status record

LED displays ALXXX. XXX is an alarm code. Refer to the Drive Alarm List in 9.1.

PD-34 (R-only)	ALH2	The record of the abnormal	condition (N-1)	ation	
		Initial value	0		
		Control mode	ALL		
		Unit	N/A		
		Configuration range			
		Data size	16bit		
		Data format	Dec		

Parameter function: The second-last abnormal status record.

LED displays ALXXX. XXX is an alarm code. Refer to the Drive Alarm List in 9.1.

PD-35 (R-only)	ALH3	The record of the abnormal	condition (N-2) Communic address: 0346H 0347H		ation
		Initial value	0		
		Control mode	ALL		
		Unit	N/A		
		Configuration range			
		Data size	16bit		
		Data format	Dec		

Parameter function: The third-last abnormal status record.

LED displays ALXXX. XXX is an alarm code. Refer to the Drive Alarm List in 9.1.

PD-36 (R-only)	ALH4	The record of the abnormal condition (N-3)		Communica address: 0348H 0349H	ation
		Initial value	0		
		Control mode	ALL		
		Unit	N/A		
		Configuration range			
		Data size	16bit		
		Data format	Dec		

Parameter function: The fourth-last abnormal status record.

LED displays ALXXX. XXX is an alarm code. Refer to the Drive Alarm List in 9.1.

PD-37 (R-only)	ALH5	The record of the abnormal	condition (N-4)	ation	
<u>. </u>		Initial value	0		
		Control mode	ALL		
		Unit	N/A		
		Configuration range			
		Data size	16bit		
		Data format	Dec		

Parameter function: The fifth-last abnormal status record.

LED displays ALXXX. XXX is an alarm code. Refer to the Drive Alarm List in 9.1.

PD-39)	VAO	Analog speed input OFFSET		Communic address: 034EH 034FH	ation
		Initial value	0		
		Control mode	ALL		
		Unit	N/A		
		Configuration range			
		Data size	16bit		
		Data format	Dec		

Parameter function: Setting OFFSET amount adjustment.

PD-40	РСМ	The condition monitoring register (for PC software)		Communica address: 0350H 0351H	ation
		Initial value	0		
		Control mode	ALL		
		Unit	mV		
		Configuration range	-5000 ~ 5000		
		Data size	16 bit		
		Data format	DEC		

Parameter function: Setting OFFSET amount adjustment.

PD-41	PCMS	The content selection of the condition monitoring register (for PC software)		Communic address: 0352H 0353H	ation
		Initial value	0		
		Control mode	ALL		
		Unit	-		
		Configuration range	0 ~ 1		
		Data size	16 bit		
		Data format	DEC		

PD-42	MSTP	The function of the motor stop mode		Communica address: 0354H 0355H	ation	
		Initial value	0			
		Control mode	ALL			
		Unit	N/A			
		Configuration range	00h ~ 21h			
		Data size	16bit			
		Data format	Hex			
Motor stop mode						

\square \square \square \square D	vnamic brake	execution	options
	ynunne orake	encourion	options

- Motor stop mode: When CWL, CCWL, EMGS or communications errors are generated, the motor stop mode functions (no support for the position mode).
 - 0: Stop immediately
 - 1: Stop gradually
- Dynamic brake execution options: The stop mode for Servo Off or Alarm.
 - 0: Execution of dynamic brake
 - 1: Motor free run
 - 2: Execution of dynamic brake and then free run when the motor stops thoroughly (motor speed less than PC-20).

PD-43	TSPD	The level for the detection of the target rotation speed		Communica address: 0356H 0357H	ation
		Initial value	The rated value		
		Control mode	ALL		
		Unit	r/min		
		Configuration range	0 ~ max.Speed		
		Data size	16bit		
		Data format	Dec		

The digital output (TSPD) is enabled when the speed reaches to the preset target speed. If the clockwise and counterclockwise rotation speed of the motor exceeds the set value, the target speed signal is formed and the output pin is enabled.

PD-44	RegMisc1	The write-in of the special	parameter Communic address: 0358H 0359H		ation
		Initial value	0		
		Control mode	ALL		
		Unit	N/A		
		Configuration range	0000h ~ FFFFh		
		Data size	16bit]
		Data format	Hex]

Settings:

Parameter code	Function
4	Parameter reset (Power needs to be reconnected after reset.)
6	Activation of the compulsory DO mode
106	After the compulsory DO mode is activated, it is possible to switch back to the normal DO mode.

PD-45	RES	The value of the regenerative resistor		Communication address: 035AH 035BH
		Initial value	See the table below.	
		Control mode	ALL	
		Unit	Ohm	
		Configuration range	40 ~ 750	
		Data size	16bit	
		Data format	Dec	

Settings:

Model	Initial value
100 W ~ 1 kW	40Ω
1.5 kW ~ 2 kW	20Ω

PD-46	RESC	The capacity of the regenerative resistor		Communica address: 035CH 035DH	ation
		Initial value	See the table below.		
		Control mode	ALL		
		Unit	Watt		
		Configuration range	30 ~ 3000		
		Data size	16bit		
		Data format	Dec		

Model	Initial value
750W	40W
1KW ~ 3KW	40W

PD-47	CRSR	The collision protection for the motor (torque percentage)		Communica address: 035EH 035FH	ation
		Initial value	0		
		Control mode	ALL		
		Unit	%		
		Configuration range	0~300		
		Data size	16 bit		
		Data format	DEC		

Parameter function: Set the level of protection (for the percentage of rated torque, set 0 to off, set 1 or above to open the anti-collision function).

PD-48	CRST	The collision protection for the motor (protection time)		Communica address: 0360H 0361H	ation
		Initial value	1		
		Control mode	ALL		
		Unit	ms		
		Configuration range	0~1000		
		Data size	16 bit		
		Data format	DEC		

Parameter function: Set the protection time When the level setting is reached (PD-47), AL021 (motor collision

PD-49	EXREG	The selection of the externa	The selection of the external braking unit 0362H 0363H		
		Initial value	0		
		Control mode	ALL		
		Unit	N/A		
		Configuration range	0 ~ 1		
		Data size	16bit		
		Data format	Dec		

error) will be displayed after the protected time.

Parameter function: An external braking unit can be used when the capacity of the built-in brake resistor is low. For the information about the connection, refer to Section 3.1.

Set PD-49 to 0 when an internal or external braking resistor is used.

Set PD-49 to 1 when an external braking unit is used.

Erroneous settings will generate AL004 (Regeneration Error).

PD-50	AUTS	The status of inertia adjustment in the semi-auto mode		Communica address: 0364H 0365H	ation
		Initial value	0		
		Control mode	ALL		
		Unit	N/A		
		Configuration range	0 ~ 1		
		Data size	16bit		
		Data format	Dec		

Semi-auto setting:

1: The inertia estimation in the semi-auto mode is completed. Refer to PB-35 for the load inertia value.

0: When 0 is <u>displayed</u>, the inertia adjustment is still underway.

When 0 is set, the inertia adjustment is still underway.

PD-52	PLOSS	The detection of the input phase failure 0 0		Communica address: 0368H 0369H	ation
		Initial value	1		
		Control mode	ALL		
		Unit	N/A		
		Configuration range	0 ~ 1 (0: Deactivat	tion of the	
			input phase failure de	etection)	
		Data size	16bit		
		Data format	Dec		

PD-53	OSPW	The condition for the overspeed warning		Communica address: 036AH 036BH	ation
		Initial value	Based on model		
		Control mode	ALL		
		Unit	r/min		
		Configuration range	1 ~ 6500		
		Data size	16 bit		
		Data format	DEC		

PD-54	PCF	The condition for giving warnings of the excessive error regarding the position control		Communic address: 036CH 036DH	ation
		Initial value	6400000		
		Control mode	P / Msc		
		Unit	pulse		
		Configuration range	1 ~ 80000000		
		Data size	32 bit		
		Data format	DEC]

PD-55	LVL	The level for the error of the low voltage Com 036E 036F		Communica address: 036EH 036FH	ation
		Initial value	160		
		Control mode	ALL		
		Unit	Volt.(rms)		
		Configuration range	140 ~ 190		
		Data size	16bit		
		Data format	Dec		

This parameter set the low-voltage detection level. The low-voltage alarm is released when the mains supply is lower than this setting. (After the low-voltage error is eliminated, power must be reconnected to the drive to clear the alarm.)

PD-56 (Re-on)	ENCType	Encoder type setting	Communication address: 0370H 0371H
	Initial value	0	
	Control mode	ALL	
	Unit	-	
	Configuration	0 - 1	
	range	0~1	
	Data size	16 bit	
	Data format	DEC	

0: Incremental operation, the absolute motor can be used as an incremental motor.

1: Absolute operation, only for absolute motors, if using an incremental motor, it will jump out of AL037.

PD-57	INFOS	Message reading selection	Communication address: 0372H 0373H
	Initial value	0	
	Control mode	ALL	
	Unit	-	
	Configuration	0 - 7	
	range	0~7	
	Data size	16 bit	
	Data format	DEC	

Bit0: DI/DO read unit setting. 1: pulse wave; 0: PUU.

Bit1: Communication read unit setting. 1: pulse wave; 0: PUU.

Bit2: Overflow warning setting. 1: Overflow does not warn; 0: Overflow warning AL038 / AL035.

Bit3 ~ bit15: Reserved (0).

PD-58 (N-keep)	ABSRST	Absolute position reset	Communication address: 0374H 0375H
	Initial value	000h	
	Control mode	ALL	
	Unit	-	
	Configuration	000h = 111h	
	range	00011~1111	
	Data size	16 bit	
	Data format	HEX	

Setting 111 will reset the absolute position of the current encoder, which is the same as using DI (AENC_C) to clear the coordinates to zero.

PD-59 (R-only) (N-keep)	AENCSTS	Absolute coordinate system status	Communication address: 0376H 0377H
	Initial value	00h	
	Control mode	ALL	
	Unit	-	
	Configuration	00h = 1Eh	
	range	0011~1111	
	Data size	16 bit	
	Data format	HEX	

Bit0: 1 means absolute position loss; 0 means normal.

Bit 1:1 means the battery low voltage; 0 represents normal.

Bit2: 1 means the absolute lap overflow; 0 represents normal.

Bit3: 1 means the PUU overflow; 0 represents normal.

Bit4: 1 means that the absolute coordinates have not been established yet; 0 means normal.

Bit5 ~ bit15: Reserved (0).

PD-60 (R-only) (N-keep)	APREV	Encoder absolute position - number of turns	Communication address: 0378H 0379H
	Initial value	0	
	Control mode	ALL	
	Unit	rev	
	Configuration	20768 20767	
	range	-52708 ~ 52707	
, and the second se	Data size	32 bit	
, and the second se	Data format	DEC	

When PD-57 bit 1 = 1, it is set to read the pulse value, this parameter represents the number of turns of the absolute position of the encoder.

When PD-57 bit 1 = 0, this parameter is set to 0 when the PUU value is read.

PD-61 (R-only) (N-keep)	APPLS	Encoder absolute position –Single turn pulse number or PUU	Communication address: 037AH 037BH
	Initial value	0	
	Control mode	ALL	
	Unit	pulse / PUU	
	Configuration	0 ~ (1048576-1) (pulse number)	
	range	-2147483648 ~ 2147483647 (PUU)	
	Data size	32 bit	
	Data format	DEC	

When PD-57 bit 1 = 1 is set to read the pulse value, this parameter represents the number of pulses in the

absolute position of the encoder.

When PD-57 bit 1 = 0, set to read the PUU value, this parameter is the absolute position PUU of the horse.

PD-62	ZPWID	Z phase width adjustment	Communication address: 037CH 037DH
	Initial value	1	
	Control mode	ALL	
	Unit	100 us	
	Configuration	1 - 50	
	range	1~50	
	Data size	16 bit	
	Data format	DEC	

After setting PD-62, the system determines the encoder Z-phase output width according to the PD-62 setting value, for example:

 $PD-62 = 1 \Rightarrow Z$ -phase output width = 125 us

 $PD-62 = 2 \Rightarrow Z$ -phase output width = 25 us

 $PD-62 = 5 \Rightarrow Z$ -phase output width = 625 us

PD-62 = $10 \Rightarrow$ Z-phase output width = 1250 us = 1.25 ms

PD-62 = 50 \Rightarrow Z-phase output width = 6250 us = 6.25 ms

So on and so forth

6.3.5. PG-XX (Msc system parameter)

PG-00	HmCtrl	Setting for the return-to-origin	Communication address: 0600H 0601H
	Initial value	0	
	Control mode	Msc	
	Unit	-	
	Configuration	$0 - 0 \times 113$	
	range	0~0X115	
	Data size	16 bit	
	Data format	HEX	

Setting for the return-to-origin :

Bit	bit08 ~ bit11	bit04 ~ bit07	bit00 ~ bit03
Max. Display word			
	Triggering limit treatment in reset	Setting forOrg origin signal polarity	Setting for the return-to-origin
Function	System control is 0, no input, This function is not available in the limit reference mode.	System control is 0, no input, This function is not available in the limit reference mode.	0x0: The system is moving forward, The PL limit signal is a reset reference. 0x1: The system is moving backwards, The NL limit signal is a reference for reversion.
	Automatic return after 0x0 limit trigger 0x1 limit trigger after jumping	0x0 rising edge 0x1 falling edge	0x2: The system is moving forward, The Org origin signal is a reference for reversion. 0x3: The system is moving forward, The Org origin signal is a reference for reversion.
	System control is 0, no input, This feature is not available in the current mode. Jumping after the limit trigger	System control is 0, no input, This feature is not available in the current mode.	0x4: The system uses the current position as the reset reference.

For details of the return , please refer to 7.6.1.

PG-01	HmHSpd	Return-to-origin high speed	Communication address: 0602H 0603H
	Initial value	7000	
	Control mode	Msc	
	Unit	0.1 r/min	
	Configuration	100 - 20000	
	range	100 ~ 20000	
	Data size	16 bit	
	Data format	DEC	

Set the target speed of the high speed segment during the return-to-origin process.

For details of the return , please refer to 7.6.1.

PG-02	HmLSpd	Return-to-origin low speed	Communication address: 0604H 0605H
	Initial value	1000	
	Control mode	Msc	
	Unit	0.1 r/min	
	Configuration	10 - 4000	
	range	10 ~ 4000	
	Data size	16 bit	
	Data format	DEC	

Set the target speed of the low speed segment during the return-to-origin process.

For details of the return , please refer to 7.6.1.

0

PG-03	HmHAcc	Return-to-origin high speed acceleration time	Communication address: 0606H 0607H
	Initial value	100	
	Control mode	Msc	
	Unit	1 ms	
	Configuration	1 - 10000	
	range	1 ~ 10000	
	Data size	16 bit	
	Data format	DEC	

Set the acceleration time of the high-speed section during the return-to-origin process. The time algorithm is

consistent with PB-03. The time required for $0 \Rightarrow 3000$ r/min is set, and the slope is used to accelerate the system to the target speed.

Note: This slope is also used for -3000 \Rightarrow 0 r/min.

For details of the return , please refer to 7.6.1.

PG-04	HmHDec	Return-to-origin high-speed deceleration time	Communication address: 0608H 0609H
	Initial value	100	
	Control mode	Msc	
	Unit	1 ms	
	Configuration	1 ~ 10000	
	range	1~10000	
	Data size	16 bit	
	Data format	DEC	

Set the deceleration time of the high-speed section during the return-to-origin process. The time algorithm is the same as that of PB-04. The time required for $3000 \Rightarrow 0$ r/min is set, and the slope is pushed to the target speed by this slope.

Note: This slope is also used for $0 \Rightarrow -3000$ r/min.

For details of the return , please see 7.6.1.

PG-05	HmLAcc	Return-to-origin low-speed acceleration time	Communication address: 060AH 060BH
	Initial value	100	
	Control mode	Msc	
	Unit	1 ms	
	Configuration	1 ~ 500	
	range	1~500	
	Data size	16 bit	
	Data format	DEC	

Set the deceleration time of the low-speed section during the return-to-origin process. The time algorithm is the same as that of PB-04. The time required for $3000 \Rightarrow 0$ r/min is set, and the slope is pushed to the target speed by

this slope.

Note: This slope is also used for $0 \Rightarrow -3000$ r/min.

For details of the return , please see 7.6.1.

PG-06	HmLDec	Return-to-origin low-speed deceleration time	Communication address: 060CH 060DH
	Initial value	100	
	Control mode	Msc	
	Unit	1 ms	
	Configuration	1 ~ 500	
	range	1 * 500	
	Data size	16 bit	
	Data format	DEC	

During the return-to-origin process, the deceleration time of the low-speed section is the same as that of PB-04. The time required for $3000 \Rightarrow 0$ r/min is set, and the slope is pushed to the target speed by this slope. Note: This slope is also used for $0 \Rightarrow -3000$ r/min.

For details of the return , please refer to 7.6.1.

PG-07	ZpCount	Return-to-origin to find Z times	Communication address: 060EH 060FH
	Initial value	-1	
	Control mode	Msc	
	Unit	times	
	Configuration	10000 - 10000	
	range	-10000 ~ 10000	
	Data size	16 bit	
, and the second se	Data format	DEC	

When this parameter is not zero, the system will look for the set value of Z times and find the Z later in the return.

The setting value is positive: the watch system looks for the reference signal and then looks forward to Z, so the moving direction is not changed by looking for the Z job.

The setting value is negative: the watch system looks for the reference signal and then looks forward to Z, so the moving direction is not changed by looking for the Z job.

PG-08	HmDef	Return-to-origin to origin definition	Communication address: 0610H 0611H
	Initial value	0	
	Control mode	Msc	
	Unit	PUU pulse	
	Configuration	-2147483647 ~ 2147483647	
	range	217/70307/ 217/70307/	
	Data size	32 bit	
	Data format	DEC	

After the return of the origin, the system establishes the starting point of the PUU coordinate with this parameter value, and provides the subsequent Msc command.

PG-09 (R-only)	OrgEnc	Return-to-origin to complete the origin encoder reading	Communication address: 0612H 0613H
	Initial value	0	
	Control mode	Msc	
	Unit	Encoder pulse	
	Configuration	$0 \sim 0 \times 1 \wedge \text{EFEEE}$	
	range		
	Data size	32 bit	
	Data format	HEX	

This parameter is a read-only parameter for monitoring. After the return of the origin, the system writes the encoder reading value +0x1A000000 back to this parameter, so the user reads the highest bit of this parameter belongs to the beginning of 0x1A, and the table system completes the return-to-origin operation.

PG-10	PNLDec	Deceleration time of return-to-origin limit return	Communication address: 0614H 0615H
	Initial value	10	
	Control mode	Msc	
	Unit	1 ms	
	Configuration	1~50	
	range	1 50	
	Data size	16 bit	
	Data format	DEC	

In the process of setting the return-to-origin, if the system encounters the limit signal, whether it is running at high speed or low speed, it will decelerate according to this deceleration time to avoid damage caused by the mechanism collision caused by excessive deceleration. The time algorithm is consistent with PB-04, and the time required for $3000 \Rightarrow 0$ r/min is set, and the slope is used to push the system to decelerate to the target speed. Note: This slope is also used for $0 \Rightarrow -3000$ r/min.

PG-11	SWTrig	Msc software startup trigger	Communication address: 0616H 0617H
	Initial value	0	
	Control mode	Msc	
	Unit	-	
	Configuration	0 - 100	
	range	0~100	
	Data size	16 bit	
	Data format	DEC	

This parameter belongs to the non-memory parameter, so the power-on is 0. After this parameter is set, the system will trigger the home position return operation or Msc command according to the set value.

Setting value	Description
0	Force stop origin return operation or Msc command
1 ~ 68	Depending on the input value, execute the number 1 ~ 68 Msc command.
100	Perform the return-to-origin operation

PG-12	AcDe00	Msc acceleration and deceleration time data group 01	Communication address: 0618H 0619H
	Initial value	1	
	Control mode	Msc	
	Unit	1 ms	
	Configuration range	1 ~ 65535	
	Data size	16 bit	
	Data format	DEC]

Setting the Msc command to use the acceleration/deceleration time. This parameter is the Msc shared data group. See section 7.6.4 for details.

 $PG-13 \sim PG-27$ are the same with $PG-12 \cdot$ they are all Msc acceleration/deceleration time data sets, but the initial values are different from the communication addresses, and are summarized as follows:

Parametemr	Abbr.	Function	Communica	tion address	Initial value
PG-13	AcDe01	Msc acceleration and deceleration time data group 02	061AH	061BH	2
PG-14	AcDe02	Msc acceleration and deceleration time data group 03	061CH	061DH	4
PG-15	AcDe03	Msc acceleration and deceleration time data group 04	061EH	061FH	6
PG-16	AcDe04	Msc acceleration and deceleration time data group 05	0620H	0621H	8
PG-17	AcDe05	Msc acceleration and deceleration time data group 06	0622H	0623H	10
PG-18	AcDe06	Msc acceleration and deceleration time data group 07	0624H	0625H	20
PG-19	AcDe07	Msc acceleration and deceleration time data group 08	0626H	0627H	40
PG-20	AcDe08	Msc acceleration and deceleration time data group 09	0628H	0629H	60
PG-21	AcDe09	Msc acceleration and deceleration time data group 10	062AH	062BH	80
PG-22	AcDe0A	Msc acceleration and deceleration time data group 11	062CH	062DH	100
PG-23	AcDe0B	Msc acceleration and deceleration time data group 12	062EH	062FH	200
PG-24	AcDe0C	Msc acceleration and deceleration time data group 13	0630H	0631H	400
PG-25	AcDe0D	Msc acceleration and deceleration time data group 14	0632H	0633H	600
PG-26	AcDe0E	Msc acceleration and deceleration time data group 15	0634H	0635H	800
PG-27	AcDe0F	Msc acceleration and deceleration time data group 16	0636H	0637H	1000

PG-28	Dely00	Msc delay time data group 01	Communication address: 0638H 0639H
	Initial value	0	
	Control mode	Msc	
	Unit	1 ms	
	Configuration	0 - 32767	
	range	0~32707	
	Data size	16 bit	
	Data format	DEC	

Setting the delay time for the Msc command. This parameter is the Msc shared data group. See Section 7.6.4 for details.

 $PG-29 \sim PG-43$ are the same with $PG-28 \cdot$ they are all Msc delay time data groups, but the initial values are different from the communication addresses, and are summarized as follows:

Parametemr	Abbr.	Function	Communica	tion address	Initial value
PG-29	Dely01	Msc delay time data group 02	063AH	063BH	5
PG-30	Dely02	Msc delay time data group 03	063CH	063DH	10
PG-31	Dely03	Msc delay time data group 04	063EH	063FH	20
PG-32	Dely04	Msc delay time data group 05	0640H	0641H	30
PG-33	Dely05	Msc delay time data group 06	0642H	0643H	50
PG-34	Dely06	Msc delay time data group 07	0644H	0645H	70
PG-35	Dely07	Msc delay time data group 08	0646H	0647H	100
PG-36	Dely08	Msc delay time data group 09	0648H	0649H	200
PG-37	Dely09	Msc delay time data group 10	064AH	064BH	300
PG-38	Dely0A	Msc delay time data group 11	064CH	064DH	500
PG-39	Dely0B	Msc delay time data group 12	064EH	064FH	700
PG-40	Dely0C	Msc delay time data group 13	0650H	0651H	1000
PG-41	Dely0D	Msc delay time data group 14	0652H	0653H	2000
PG-42	Dely0E	Msc delay time data group 15	0654H	0655H	3000
PG-43	Dely0F	Msc delay time data group 16	0656H	0657H	5000

PG-44	Sped00	Msc target speed data group 01	Communication address: 0658H 0659H
	Initial value	1	
	Control mode	Msc	
	Unit	0.1 r/min	
	Configuration	1 - max Speed	
	range	1 ~ max. speed	
	Data size	16 bit	
	Data format	DEC	

Setting the target speed of the Msc command. The maximum value is the maximum motor speed *10. Take 400W as an example. The maximum value is 60000. This parameter is the Msc shared data group. See section 7.6.4 for details.

 $PG-45 \sim PG-59$ are the same with $PG-44 \cdot$ they are all Msc target speed data groups, but the initial values are different from the communication addresses, and are summarized as follows:

Parametemr	Abbr.	Function	Communication address		Initial value
PG-45	Sped01	Msc target speed data group 02	065AH	065BH	10
PG-46	Sped02	Msc target speed data group 03	065CH	065DH	30
PG-47	Sped03	Msc target speed data group 04	065EH	065FH	50
PG-48	Sped04	Msc target speed data group 05	0660H	0661H	70
PG-49	Sped05	Msc target speed data group 06	0662H	0663H	100
PG-50	Sped06	Msc target speed data group 07	0664H	0665H	300
PG-51	Sped07	Msc target speed data group 08	0666H	0667H	500
PG-52	Sped08	Msc target speed data group 09	0668H	0669H	700
PG-53	Sped09	Msc target speed data group 10	066AH	066BH	1000
PG-54	Sped0A	Msc target speed data group 11	066CH	066DH	3000
PG-55	Sped0B	Msc target speed data group 12	066EH	066FH	5000
PG-56	Sped0C	Msc target speed data group 13	0670H	0671H	7000
PG-57	Sped0D	Msc target speed data group 14	0672H	0673H	10000
PG-58	Sped0E	Msc target speed data group 15	0674H	0675H	20000
PG-59	Sped0F	Msc target speed data group 16	0676H	0677H	30000

PG-60	ExIsr	Msc program interrupt settings	Communication address: 0678H 0679H
	Initial value	0	
	Control mode	Msc	
	Unit	-	
	Configuration	$0 = 0 \times 0^2$	
	range	0~0x02	
	Data size	16 bit	
	Data format	HEX	

During the execution of the Msc instruction, the system processes the instruction interrupting operation of the Msc trigger source according to the PG-60 setting value. When the setting is:

0x00: During the execution of the Msc instruction, the system does not provide an instruction interrupt operation.

0x01: During the execution of the Msc instruction, the system will interleave the instruction according to the trigger source after the current instruction is completed.

0x02: During the execution of the Msc instruction, the system immediately interpolates the operation with trigger source.

See section 7.6.6 for details.

PG-61	DiNo01	Msc command selector - DI number 01	Communication address: 067AH 067BH
	Initial value	1	
	Control mode	Msc	
	Unit	-	
	Configuration	0 ~ 68	
	range	0~08	
	Data size	16 bit	
	Data format	DEC	

When the DI MscNo1 ~ 4 state and = 1, the Msc command is selected with this parameter setting value. See section 7.6.5 for details.

 $PG-62 \sim PG-75$ are the same with $PG-61 \cdot All$ are Msc command selectors, but the communication addresses are different, summarized as follows :

Parametemr	Abbr.	Initial value	Function	Communica	tion address
PG-62	DiNo02	2	Msc command selector - DI number 02	067CH	067DH
PG-63	DiNo03	3	Msc command selector - DI number 03	067EH	067FH
PG-64	DiNo04	4	Msc command selector - DI number 04	0680H	0681H
PG-65	DiNo05	5	Msc command selector - DI number 05	0682H	0683H
PG-66	DiNo06	6	Msc command selector - DI number 06	0684H	0685H
PG-67	DiNo07	7	Msc command selector - DI number 07	0686H	0687H
PG-68	DiNo08	8	Msc command selector - DI number 08	0688H	0689H
PG-69	DiNo09	9	Msc command selector - DI number 09	068AH	068BH
PG-70	DiNo0A	10	Msc command selector - DI number 10	068CH	068DH
PG-71	DiNo0B	11	Msc command selector - DI number 11	068EH	068FH
PG-72	DiNo0C	12	Msc command selector - DI number 12	0690H	0691H
PG-73	DiNo0D	13	Msc command selector - DI number 13	0692H	0693H
PG-74	DiNo0E	14	Msc command selector - DI number 14	0694H	0695H
PG-75	DiNo0F	15	Msc command selector - DI number 15	0696H	0697H

PG-76	DiEv01	Msc command trigger - Di-Ev1	Communication address: 0698H 0699H
	Initial value	0	
	Control mode	Msc	
	Unit	-	
	Configuration	0 - 68 68	
	range	0~00.00	
	Data size	16 bit	
	Data format	DEC	

When DI MscEv1 is triggered, the system executes the Msc command according to the trigger type as the rising edge or falling source and the PG-76 set value.

	Ten digits and Digits	One and two decimal place	
Max. Display word	88	88	
Function	DI MscEv1 upper edge trigger, The system executes the Msc command according to this field	DI MscEv1 lower edge trigger, The system executes the Msc command according to this field	

See section 7.6.5 for details.

PG-77 ~ PG-79 are the same with PG-61 \cdot

All are Msc command selectors, but the communication addresses are different, summarized as follows:

Parametemr	Abbr.	Function	Communica	tion address
PG-77	DiEv02	Msc command trigger - Di-Ev2	069AH	069BH
PG-78	DiEv03	Msc command trigger - Di-Ev3	069CH	069DH
PG-79	DiEv04	Msc command trigger - Di-Ev4	069EH	069FH

Lite-On Technology Corp. Industrial Automation

PG-80	InxStrok	Msc indexing total stroke	Communication address: 06A0H 06A1H
	Initial value	1,000,000,000	
	Control mode	Msc	
	Unit	-	
	Configuration	10 1 000 000 000	
	range	10 ~ 1,000,000,000	
	Data size	32 bit	
	Data format	DEC	

The Msc indexing command will determine the total stroke of the indexing coordinate according to the set value of PG-80, and the command value of the Msc indexing command shall not exceed PG-80. For details, see section 7.6.5.

PG-81	FrqRat	Msc mode pulse wave frequency analogy rate denominator	Communication address: 06A2H 06A3H
	Initial value	80,000,000	
	Control mode	Msc	
	Unit	-	
	Configuration	80 000 - 2147483647	
	range	80,000 ~ 2147483047	
, and the second se	Data size	32 bit	
	Data format	DEC	

Since the Msc command is a position pulse command generated by the internal calculation of the system, there is no pulse input hardware limit (4 Mbps). In order for the analog monitor output to output the effective position pulse frequency voltage in the Msc mode, the user must cooperate with the Msc command. Enter PG-81 for magnification adjustment to observe the full position pulse frequency waveform.

PG-82 (R-only)	1stAbsLat	Position coordinate monitoring parameters when Msc starts	Communication address: 06A4H 06A5H
	Initial value	0	
	Control mode	Msc	
	Unit	PUU pulse	
	Configuration		
	range	-	
	Data size	32 bit	
	Data format	DEC	

This parameter is a read-only parameter for monitoring. In Msc mode, when servo off -> On, the system records the absolute position of the Msc coordinate (PUU) at the time of switching to PG-82 for verification of the displacement. $^{\circ}$

PG-83 (R-only)	AbsCrd	Msc position coordinate monitoring parameters	Communication address: 06A6H 06A7H
	Initial value	0	
	Control mode	Msc	
	Unit	PUU pulse	
	Configuration		
	range	-	
	Data size	32 bit	
	Data format	DEC	

This parameter is a read-only parameter for monitoring. In Msc mode, the system records the current Msc

coordinate absolute position (PUU) in PG-83 for verification of the current Msc coordinate position.

PG-84 (R-only)	lstInxLat	Indexing coordinate monitoring parameters when Msc starts	Communication address: 06A8H 06A9H
	Initial value	0	
	Control mode	Msc	
	Unit	PUU pulse	
	Configuration		
	range	-	
	Data size	32 bit	
	Data format	DEC	

This parameter is a read-only parameter for monitoring. In Msc mode, when servo off -> On, the system records the Msc index coordinate absolute position (PUU) at the time of switching to PG-84 for verification of the displacement amount.

PG-85 (R-only)	InxCrdPuu	Msc current indexing coordinate monitoring parameters	Communication address: 06AAH 06ABH
	Initial value	0	
	Control mode	Msc	
	Unit	PUU pulse	
	Configuration		
	range	-	
	Data size	32 bit	
	Data format	DEC	

This parameter is a read-only parameter for monitoring. In Msc mode, the system records the current Msc

indexing absolute position (PUU) on the PG-85 for verification of the current Msc indexing coordinate position.

PG-86 (R-only)	AbsOrgDone	Multi-turn absolute motor origin return state	Communication address: 06ACH 06ADH
	Initial value	0	
	Control mode	Msc	
	Unit	-	
	Configuration		
	range	-	
	Data size	16 bit	
	Data format	HEX	

This parameter is a read-only parameter for monitoring. In the Msc mode, it is used to record whether the multi-

turn absolute motor completes the return-to-origin operation.

6.3.6. PH-XX (Msc command parameter)

PH-00	MscSet01	Msc command 01 set value	Communication address: 0700H 0701H
	Initial value	0	
	Control mode	Msc	
	Unit	-	
	Configuration		
	range		
	Data size	32 bit	
	Data format	HEX	

The setting parameters of the mode, function, acceleration/deceleration and delay time of the first group of Msc

Bit	bit31 ~ bit28	bit27 ~ bit24	bit23 ·	~ bit16
Max. Display word				
Function	0x0 can't overlap (delay valid) 0x1 can overlap (deferred invalid)	0x0 no command 0x1 fixed speed PPS 0x2 fixed speed RPM 0x3 absolute positioning 0x4 relative positioning 0x5 incremental positioning 0x6 forward indexing 0x7 reverse indexing 0x8 shortcut indexing	After you finish jumping to: 0x00 stop 0xA0 sequential 0xB0 step 0x01~44 command (No.1~68	command)
位元	bit15 ~ bit12	bit11 ~ bit08	bit07 ~ bit04	bit03 ~ bit00
Max. Display word				
Function	Target speed 0x0 ~ 0xF (Set the Msc target speed data group number, and the other commands and fixed speed commands have no function)	Deceleration time 0x0 ~ 0xF (Set the Msc acceleration/deceleration time data group number, and no command command has no function)	Acceleration time 0x0 ~ 0xF (Set the Msc acceleration/deceleration time data group number, and no command command has no function)	Delay time 0x0 ~ 0xF (Set the Msc delay time data group number, and no command command has no function)

commands are as follows.

For details of the content , please refer to 7.6.3

PH-01	MscDat01	Msc command 01 data value	Communication address: 0702H 0703H
	Initial value	0	
	Control mode	Msc	
	Unit	-	
	Configuration	See the table below for details	
	range	See the table below for details	
	Data size	32 bit	
	Data format	DEC	

The command data values of the first group of Msc command are described below.

- 1. PH-00 is set to constant speed (PPS, RPM) and PH-01 is the speed command value.
- 2. PH-00 is set to positioning (absolute, relative, incremental), PH-01 is the position command value.
- 3. PH-00 is set to index (forward, reverse, shortcut), PH-01 is the position value of the index (\leq PG80).
- 4. PH-00 is set to no command, PH-01 has no effect, but still performs the jump operation according to PH-00 setting.

The setting range of each type of command is as follows:

Command type	Setting range		
PH-00 is set to fixed speed PPS	±2147483647		
PH 00 is set to fived speed PDM	±60000		
r n-oo is set to lixed speed Kr M	(\leq 750W Motor maximum speed, other wattages see motor specifications)		
PH-00 is set to position	+2147482647		
(absolute, relative, incremental)	±214/46304/		
PH-00 is set to index	\leq PG80		
(forward, reverse, shortcut)			

For details of the content , please refer to 7.6.3 $\,^\circ$

PH-02 ~ PH-99 are the same with PH-00 and PH-01. They are all Msc command settings and command data values, but the communication addresses are different. The summary is as follows:

Parameter	Abbr.	Function	Setting	Communica	tion address
PH-02	MscSet02	Msc command 02 set value	Same as PH-00	0704H	0705H
PH-03	MscDat02	Msc command 02 data value	Same as PH-01	0706H	0707H
PH-04	MscSet03	Msc command 03 set value	Same as PH-00	0708H	0709H
PH-05	MscDat03	Msc command 03 data value	Same as PH-01	070AH	070BH
PH-06	MscSet04	Msc command 04 set value	Same as PH-00	070CH	070DH
PH-07	MscDat04	Msc command 04 data value	Same as PH-01	070EH	070FH
PH-08	MscSet05	Msc command 05 set value	Same as PH-00	0710H	0711H
PH-09	MscDat05	Msc command 05 data value	Same as PH-01	0712H	0713H
PH-10	MscSet06	Msc command 06 set value	Same as PH-00	0714H	0715H
PH-11	MscDat06	Msc command 06 data value	Same as PH-01	0716H	0717H
PH-12	MscSet07	Msc command 07 set value	Same as PH-00	0718H	0719H
PH-13	MscDat07	Msc command 07 data value	Same as PH-01	071AH	071BH

Parameter	Abbr.	Function	Setting	Communica	tion address
PH-14	MscSet08	Msc command 08 set value	Same as PH-00	071CH	071DH
PH-15	MscDat08	Msc command 08 data value	Same as PH-01	071EH	071FH
PH-16	MscSet09	Msc command 09 set value	Same as PH-00	0720H	0721H
PH-17	MscDat09	Msc command 09 data value	Same as PH-01	0722H	0723H
PH-18	MscSet10	Msc command 10 set value	Same as PH-00	0724H	0725H
PH-19	MscDat10	Msc command 10 data value	Same as PH-01	0726H	0727H
PH-20	MscSet11	Msc command 11 set value	Same as PH-00	0728H	0729H
PH-21	MscDat11	Msc command 11 data value	Same as PH-01	072AH	072BH
PH-22	MscSet12	Msc command 12 set value	Same as PH-00	072CH	072DH
PH-23	MscDat12	Msc command 12 data value	Same as PH-01	072EH	072FH
PH-24	MscSet13	Msc command 13 set value	Same as PH-00	0730H	0731H
PH-25	MscDat13	Msc command 13 data value	Same as PH-01	0732H	0733H
PH-26	MscSet14	Msc command 14 set value	Same as PH-00	0734H	0735H
PH-27	MscDat14	Msc command 14 data value	Same as PH-01	0736H	0737H
PH-28	MscSet15	Msc command 15 set value	Same as PH-00	0738H	0739H
PH-29	MscDat15	Msc command 15 data value	Same as PH-01	073AH	073BH
PH-30	MscSet16	Msc command 16 set value	Same as PH-00	073CH	073DH
PH-31	MscDat16	Msc command 16 data value	Same as PH-01	073EH	073FH
PH-32	MscSet17	Msc command 17 set value	Same as PH-00	0740H	0741H
PH-33	MscDat17	Msc command 17 data value	Same as PH-01	0742H	0743H
PH-34	MscSet18	Msc command 18 set value	Same as PH-00	0744H	0745H
PH-35	MscDat18	Msc command 18 data value	Same as PH-01	0746H	0747H
PH-36	MscSet19	Msc command 19 set value	Same as PH-00	0748H	0749H
PH-37	MscDat19	Msc command 19 data value	Same as PH-01	074AH	074BH
PH-38	MscSet20	Msc command 20 set value	Same as PH-00	074CH	074DH
PH-39	MscDat20	Msc command 20 data value	Same as PH-01	074EH	074FH
PH-40	MscSet21	Msc command 21 set value	Same as PH-00	0750H	0751H
PH-41	MscDat21	Msc command 21 data value	Same as PH-01	0752H	0753H
PH-42	MscSet22	Msc command 22 set value	Same as PH-00	0754H	0755H
PH-43	MscDat22	Msc command 22 data value	Same as PH-01	0756H	0757H
PH-44	MscSet23	Msc command 23 set value	Same as PH-00	0758H	0759H
PH-45	MscDat23	Msc command 23 data value	Same as PH-01	075AH	075BH
PH-46	MscSet24	Msc command 24 set value	Same as PH-00	075CH	075DH
PH-47	MscDat24	Msc command 24 data value	Same as PH-01	075EH	075FH
PH-48	MscSet25	Msc command 25 set value	Same as PH-00	0760H	0761H
PH-49	MscDat25	Msc command 25 data value	Same as PH-01	0762H	0763H
PH-50	MscSet26	Msc command 26 set value	Same as PH-00	0764H	0765H
PH-51	MscDat26	Msc command 26 data value	Same as PH-01	0766H	0767H

Parameter	Abbr.	Function	Setting	Communica	tion address
PH-52	MscSet27	Msc command 27 set value	Same as PH-00	0768H	0769H
PH-53	MscDat27	Msc command 27 data value	Same as PH-01	076AH	076BH
PH-54	MscSet28	Msc command 28 set value	Same as PH-00	076CH	076DH
PH-55	MscDat28	Msc command 28 data value	Same as PH-01	076EH	076FH
PH-56	MscSet29	Msc command 29 set value	Same as PH-00	0770H	0771H
PH-57	MscDat29	Msc command 29 data value	Same as PH-01	0772H	0773H
PH-58	MscSet30	Msc command 30 set value	Same as PH-00	0774H	0775H
PH-59	MscDat30	Msc command 30 data value	Same as PH-01	0776H	0777H
PH-60	MscSet31	Msc command 31 set value	Same as PH-00	0778H	0779H
PH-61	MscDat31	Msc command 31 data value	Same as PH-01	077AH	077BH
PH-62	MscSet32	Msc command 32 set value	Same as PH-00	077CH	077DH
PH-63	MscDat32	Msc command 32 data value	Same as PH-01	077EH	077FH
PH-64	MscSet33	Msc command 33 set value	Same as PH-00	0780H	0781H
PH-65	MscDat33	Msc command 33 data value	Same as PH-01	0782H	0783H
PH-66	MscSet34	Msc command 34 setting value	Same as PH-00	0784H	0785H
PH-67	MscDat34	Msc command 34 data value	Same as PH-01	0786H	0787H
PH-68	MscSet35	Msc command 35 set value	Same as PH-00	0788H	0789H
PH-69	MscDat35	Msc command 35 data value	Same as PH-01	078AH	078BH
PH-70	MscSet36	Msc command 36 setting value	Same as PH-00	078CH	078DH
PH-71	MscDat36	Msc command 36 data value	Same as PH-01	078EH	078FH
PH-72	MscSet37	Msc command 37 set value	Same as PH-00	0790H	0791H
PH-73	MscDat37	Msc command 37 data value	Same as PH-01	0792H	0793H
PH-74	MscSet38	Msc command 38 set value	Same as PH-00	0794H	0795H
PH-75	MscDat38	Msc command 38 data value	Same as PH-01	0796H	0797H
PH-76	MscSet39	Msc command 39 setting value	Same as PH-00	0798H	0799H
PH-77	MscDat39	Msc command 39 data value	Same as PH-01	079AH	079BH
PH-78	MscSet40	Msc command 40 set value	Same as PH-00	079CH	079DH
PH-79	MscDat40	Msc command 40 data value	Same as PH-01	079EH	079FH
PH-80	MscSet41	Msc command 41 set value	Same as PH-00	07A0H	07A1H
PH-81	MscDat41	Msc command 41 data value	Same as PH-01	07A2H	07A3H
PH-82	MscSet42	Msc command 42 set value	Same as PH-00	07A4H	07A5H
PH-83	MscDat42	Msc command 42 data value	Same as PH-01	07A6H	07A7H
PH-84	MscSet43	Msc command 43 setting value	Same as PH-00	07A8H	07A9H
PH-85	MscDat43	Msc command 43 data value	Same as PH-01	07AAH	07ABH
PH-86	MscSet44	Msc command 44 set value	Same as PH-00	07ACH	07ADH
PH-87	MscDat44	Msc command 44 data value	Same as PH-01	07AEH	07AFH
PH-88	MscSet45	Msc command 45 set value	Same as PH-00	07B0H	07B1H
PH-89	MscDat45	Msc command 45 data value	Same as PH-01	07B2H	07B3H

Parameter	Abbr.	Function	Setting	Communica	tion address
PH-90	MscSet46	Msc command 46 set value	Same as PH-00	07B4H	07B5H
PH-91	MscDat46	Msc command 46 data value	Same as PH-01	07B6H	07B7H
PH-92	MscSet47	Msc command 47 set value	Same as PH-00	07B8H	07B9H
PH-93	MscDat47	Msc command 47 data value	Same as PH-01	07BAH	07BBH
PH-94	MscSet48	Msc command 48 set value	Same as PH-00	07BCH	07BDH
PH-95	MscDat48	Msc command 48 data value	Same as PH-01	07BEH	07BFH
PH-96	MscSet49	Msc command 49 set value	Same as PH-00	07C0H	07C1H
PH-97	MscDat49	Msc command 49 data value	Same as PH-01	07C2H	07C3H
PH-98	MscSet50	Msc command 50 set value	Same as PH-00	07C4H	07C5H
PH-99	MscDat50	Msc command 50 data value	Same as PH-01	07C6H	07C7H

6.3.7. PJ-XX (Msc command parameter)

PJ-00	MscSet51	Msc command 51 setting value	Communication address: 0800H 0801H
	Initial value	0	
	Control mode	Msc	
	Unit	-	
	Configuration		
	range	0x0 ~ 0x18D01111	
	Data size	32 bit	
	Data format	HEX	

The 51st group Msc command mode, function, acceleration and deceleration and delay time and other setting parameters, the specific settings are the same as PH-00, please refer to PH-00 description. See section 7.6.3 for details of the specific

PJ-01	MscDat51	Msc command 51 data value	Communication address: 0802H 0803H
	Initial value	0	
	Control mode	Msc	
	Unit	-	
	Configuration	See PH 01 for details	
	range	See I II-01 for details.	
	Data size	32 bit	
	Data format	DEC	

The 51st group command data value of the Msc command is the same as PH-01. Please refer to the PH-01 description. See section 7.6.3 for details of the specific

 $PJ-02 \sim PJ-35$ are the same with PJ-00 及 PJ-01. All are Msc command settings and command data values, but the communication addresses are different, summarized as follows:

Parameter	Abbr.	Function	Setting	Communica	tion address
PJ-02	MscSet52	Msc command 52 set value	Same as PJ-00	0804H	0805H
PJ-03	MscDat52	Msc command 52 data value	Same as PJ-01	0806H	0807H
PJ-04	MscSet53	Msc command 53 setting value	Same as PJ-00	0808H	0809H
PJ-05	MscDat53	Msc command 53 data value	Same as PJ-01	080AH	080BH
PJ-06	MscSet54	Msc command 54 setting value	Same as PJ-00	080CH	080DH
PJ-07	MscDat54	Msc command 54 data value	Same as PJ-01	080EH	080FH
PJ-08	MscSet55	Msc command 55 set value	Same as PJ-00	0810H	0811H
PJ-09	MscDat55	Msc command 55 data value	Same as PJ-01	0812H	0813H
PJ-10	MscSet56	Msc command 56 set value	Same as PJ-00	0814H	0815H
PJ-11	MscDat56	Msc command 56 data value	Same as PJ-01	0816H	0817H
PJ-12	MscSet57	Msc command 57 setting	Same as PJ-00	0818H	0819H
PJ-13	MscDat57	Msc command 57 data value	Same as PJ-01	081AH	081BH

Parameter	Abbr.	Function	Setting	Communica	tion address
PJ-14	MscSet58	Msc command 58 set value	Same as PJ-00	081CH	081DH
PJ-15	MscDat58	Msc command 58 data value	Same as PJ-01	081EH	081FH
PJ-16	MscSet59	Msc command 59 setting value	Same as PJ-00	0820H	0821H
PJ-17	MscDat59	Msc command 59 data value	Same as PJ-01	0822H	0823H
PJ-18	MscSet60	Msc command 60 set value	Same as PJ-00	0824H	0825H
PJ-19	MscDat60	Msc command 60 data value	Same as PJ-01	0826H	0827H
PJ-20	MscSet61	Msc command 61 set value	Same as PJ-00	0828H	0829H
PJ-21	MscDat61	Msc command 61 data value	Same as PJ-01	082AH	082BH
PJ-22	MscSet62	Msc command 62 set value	Same as PJ-00	082CH	082DH
PJ-23	MscDat62	Msc command 62 data value	Same as PJ-01	082EH	082FH
PJ-24	MscSet63	Msc command 63 set value	Same as PJ-00	0830H	0831H
PJ-25	MscDat63	Msc command 63 data value	Same as PJ-01	0832H	0833H
PJ-26	MscSet64	Msc command 64 set value	Same as PJ-00	0834H	0835H
PJ-27	MscDat64	Msc command 64 data value	Same as PJ-01	0836H	0837H
PJ-28	MscSet65	Msc command 65 set value	Same as PJ-00	0838H	0839H
PJ-29	MscDat65	Msc command 65 data value	Same as PJ-01	083AH	083BH
PJ-30	MscSet66	Msc command 66 set value	Same as PJ-00	083CH	083DH
PJ-31	MscDat66	Msc command 66 data value	Same as PJ-01	083EH	083FH
PJ-32	MscSet67	Msc command 67 set value	Same as PJ-00	0840H	0841H
PJ-33	MscDat67	Msc command 67 data value	Same as PJ-01	0842H	0843H
PJ-34	MscSet68	Msc command 68 set value	Same as PJ-00	0844H	0845H
PJ-35	MscDat68	Msc command 68 data value	Same as PJ-01	0846H	0847H

6.3.8. PL-XX (Msc Electronic cam parameter)

PL-00	CamCtrl	Electronic cam main function setting	Communication address: 0900H 0901H
	Initial value	0	
	Control mode	Msc	
	Unit	-	
	Configuration	$0 \times 0 \times 0 \times 0 122$	
	range	040~040122	
	Data size	16 bit	
	Data format	HEX	

Electronic cam main function setting

Bit	bit08 ~ bit11	bit04 ~ bit07	bit00 ~ bit03
Max. Display Bit			
	Whether to disable the electronic cam after the master axis is single turn (>=1 turns)	Active axis source	E-cam enable setting
Function	0x00: The master axis input is continued after the master axis is completed in a single cycle. 0x01: The electronic cam is deactivated after the master axis is completed in a single cycle.	0x00: The external pulse wave is set according to PA-01. 0x01: Virtual master axis - speed command. 0x02: Virtual master axis - position command °	0x00: The electronic cam is deactivated. 0x01: DI Cam En enables electronic cams for On. 0x02: Enable the electronic cam immediately.

PL-01	CamSpd	Virtual master axis command – speed command	Communication address: 0902H 0903H
	Initial value	0	
	Control mode	Msc	
	Unit	0.1 r/min	
	Configuration	60000 ~ 60000	
	range	-00000 ~ 00000	
	Data size	32 bit	
	Data format	DEC	

Set the virtual master axis speed command value, which is 0.1 r/min.

If the PL-00 master axis source is a virtual master axis-speed command, the system will determine the direction

of the master axis rotation with the PL-01 polarity.

Please refer to 7.6.9 for specific description.

PL-02	CamPos	Virtual master axis command – position command	Communication address: 0904H 0905H
	Initial value	0	
	Control mode	Msc	
	Unit	PUU	
	Configuration range	-2147483647 ~ 2147483647	
	Data size	32 bit	
	Data format	DEC	

Set the virtual master axis position command value and take the PUU unit (Pulse of User Unit).

If the source of the PL-00 master axis is the virtual master axis-position command, the system will determine the direction of rotation of the master axis with the polarity of PL-02.

PL-03	CamAcc	Virtual master axis command acceleration time	Communication address: 0906H 0907H
	Initial value	50	
	Control mode	Msc	
	Unit	ms	
	Configuration	1 - 65535	
	range	1 ~ 05555	
	Data size	16 bit	
	Data format	DEC	

Please refer to 7.6.9 for specific description

Set the virtual master axis speed command acceleration time. The acceleration time calculation is different from the other module's fixed slope mode. The calculation of $0 \rightarrow PL-01$ requires PL-03 ms.

Please refer to 7.6.9 for specific description

PL-04	CamDec	Virtual master axis command deceleration time	Communication address: 0908H 0909H
	Initial value	50	
	Control mode	Msc	
	Unit	ms	
	Configuration	1 ~ 65535	
	range	1~05555	
	Data size	16 bit	
	Data format	DEC	

Set the virtual master axis speed command deceleration time. The deceleration time calculation is different from the other module's fixed slope mode. $PL-01 \rightarrow 0$ needs PL-04 ms calculation.

Please refer to 7.6.9 for specific description

PL-05	CamBlk	Main axis command mask amount	Communication address: 090AH 090BH
	Initial value	0	
	Control mode	Msc	
	Unit	PUU	
	Configuration	0 ~ 50000000	
	range	0~ 50000000	
	Data size	32 bit	
	Data format	DEC	

Set the active axis pulse wave command mask amount. When the active axis pulse wave>mask amount, the active axis pulse wave is input into the electronic cam module to generate the driven shaft displacement stroke. Please refer to 7.6.9 for specific description

PL-06	CamRes	Active shaft single turn resolution	Communication address: 090CH 090DH
	Initial value	1000	
	Control mode	Msc	
	Unit	PUU	
	Configuration	10 - 21/7/836/7	
	range	10~214/48304/	
	Data size	32 bit	
	Data format	DEC	

Set the active axis pulse wave map to map the active axis angle of the slave axis cam curve.

In addition, if the AB type pulse input, because the system uses 4 times frequency to calculate the input pulse wave, the single-turn resolution needs to be 4 times the original resolution of the active axis.

Pulse wave number $\rightarrow 0 \sim 360$ degrees: number of active axis pulse wave \times PL-07÷PL-06×360 Please refer to 7.6.9 for specific description

PL-07	CamCyl	Number of rotations of the driven shaft	Communication address: 090EH 090FH
	Initial value	1	
	Control mode	Msc	
	Unit	rev	
	Configuration	1 ~ 00000	
	range	1~ 77777	
	Data size	32 bit	
	Data format	DEC	

When the drive axis reaches the single-turn resolution, set the number of rotations of the slave axis. Pulse wave number \rightarrow 0 ~ 360 degrees: number of active axis pulse wave × PL-07÷PL-06×360 Please refer to 7.6.9 for specific description

PL-08	CamPhs	Spindle phase angle adjustment	Communication address: 0910H 0911H
	Initial value	0	
	Control mode	Msc	
	Unit	0.1 度	
	Configuration	0 2600	
	range	0 ~ 3000	
	Data size	16 bit	
	Data format	DEC	

The spindle phase angle is adjusted from 0 to 360.0 degrees.

Please refer to 7.6.9 for specific description

PL-09	CamOfs	Cam curve table offset	Communication address: 0912H 0913H
	Initial value	0	
	Control mode	Msc	
	Unit	PUU	
	Configuration	2147483647 - 2147483647	
	range	-214/40304/~214/40304/	
	Data size	32 bit	
	Data format	DEC	

Set the offset of the driven axis travel output.

Please refer to 7.6.9 for specific description

PL-10	CamGan	Cam curve magnification	Communication address: 0914H 0915H
	Initial value	1000	
	Control mode	Msc	
	Unit	0.001 times	
	Configuration	1000000 1000000	
	range	-1000000 ~ 1000000	
	Data size	32 bit	
	Data format	DEC	

Set the times of the driven axis travel output.

Please refer to 7.6.9 for specific description

PL-11 (R-only)	CamSec	Cam curve original data points	Communication address: 0916H 0917H
	Initial value	17	
	Control mode	Msc	
	Unit	Number	
	Configuration range	3 ~ 720	
	Data size	16 bit	
	Data format	DEC	

The number of raw data points of the cam curve input by the user is displayed, and a set of 17-point cam curves is default, but this parameter is not reset with the PD-44.

PL-12	CamTyp	Cam curve output command type	Communication address: 0918H 0919H
	Initial value	1	
	Control mode	Msc	
	Unit	-	
	Configuration	0.2	
	range	0~2	
	Data size	16 bit	
	Data format	Hex	

Cam curve output command type.

Setting	Output command type.			
0		In this mode, the curve output command will incrementally accumulate each cam curve output command, so as shown in the left figure, as the X axis (drive axis angle) gradually increases, the Y axis (output stroke) also gradually increases.		
1		In this mode, the curve output command will process each cam curve output command in absolute mode, so as shown on the left, when the X axis (drive axis angle) is gradually increased, the Y axis (output stroke) will change according to the curve height.		
2		In this mode, the curve output mode is the same as the set value = 1 mode. The difference is that if the cam curve is set at the 360 degree set value \neq 0 degrees, in the PL-12 = 1 mode, when the drive axis angle is > 360 degrees, Forced to return to the coordinate travel after 0 degrees, but in PL-12 = 2 mode, when the drive shaft angle is >360 degrees, the system automatically raises the subsequent coordinate stroke according to the 360 degree set value, as shown in the left figure.		

Please refer to 7.6.9 for specific description

PL-13	CamMon	Cam drive shaft analog monitor switching	Communication address: 091AH 091BH
	Initial value	0	
	Control mode	Msc	
	Unit	-	
	Configuration	0 - 1	
	range	0~1	
	Data size	16 bit	
	Data format	Hex	

Setting	Output command type.			
0		In this mode, the system will output the active shaft speed analog voltage, the voltage multiplier is 6000 r/min corresponding to 8 volts, and if the active shaft is fixed speed, the output is as shown on the left.		
1	forawrd backward	In this mode, the system will output the drive shaft angle change, the voltage multiplier is 360 degrees corresponding to 8 volts, and if the drive shaft is fixed speed, the output waveform is as shown on the left.		

Please refer to 7.6.9 for specific description

PL-14		CamMon	Cam	Communication address: 091CH 091DH	
	I	nitial value	0		
	Co	ontrol mode	Msc		
		Unit	-		
	Co	onfiguration range	0 ~ 1		
		Data size	16 bit		
	Γ	Data format	Hex		
Setting	5			Output command type.	
0			\longrightarrow	In this mode, the system will output the ca interpolated data) pulse wave according to angle. The voltage magnification is 8 vo and the waveform output is shown on the	m curve (small the active axis olts for PG-81, left.
1		PL-12=0 PL-12=0 PL-12=2 PL-12=2	$ \xrightarrow{1} \rightarrow $	In this mode, the system will output the ac according to the master axis angle and PL- voltage multiplier is 8 volts for PG-81, and output is shown on the left.	tual cam stroke 12 setting. The 1 the waveform

Please refer to 7.6.9 for specific description

7. Control Function

7.1. Selection of operating mode

ISA drive provides three basic operating modes, position, speed and torque modes. You can use a single control mode or the mixed mode for control. The following table lists all the operating modes and relevant description:

Mode name		Mode	Mode	Description
	Desition	code	number	The daine meeting the perities common does d
	mode (Terminal input)	Р	0x0	controls the motor to move to the target position. The position command is input from the terminal block. The signal type is pulse.
Single mode	Speed mode	S	0x1	The drive receives the speed command and controls the motor to reach the target rotational speed. The internal register provides the speed command (three registers available) or the external terminal block inputs the analog voltage ($-10V \sim +10V$). The command selection is based on the DI signal.
	Torque mode	Т	0x2	The drive receives the torque command and controls the motor to reach the target torque. The internal register provides the torque command (three registers available) or the external terminal block inputs the analog voltage ($-10V \sim +10V$). The command selection is based on the DI signal.
	Speed mode (no analog input)	Sn	0x8	The drive receives the speed command and controls the motor to reach the target rotational speed. The speed command can only be provided by the internal register (three registers available). It cannot be provided by the external terminal block. The command selection is based on the DI signal.
	Torque mode (no analog input)	Tn	0x9	The drive receives the torque command and controls the motor to reach the target torque. The torque command can only be provided by the internal register (three registers available). It cannot be provided by the external terminal block. The command selection is based on the DI signal.
	Msc mode	Msc	0xA	The user inputs the motion sequence data into the driver in advance, and the driver receives the trigger signal, activates the origin return and the Msc command, and controls the motor displacement according to the user motion timing data.
_ 17	Position- Speed	PS	0x5	P and S is switched via the DI signal.
Mixed mode	Position- Torque	РТ	0x6	P and T is switched via the DI signal.
—	Speed- Torque	ST	0x7	S and T is switched via the DI signal.

The steps for mode change are as follows:

1. Switch the drive to Servo Off by turning the SON signal of DI off.

2. Fill the mode number from the table above into the setting of the control mode in Parameter PA-

00. Refer to the description from Chapter 6.

3. After finish setting, disconnect the drive and connect the power to the drive.

7.2. Position mode

The position mode for control is used for the device requiring precise positioning, such as the industrial machinery. The directional input of the command pulse operates the rotation angle of the motor through the external pulse. The device accepts the pulse input up to 4Mpps. The closed-loop system of the position focuses on the speed mode. The gain position controller and lead compensation are added externally. Two operating modes (manual and auto) are available for the user, just like the speed mode. The section explains the gain position controller, lead compensation and processing of position command.

7.2.1. Command of position mode

The command of the position mode for control (P) comes from the input pulse of the terminal block. Three types are available for the pulse and each type is divided into positive and negative logic. The pulse is set in Parameter PA-01. Refer to the table below:

PA-01 (S-off)	СМРТ	Setting for the input format of the external pulse train	Communication address: 0002H 0003H
	Initial value	0002	
	Control mode	T / P	
	Unit	N/A	
Configura	Configuration	$0 = 0 \times 11/2$	
	range	0~0X1142	
	Data size	16bit	
	Data format	Hex	

- Pulse type
 - ____: Filter width
 - Logic type
 - Source of the external pulse input

Refer to Chapter 6 for setting in details.

7.2.2. Control structure of the position mode

The diagram below shows the basic control structure:

For better control, the pulse signal is processed and modified through the processing unit of the position command. The following diagram shows the structure:

The graph shows P Mode. The selection is made by using PA-00. The electronic gear ratio can set in P

Mode to set proper positioning resolution. The command smoothing can be achieved via the low-pass filter.

Inhibit input (INHP)

INHP must be selected through DI before the function is used. (Refer to PC-01~09.) The function won't be used if it is not selected in DI. After selection, the calculation of the pulse command signal in the position mode for control is terminated after the INHP input is on. The motor remains locked.

7.2.3. Electronic gear ratio

ITEON

The change of travel ratio can be conducted simply and easily via the electronic gear. Higher electronic gear ratio usually leads to stepping of the position command. The condition can be improved by smoothing the ratio through the low-pass filter. If the electronic gear ratio equals 0.5, the ratio of each two pulses from the command end to the pulse of the motor rotation is 1 pulse.

Relevant parameters:

PA-09	GRM1	Numerator of the Electronic Gear Ratio (N1)	Communication address: 0012H 0013H
	Initial value	1	
	Control mode	Р	
	Unit	pulse	
	Configuration	$1 \sim (2^{26} 1)$	
	range	1~(2-1)	
	Data size	32bit	
	Data format	Dec	

Multi-step configuration for the numerator of electronic gear ratio.

The numerator of the electronic gear ratio can be selected and switched via these two input pins: GNUM0, GNUM1. It will be set to PA-09 as default if the two input pins are not defined. Switch the numerator when the machine stops to avoid vibration during switching.

PA-10 (S-off)	GRD	Denominator of the Electronic Gear Ratio (M)	Communication address: 0014H 0015H
	Initial value	1	
	Control mode	Р	
	Unit	pulse	
	Configuration	$1 \sim (2^{31} \cdot 1)$	
	range	1 - (2 - 1)	
	Data size	32bit	
	Data format	Dec	

The servo motor is easy to rotate violently when there is a configuration error. The setting must follow the rules below.

Setting for the input ratio of the command pulse

Command for pulse input $(p_1) \times \frac{N}{M} =$ Command position (p_2) ; $(p_1) \times \frac{N}{M} = (p_2)$

Scope for the input ratio of the command pulse: $1 \neq 50 < \frac{N_x}{M} < 25600 \ (x = 1 \cdot 2 \cdot 3 \cdot 4)$

7.2.4. Adjustment for the gain of position circuit

Before setting the position control unit, the user must select the operating mode for gain adjustment first manually (PB-33) for the speed control unit. As a result, the setting of speed control unit is complete. The speed control unit must be set before the setting of the position control unit because the speed circuit is included in the internal circuit of the position circuit.

Parameter PB-33 allows the user to select the operating mode for gain adjustment. If the user decides to adjust the gain manually, the gain of the speed circuit must be adjusted before setting the proportional gain (PB-20) and feed-forward gain (PB-22) of the position circuit.

Proportional gain(PB-20) : The gain increase would expand the response bandwidth of the position circuit. Feed-forward gain (PB-22): This reduces the phase-lag error.

The bandwidth of the position circuit must not exceed that of the speed circuit. It is suggested that response bandwidth of position circuit $(Hz) \leq$ response bandwidth of speed circuit.(Hz)

Fp: Response bandwidth of position (Hz)

Fv: Response bandwidth of speed (Hz)

$$Fp \leq \frac{FV}{4}$$

E.g.: For setting the response bandwidth of position to 10Hz, Parameter KPP(PB-20) is designed as KPP= $2 \times \pi \times Fp = 2 \times \pi \times 10=62.8$

Relevant parameters:

PB-20	KPP	Gain of the position control	Communication address: 0128H 0129H
	Initial value	125	
	Control mode	Р	
	Unit	rad/s	
	Configuration	0 = 2047	
	range	0~2047	
	Data size	16bit	
	Data format	Dec	

When the gain of the position control is increased, the position response is increased and the error magnitude of the position control is reduced. Vibration and noise occurs easily if the gain is set to an excessive value.

PB-22	PFG	Feed-forward gain for the position control	Communication address: 012CH 012DH
	Initial value	50	
	Control mode	Р	
	Unit	%	
	Configuration	0 - 100	
	range	0~100	
	Data size	16bit	
	Data format	Dec	

For smooth change of the position control command, the increase in gain improves the magnitude of the following error for the position. For unsmooth change of the position control command, the decrease in gain mitigates the vibration of the mechanism during operation.

Position control unit:

If the KPP of proportional gain is adjusted to an excessive degree, the open-loop bandwidth of the position is expanded, which results in the reduction of phase margin and the motor vibration. The KPP must be lowered until the motor rotor no longer vibrates. With the interference of the external torque, excessively low KPP cannot meet reasonable requirements of the following error for the position. By adjusting the PFG of the feed-forward gain properly, the dynamic following error of position can be reduced effectively.

LITEON

7.3. Speed mode

The speed mode for control (S or Sn) is used for the device requiring precise speed control, such as the CNC processing machine. Two modes for command input are available for the drive, which are the analog and register input.

- The input of analog command is used to manipulate the rotation speed of motor through the external voltage.
- Two application methods are available for the input of command register:
 - For the first method, the user sets different values of speed command to three command registers (PA-14~PA-16) before activation and switches them through SP0 and SP1 of DI in CN1.
 - As for the second one, the content value of the command register is changed through communication. For the incoherence generated due to the switching in command register, the device provides complete S-curve planning.

In the closed-loop control system for speed, two gain adjustment modes (PB-33, manual and auto) are available for the user.

- Manual gain mode: The user sets all parameters for speed loop and all auto or auxiliary functions are turned off.
- Automatic gain mode: The estimation of load inertia is provided. The parameter of the drive is adjusted simultaneously. The parameter set by the user is regarded as the initial value.

7.3.1. Selection of speed command

The source of the speed command can be divided into the analog voltage input externally and the internal parameter. The selection depends on the DI signal of CN1. The correspondence between the speed command and signal is shown in the following table:

Speed	DI signa	l of CN1					
command	SPD1	SPD0	Command Source			Contents	Scope
no.							
S1	0	0	Mode	S	External analog command	Voltage difference	
						between V-REF and	-10 V ~ +10V
						GND	
				Sn	None	The speed command	0
						is 0.	
S2	0	1	Parameter of internal register			PA-14	-5000.0 ~ 5000.0
S3	1	0				PA-15	-5000.0 ~ 5000.0
S4	1	1				PA-16	-5000.0 ~ 5000.0

PD0 ~ SPD1 status: 0 represents open circuit (Open) and 1 represents close circuit (Close).

In the situation that SPD0=SPD1=0, the command is 0 if the mode is Sn. If the user does not need to use the analog voltage as the speed command, he or she may adopt Sn Mode to make sure that the analog voltage is without zero drift. For S Mode, the command is the analog voltage difference

LITEON

between V-REF and GND. The voltage range input is $-10V \sim +10V$. The rotation speed corresponding to the voltage is adjustable (PA-17).

- If either SPD0 or SPD1 is not 0, the speed command is the internal parameter. The command becomes effective right after the change between SPD0 and SPD1.
- The setting for the parameter of the internal register is between -50000 and 50000. Set value = Setting range x unit (0.1r/min)
 E.g.: PA-14 = +30000. Set value of rotation speed = +30000 x 0.1r/min = +3000r/min

The speed command discussed in this section can be treated as the speed command under the speed mode (S or Sn). It can also be input as the command of speed limit under the torque mode (T or Tn).

7.3.2. Control structure of the speed mode

The processing unit of speed command selects the source of speed command based on 7.3.1. The selection includes the size of command represented by the analog voltage set by the proportioner (PA-17), as well as the S-curve used for smoothing the speed command. The speed control unit manages the gain parameter of the drive and computes the command of the current supplied to the motor promptly. The resonance suppression unit is used to suppress the resonance of machinery structure. The units are explained as follows:

First, the functions regarding the Processing unit of speed command are introduced. The structure diagram is as below:

7.3.3. Smoothing of speed command

Smoothing of S-curve command

The command generator of S-curve smoothing for the speed adopts the planning of the three-phase acceleration curve during acceleration and deceleration. It enables smoothing of the motion control and generates continuous acceleration to avoid excessive jerk (acceleration differentiation) due to rapid change of the command entered. The jerk may stimulate the vibration and noise of the machinery structure. The user may use the speed constant of S-curve acceleration (PB-03) to adjust the slope of speed change during acceleration. The speed constant of S-curve deceleration (PB-04) is used to adjust the slope of speed change during deceleration. The smoothing constant of S-curve acceleration and deceleration (PB-05) is used to improve the stability during start and stop of motor. The device provides the calculation for the time required for the completion of command. T (ms) indicates the operating time. S (r/min) represents the command of absolute speed, which is the absolute value calculated by subtracting the final speed from the initial speed. When PB-05 is set to 0, the command generator of S-curve smoothing is turned off. No smoothing effect is available for the speed command at this moment. Relevant parameters:

PB-03	STAC	Acceleration constant of the smooth S-curve	Communication address: 0106H 0107H
	Initial value	200	
	Control mode	S	
	Unit	ms	
	Configuration	120000	
	range	1~20000	
	Data size	16bit	
	Data format	Dec	

Constant for speed acceleration: As for PB-03, PB-04 and PB-05, the time required for acceleration from 0 to 3000r/min can be set separately.

NOTE 1) If the source of the speed command is an analog source or PB-05 is set to 0, turn off the smooth function for S-shaped acceleration-deceleration.

PB-04	STDC	Deceleration constant of the smooth S-curve	Communication address: 0108H 0109H
	Initial value	200	
	Control mode	S	
	Unit	ms	
	Configuration	1 ~ 20000	
	range	1 ~ 20000	
	Data size	16bit	
	Data format	Dec	

Constant for speed acceleration: As for PB-03, PB-04 and PB-05, the time required for

acceleration from 0 to 3000r/min can be set separately.

NOTE 1) If the source of the speed command is an analog source or PB-05 is set to 0, turn off the smooth function for S-shaped acceleration-deceleration.

PB-05	STL	Smooth constant of the smooth S-curve	Communication address: 010AH 010BH
	Initial value	0	
	Control mode	S	
	Unit	ms	
	Configuration	0 - 10000	
	range	0~10000	
	Data size	16bit	
	Data format	Dec	

PB-03: It is used to set the acceleration time for trapezoidal speed command.

PB-04: It is used to set the deceleration time for trapezoidal speed command.

PB-05: It is used to set the smooth time of the S-shaped acceleration-deceleration.

PB-03, PB-04 and PB-05 can be set separately.

NOTE 1) If the source <u>of the speed command is an analog source</u> or <u>PB-05 is set to 0</u>, turn off the smooth function for S-shaped acceleration-deceleration.

• Analog command smoother

The analog command smoother is provided primary to offer the buffering when the analog input signal changes too fast.

The S-curve generator for analog speed allows the smoothing of the analog input command. Its time planning is the same as the one for the S-curve of general speed. The speed and acceleration curves are continuous. The graph above illustrates the schematic diagram for the S-curve generator for analog speed. The slopes of the rotation speed command referred during acceleration and deceleration are different. It is evident that how the command is followed. The poor following property shows in the graph. The user may

adjust the time setting (PB-03, PB-04 and PB-05) based on the actual situation for improvement.

• Low-pass filter at the command end

The low-pass filter at the command end is usually used to attenuate unneeded high-frequency response or noise while smoothing the command.

Relevant parameters:

PB-00	SFIL	Acceleration-deceleration smoothing constant of the analog speed command	Communication address: 0100H 0101H
	Initial value	0	
	Control mode	S	
	Unit	ms	
	Configuration	$0 \sim 1000$ (0: The function is turned off)	
	range	$0 \sim 1000 (0.11)$ runction is turned on.)	
	Data size	16bit	
	Data format	Dec	

7.3.4. Proportioner at the analog command end

The speed command of motor is controlled by the analog voltage difference between V_REF and VGND. The slope and range of speed control is adjusted by adapting to the proportioner of Internal Parameter PA-17.

Relevant parameters:

PA-17 (S-off)	CVM	Maximum rotation speed command	peed of the analog	Commu address: 0022H 0023H	nication
		Initial value	By Rated		
		Control mode	T / S		
		Unit	r/min		
		Configuration range	$0 \sim \max$. Speed		
		Data size	16bit		
		Data format	Dec		

Maximum rotation speed of the analog speed command:

• In the speed mode, this indicates the setting of the rotation speed while the maximum voltage (10V) is input for the analog speed command.

If the speed is set to 3000 and 10V is input for external voltage, the speed control command is 3000r/min. 5V implies that the speed control command is 1500r/min.

Speed control command = Input voltage value x Set value/10

• In the torque mode, the parameter represents the command for analog speed limit. Speed limit command = Input voltage value x Set value/10

7.3.5. Timing diagram of speed mode

1) OFF represents open circuit (Open) and ON represents close circuit (Close).

2) For Sn Mode, Speed Command S1=0. For S Mode, Speed Command S1 is the analog voltage of external input.

3) After Servo On, the command is selected based on the status of SPD0~SPD1.

7.3.6. Adjustment for the gain of speed circuit

The following is the structure diagram for the speed control unit:

Select the way to adjust the gain through Parameter PB-33.

PB-33 (S-off)	AUTM	Method for gain adju	stment	Commu address: 0141H 0142H	nication
		Initial value	0		
		Control mode	ALL		
		Unit	N/A		
		Configuration range	0~2		
		Data size	16bit		
		Data format	Dec		

- 0: Manual Mode
- 1: Auto Mode (persistent adjustment)
- 2: Semi-auto Mode (non-persistent adjustment)

0: Description for Manual Mode

- If PB-33 is set to 0, the user is allowed to set all parameters related to control gain. The parameters are PB-20, PB-23, PB-24, PB-26, PB-27, PB-17 and PB-28.
- Relevant parameters are updated automatically when Auto or Semi-auto Mode is switched to the manual mode.

1: Description for Auto Mode

- The system inertia is estimated continuously. The load inertia ratio estimated is stored automatically to PB-35 every 30 minutes. Refer to the rigidity and bandwidth setting of PB-32.
- When switching from Auto Mode 1 or Semi-auto Mode 2 to Manual Mode 0, the system stores the measured load inertia ratio automatically to PB-35 and sets corresponding control parameter based on the load inertia ratio.
- When switching from Manual Mode 0 directly to Semi-auto Mode 1 or Auto Mode 2, enter the proper load inertia ratio in PB-35.
- When switching from Auto Mode 1 to Manual Mode 0, the values of PB-20, PB-24 and PB-26 are altered to the corresponding parameter value in Auto Mode.
- When switching from Semi-Auto Mode 2 to Manual Mode 0, the values of PB-20, PB-24, PB-26, PB-17 and PB-28 are altered to the corresponding parameter value in Semi-auto Mode.

2: Description for Semi-auto Mode

- When the system inertia is stabilized, the estimation stops after PB-50 shows 1. The load inertia ratio estimated is stored in PB-35. The adjustment continues when switching from other modes (Manual or Auto Mode) to Semi-auto Mode.
- ▶ If the range of system inertia is too large, PB-50 shows 0 and the adjustment continues.

Manual mode

When PB-33 is set to 0, the proportional gain (PB-24), integral gain (PB-26) and feed-forward gain (PB-27) are set by the user. The impacts caused by each parameter in general are as follows: Proportional gain (PB-24): The gain increase would expand the response bandwidth of the position circuit.

Feed-forward gain (PB-27): This reduces the phase-lag error.

Integral gain (PB-26): The gain increase would enhance the low-frequency rigidity of the speed-loop and reduce the steady-state error. In the meantime, the phase margin value is sacrificed. Excessive integral gain may result in system instability.

PB-24	KVP	Proportional gain for	speed control	Commu address: 0130H 0131H	nication
		Initial value	502		
		Control mode	ALL		
		Unit	rad/s		
		Configuration range	0 ~ 8191		
		Data size	16bit		
		Data format	Dec		

Relevant parameters:

The speed response is increased when the gain of the speed control is increased. Vibration and noise occurs easily if the gain is set to an excessive value.

PB-26	KVI	Integral compensation control	n for the speed	Commu address: 0134H 0135H	nication
		Initial value	50		
		Control mode	ALL		
		Unit	rad/s		
		Configuration range	0 ~ 1023		
		Data size	16bit		
		Data format	Dec		

When the integral value of the speed control is increased, the position response is increased and the error magnitude of the speed control is reduced. Vibration and noise occurs easily if the gain is set to an excessive value.

PB-27	KVF	Feed-forward gain for	the speed control	Commu address: 0136H 0137H	nication
		Initial value	0		
		Control mode	ALL		
		Unit	%		
		Configuration range	0 ~ 100		
		Data size	16bit		
		Data format	Dec		

For smooth change of the speed control command, the increase in gain improves the magnitude of the following error for the speed. For unsmooth change of the speed control command, the decrease in gain mitigates the vibration of the mechanism during operation.

For academic principles, the step response can be used to interpret the proportional gain (KVP), integral gain (KVI) and feed-forward gain (KVF).

We explain the basic principles based on frequency and time domain.

Principle of frequency domain

1. STEP 1: KVI =KVF=0. Make an adjustment so that KVP3>KVP2>KVP1. The higher the KVP the wider the bandwidth and the lower the phase margin.

2. STEP 2: Fix the KVP and adjust the KVI (KVI3>KVI2>KVI1).

3. STEP 3: Select the KVI. If the phase margin is too low (relatively unstable), adjust the KVP again so that the phase margin reaches 45 degrees.

Principle of time domain

 The higher the KVP is, the broader the bandwidth and the shorter time required for rising. If the KVP is too high, the phase margin of the system is low and the relevant stability would also be low. For fixing the steady-state following error, this is not more evidently helpful than the KVI. Refer to the following illustration (KVP3>KVP2>KVP1).

2. The higher the KVI is, the faster the steady-state error can be eliminated. It is obviously helpful for the steady-state error of KVI. If the KVI is too high, the phase margin of system would be too low. Refer to the following diagram (KVI3> KVI 2> KVI 1).

 The higher the KVF is, the higher the feed-forward compensation. The dynamic following error during the transient state can be reduced. If the KVF is too high, it may result in system swing. Refer to the diagram below (KVF3>KVF2>KVF1).

Generally the measurement requires the use of instrument if the frequency domain method is used. The user must have the relevant measurement equipment at hand. The time domain method only requires one oscilloscope. By using the analog input and output terminals provided by the drive in the meantime, the user can utilize the time domain method conveniently to adjust the parameter of PI controller.

Auto mode

The self-adaptive learning rule is used for the automatic gain adjustment. The internal parameter of the control unit is adapted automatically to the variation in external load inertia. Certain convergence time is required for adaptive learning. If the load changes too fast, it is not applicable to the auto mode. It is

suggested that the variation in external load inertia should be stable or slow. The convergence time tuned in the auto mode varies by the speed of the change in motor rotation speed.

7.3.7. Resonance suppression unit

The excessive rigidity (system bandwidth set too high) of the drive control system could result in the mechanical resonance generated by the drive combined with the machinery structure. The drive provides the low-pass filter (PB-17), Notch Filter 1 (PB-10) and (PB-11), Notch Filter 2 (PB-12) and (PB-13), as well as Notch Filter 3 (PB-10) and (PB-11). The resonance suppression is achieved without affecting the original control parameter.

Relevant parameters:

PB-10	NCF1	Notch filter for resonance suppression (1)	Communication address: 0114H 0115H
	Initial value	1000	
	Control mode	ALL	
	Unit	Hz	
	Configuration range	50 ~ 1000	
	Data size	16 bit	
	Data format	DEC	

PB-11	NCD1	Notch filter for the attenuation rate of the resonance suppression (1)	Communication address: 0116H 0117H
	Initial value	0	
	Control mode	ALL	
	Unit	dB	
	Configuration	0 - 32	
	range	0~32	
	Data size	16 bit	
	Data format	DEC	

Parameter function: The first group of resonance suppresses the Notch filter attenuation rate. When set to 0, the Notch filter is turned off.

PB-12	NCF2	Notch filter for resonance suppression (2)	Communication address: 0118H 0119H
	Initial value	1000	
	Control mode	ALL	
	Unit	Hz	
	Configuration	50 - 2000	
	range	50 ~ 2000	
	Data size	16 bit	
	Data format	DEC	

Parameter function: The second set of mechanical resonance frequency settings.

PB-13	NCD2	Notch filter for the attenuation rate of the resonance suppression (2)	Communication address: 011AH 011BH
	Initial value	0	
	Control mode	ALL	
	Unit	dB	
	Configuration range	0 ~ 32	
	Data size	16 bit	
	Data format	DEC	

Parameter function: The second group of resonance suppresses the Notch filter attenuation rate. When set to 0, the Notch filter is turned off.

PB-14	NCF3	Notch filter for resonance suppression (3)	Communication address: 011CH 011DH
	Initial value	1000	
	Control mode	ALL	
	Unit	Hz	
	Configuration	50 - 2000	
	range	50 ~ 2000	
	Data size	16 bit	
, and the second s	Data format	DEC	

Parameter function: The third set of mechanical resonance frequency settings.

PB-15	NCD3	Notch filter for the attenuation rate of the resonance suppression (3)	Communication address: 011EH 011FH
	Initial value	0	
	Control mode	ALL	
	Unit	dB	
	Configuration	0 - 32	
	range	0 ~ 32	
	Data size	16 bit	
	Data format	DEC	

Parameter function: The third group of resonance suppresses the Notch filter attenuation rate. When set to 0, the Notch filter is turned off.

PB-16	NCFA	Setting for the suppression mode of auto- resonance	Communication address: 0120H 0121H
	Initial value	0	
	Control mode	ALL	
	Unit	-	
	Configuration	0 - 2	
	range	0~2	
	Data size	16 bit	
	Data format	DEC	

Parameter function:

- 0: Manual resonance suppression.
- 1: Automatically fixed after resonance suppression.
- 2: Continuous automatic resonance suppression.

PB-17	NCLA	The setting for the sensitivity suppression of auto- resonance	Communication address: 0122H 0123H
	Initial value	100	
	Control mode	ALL	
	Unit	%	
	Configuration	1 200	
	range	1~500	
	Data size	16 bit	
	Data format	DEC	

Parameter function: The set value is related to the sensitivity of the resonance suppression detection.

When the PB-17 setting is higher: the resonance sensitivity is lowered.

When the PB-17 setting is lower : the resonance sensitivity rises.

PB-18	NLP	The low-pass filtering for resonance suppression	Communication address: 0124H 0125H
	Initial value	9	
	Control mode	ALL	
	Unit	0.1 ms	
	Configuration	0 - 100	
	range	0~100	
	Data size	16 bit	
	Data format	DEC	

Parameter function: Resonance suppression low-pass filter time constant. When set to 0, the low-pass filtering function is turned off.

Note: The PB-18 setting value varies with the PA-21 setting. It can also be set to 0 to disable the low-pass filtering function.

PB-44	NCBW1	Resonance suppression Notch filter 1 width	Communication address: 0158H 0159H
	Initial value	50	
	Control mode	ALL	
	Unit	%	
	Configuration	1~100	
	range	1 ~ 100	
	Data size	16 bit	
	Data format	DEC	

PB-45	NCBW2	Resonance suppression Notch filter 2 width	Communication address: 015AH 015BH
	Initial value	50	
	Control mode	ALL	
	Unit	%	
	Configuration	1 - 100	
	range	1 ~ 100	
	Data size	16 bit	
	Data format	DEC	

PB-46	NCBW3	Resonance suppression Notch filter 3 width	Communication address: 015CH 015DH
	Initial value	50	
	Control mode	ALL	
	Unit	%	
	Configuration	1 - 100	
	range	1~100	
	Data size	16 bit	
	Data format	DEC	

Resonance suppression unit

The drive is equipped with two notch filters with automatic resonance suppression, which can be turned on by setting PB-15 to 1 or 2. The drive searches for and suppresses the resonance point automatically. The found frequency point and attenuation rate will be filled in Resonance Filter 1 (PB-10) and (PB-11) and

LITEON

Resonance Filter 2 (PB-12) and (PB-13) sequentially.

When PB-15 is set to 1, it is set to 0 (auto resonance suppression turned off) automatically after system suppression. When PB-15 is set to 2, the search of resonance point continues.

The resonance exists if PB-15 is set to 1 or 2. If either the value of PB-11 or PB13 is 32, it is suggested to reduce the speed bandwidth and reactivate the auto resonance suppression.

If values of both PB-11 and PB-13 are below 32 but resonance still exists, set PB-15 to 0 (auto resonance suppression turned off) and adjust PB-11 and PB-13 manually to higher values. If the resonance still cannot be suppressed, it is suggested to reduce the speed bandwidth and reuse the auto resonance suppression. Before the manual adjustment of PB-11 and PB-13, check if the values of PB-11 and PB-13 are greater than 0. If these equal to 0, the resonance frequency point is not found. Do not increase the values of PB-11 and PB-13 manually; otherwise the system deterioration might occur.

PB-15 Function Table			
PB-15 Current value	PB-15 Value to be modified	Function	
0	1	Clear the values of PB-12~ PB-1x to activate the auto resonance suppression.	
0	2	Clear the values of PB-12~ PB-1x to activate the auto resonance suppression.	
1	0	Store the current values of PB-12~ PB-1x to deactivate the auto resonance suppression.	
1	1	Clear the values of PB-12~ PB-1x to activate the auto resonance suppression.	
1	2	Do not clear the values of PB-12~ PB-1x and keep the auto resonance suppression active.	
2	0	Store the current values of PB-12~ PB-1x to deactivate the auto resonance suppression.	
2	1	Clear the values of PB-12~ PB-1x to activate the auto resonance suppression.	
2	2	Do not clear the values of PB-12~ PB-1x and keep the auto resonance suppression active.	

Flow Chart for Resonance Suppression

The low-pass filter NLP (PB-17) is used to describe the resonance suppression. The Bode plot of the system for resonance is as below.

When NLP starts to increase, the effect is illustrated in the Bode plot below. The resonance point will be filtered by the resonant low-pass filter.

If the user knows the resonance frequency, set the notch filter parameter directly for resonance suppression. Set the frequency of the notch filter to 50~1000Hz. If the resonance frequency falls out of this range, it is suggested to use the resonant low-pass filter (PB-17) to reduce the resonance effect.

Next, we want to find out effect of the notch and low-pass filters in the resonance system. First, let's explore the effect created by applying the notch filter to the resonance system. In the following Bode plot, the resonance system suppresses the resonance point effectively after the notch filter is added to the system. The system bandwidth is not much affected.

Next, we can see that the system broadband is smaller when using the resonant low-pass filter to increase the NLP (PB-17). According to the graph below, the resonant low-pass filter can solve the resonance problem but the phase margin of system is lower, as well as the system stability.

7.3.8. Low frequency vibration suppression of position mode

If the rigidity of the system is too low, at the end of the position command, although the motor itself is close to static, the mechanical load end will still have continuous vibration, and the low frequency vibration suppression function can be used to reduce the phenomenon of mechanical load end swing. The low frequency vibration suppression range is 1.0 Hz to 100.0 Hz. This function provides manual setting and automatic setting.

Automatic setting function:

When the system vibration frequency is unknown, the automatic low frequency vibration suppression function can be turned on. This function will automatically find the frequency of low frequency swing. First, turn off the low frequency suppression filter PB-37 and PB-39 are 0. When PB-42 is set to 1, the system will automatically find the low frequency vibration frequency when automatic detection. When the frequency is fixed, the PB-42 will automatically set back to 0, and the vibration frequency will be set to PB-36 and PB-37 will be set to 1. If the low frequency swing still exists after the PB-42 is automatically set back to zero, please check if the low frequency vibration suppression gain PB-37 has been automatically turned on. If the PB-37 is zero, it means that no frequency is detected, please reduce the low frequency vibration. Check the level PB-43, and set PB-42 = 1, and then look for the low frequency swing frequency. It should be noted that the detection level setting is too small, and it is easy to misjudge other non-primary low frequency vibration frequencies.

Low frequency automatic suppression flow chart: :

Note 1: When PB-37 is 0, the representative frequency cannot be found. It may be because the detection level is too high, and the frequency of low frequency swing is not detected.

Note 2: When the PB-37 has a value, it still cannot slow down the swing. It may be because the detection level is too low, and the noise is misjudged as the low frequency swing frequency or other non-primary low frequency vibration frequency.

Note 3: When the vibration suppression effect is still not achieved after the automatic vibration suppression process, if there is a way to know the frequency of the low frequency vibration, you can manually set the PB-37 to achieve the vibration suppression effect.

Automatic suppression parameters:

PB-42 (N-keep)	AVSM	Low frequency automatic suppression mode setting	Communication address: 0154H 0155H
	Initial value	0	
	Control mode	P / Msc	
	Unit	-	
	Configuration	0 - 1	
	range	0~1	
	Data size	16 bit	
	Data format	DEC	

Parameter function:

0: Fixed.

1: Automatic suppression.

Automatic suppression mode description:

When set to 1, the vibration is automatically suppressed. When no frequency is found or found, it is automatically set to 0, and the searched frequency is stored to the PB-36.

PB-43	VCL	Low frequency vibration detection level	Communication address: 0156H 0157H
	Initial value	500	
	Control mode	P / Msc	
	Unit	pulse	
	Configuration range	1 ~ 8000	
	Data size	16 bit	
	Data format	DEC	

Parameter function:

When the automatic suppression mode is on (PB-42 = 1), the vibration is judged according to the vibration detection level. The lower the value, the more sensitive it is to the vibration frequency search, which is easy to cause misjudgment into other non-primary low frequency vibration frequencies. The higher the value, the lower the false positive, but when the vibration amplitude of the mechanism is small, it is difficult to find the vibration frequency.

PB-43 is the range of vibration frequency of low frequency vibration frequency. When the frequency is not detected, it may be that PB-43 is set too high. It is recommended to adjust PB-43 to be small, but the adjustment is too small. It may be due to noise or non-primary low frequency. Vibration causes a misjudgment of the vibration frequency. If there is an external instrument, such as an oscilloscope, you can observe the position error (pulse) to set PB-43.

LITEON

Manual setting method:

There are two sets of low frequency suppression filters for low frequency suppression. The first group is the parameters PB-36 ~ PB-37, and the second group is the parameters PB-38 ~ PB-39. These two sets of filters can be utilized to mitigate low frequency vibrations at two different frequencies. The parameters PB-36 and PB-38 are used to set the frequency of the low-frequency swing. The low-frequency suppression function suppresses the vibration of the low-frequency mechanical load only when the low-frequency vibration suppression frequency parameter is set close to the vibration frequency. Parameter PB-37 and PB-39 is used to set the response after filtering. The larger the PB-37 and PB-39 settings, the better the response, but it is too easy to make the motor run poorly. The PB-37 and PB-39 factory default values are zero, indicating that the functions of both sets of filters are turned off. The relevant parameters are as follows:

PB-36	VSF1	Low frequency vibration suppression frequency (1)	Communication address: 0148H 0149H
	Initial value	1000	
	Control mode	P / Msc	
	Unit	0.1 Hz	
	Configuration	10 - 1000	
	range	10~1000	
	Data size	16 bit	
	Data format	DEC	

The first set of low frequency vibration suppression filter frequency setting parameters, if PB-37 is set to 0, the first group of low frequency vibration suppression filters is turned off.

PB-37	VSG1	Low frequency vibration suppression gain (1)	Communication address: 014AH 014BH
	Initial value	0	
	Control mode	P / Msc	
	Unit	-	
	Configuration	0 - 0	
	range	0~9	
	Data size	16 bit	
	Data format	DEC	

The first set of low-frequency vibration suppression filter gain setting parameters, the larger the gain value, the better the effect of suppressing vibration, but the excessive setting value tends to make the motor run poorly. It is recommended that the set value be gradually increased from small to small.

PB-38	VSF2	Low frequency vibration suppression frequency (2)	Communication address: 014CH 014DH
	Initial value	1000	
	Control mode	P / Msc	
	Unit	0.1 Hz	
	Configuration	10 - 1000	
	range	10~1000	
	Data size	16 bit	
	Data format	DEC	

The second set of low frequency vibration suppression filter frequency setting parameters, if PB-39 is set to 0, the second group of low frequency vibration suppression filters is turned off.

PB-39	VSG2	Low frequency vibration suppression gain (2)	Communication address: 014EH 014FH
	Initial value	0	
	Control mode	P / Msc	
	Unit	-	
	Configuration range	0 ~ 9	
	Data size	16 bit	
	Data format	DEC	

The second set of low-frequency vibration suppression filter gain setting parameters, the larger the gain value, the better the effect of suppressing vibration, but the excessive setting value tends to make the motor run poorly. It is recommended that the set value be gradually increased from small to small.

7.4. Torque mode

The torque mode for control (T or Tn) is used for the device requiring torque control, such as the printing machine and coil winding machine...etc. Two modes for command input are available for the drive, which are the analog and register input.

The input of analog command is used to manipulate the torque performance of motor through the external voltage. As for the register input, the data of the internal parameter (PA-03~PA-05) is treated as the torque command.

7.4.1. Selection of torque command

The source of the torque command can be divided into the analog voltage input externally and the internal parameter. The selection depends on the DI signal of CN1. Refer to the table below:

Torque	DI signa	l of CN1					
command	TCM1	TCM0	Command Source		and Source	Contents	Scope
no.							
T1	0	0	Mode	Т	External analog command	Voltage difference between T-REF and GND	-10 V ~ +10V
				Tn	None	The torque command is 0.	0
T2	0	1				PA-03	-300.0% ~ 300.0%
Т3	1	0	Param	Parameter of internal register		PA-04	-300.0% ~ 300.0%
T4	1	1				PA-05	-300.0% ~ 300.0%

TCM0 ~ TCM1 status: 0 represents open circuit (Open) and 1 represents close circuit (Close).

- In the situation that TCM0=TCM1=0, the command is 0 if the mode is Tn. Therefore, if the user does not need to use the analog voltage as the torque command, he or she may adopt Tn Mode to make sure that the analog voltage is without zero drift. For T Mode, the command is the analog voltage difference between T-REF and GND. The voltage range input is -10V ~ +10V. The torque corresponding to the voltage is adjustable (PA-18).
- If either TCM0 or TCM1 is not 0, the torque command is the internal parameter. The command is effective right after the change of TCM0 ~ TCM1 and CTRG is not needed for triggering. The torque command discussed in this section can be treated as the torque command under the torque mode (T or Tn). It can also be input as the command of torque limit under the speed mode (S or Sn).

7.4.2. Control structure of the torque mode

The diagram above illustrates the basic control structure of torque. The processing unit of torque command selects the source of torque command based on 7.4.1. The selection includes the size of command represented by the analog voltage set by the proportioner (PA-18), as well as the smoothing of the torque command. The torque control unit manages the gain parameter of the drive and computes the magnitude of the current supplied to the motor promptly.

The following chart shows the structure diagram regarding the processing unit of torque command.

The path above is the command of internal register and the one below is the external analog command. The selection is based on the TCM0 and TCM1 statuses and PA-00 (T or Tn). The proportioner can be used to adjust the torque size represented by the analog voltage command. The low-pass filter may be applied to ensure smooth response of the command signal.

7.4.3. Smoothing of torque command

PB-01 TFIL Smoothing constant of the analog torque command Communication address: 0102H 0102H 0103H V Initial value 0 0 V Control mode T Unit ms 0 0 0 0	Relevant parameters:							
Initial value0Control modeTUnitms		PB-01	TFIL	Smoothing constant o command	Commu address: 0102H 0103H	nication		
Control modeTUnitms				Initial value	0			
Unit ms				Control mode	Т			
				Unit	ms			
Configuration range $0 \sim 1000$ (0: The function				Configuration range	0 ~ 1000 (0: The	function		
is turned off.)					is turned off.)			
Data size 16bit				Data size	16bit			
Data format Dec				Data format	Dec			

7.4.4. Proportioner at the analog command end

The torque command of motor is controlled by the analog voltage difference between T_REF and GND. The slope and range of torque control is adjusted by adapting to the proportioner of Internal Parameter PA-18.

PA-18 (S-off)	СТМ	Limited maximum ou torque	Commu address: 0024H 0025H	nication	
		Initial value	100		
		Control mode	ALL		
		Unit	%		
		Configuration range	0 ~ 300		
		Data size	16bit		
		Data format	Dec		

Maximum output of the analog torque command:

In the torque mode, this indicates the setting of the torque while the maximum voltage (10V) is input for the analog torque command.

If the initial value is set to 100 and 10 V is input for external voltage, the torque control command is 100% rated torque. 5V implies that the torque control command is 50% rated torque.

Torque control command = Input voltage value x Set value/10 (%)

In the speed and position modes, the parameter represents the command for analog torque limit. Torque limit command = Input voltage value x Set value/10 (%)

7.4.5. Timing diagram of torque mode

- OFF represents open circuit (Open) and ON represents close circuit (Close).
- For Tn Mode, Torque Command T1=0. For T Mode, Torque Command T1 is the analog voltage of external input.
- After Servo On, the command is selected based on the status of TCM0~TCM1.

7.4.6. Mixed mode

Besides the single operating mode, the drive also provides the mixed mode.

- 1) Speed/position mixed mode (P-S)
- 2) Speed/torque mixed mode (S-T)
- 3) Torque/position mixed mode (P-T)

Mode name	Mode code	Mode number	Description	
Mixed	P-S	05	P and S can be switched via the DI signal S_P.	
	P-T	06	P and T can be switched via the DI signal T_P.	
mode	S-T	07	S and T can be switched via the DI signal S_T.	

The mixed mode consisting of Sn and Tn is not available. To prevent the mixed mode from occupying DI input points, the signal for external analog voltage can be used as the command under the speed and torque modes. Therefore, the use of DI (SPD0 and SPD1 or TCM0 and TCM1) can be reduced.

The default DI/DO signal indicates the relationship between the DI/DO signal and pin right after the mode selection.

7.4.7. Position/speed mixed mode

P-S position command comes from the pulse input externally. The speed command can be the external analog voltage or internal parameter (PA-14 ~ PA-15) setting. The S-P signal controls the switching of the speed/position mode.

7.4.8. Position/torque mixed mode

P-T position command comes from the pulse input externally. The torque command can be the external analog voltage or internal parameter (PA-03 ~ PA-05) data. The T-P signal controls the switching of the torque/position mode.

7.4.9. Speed/torque mixed mode

The only mode available is S-T Mode. The speed command can come from the external analog voltage or internal parameter (PA-14 \sim PA-16) data. The mode is selected through SPD0 \sim SPD1. Similarly, the torque command can come from the external analog voltage or internal parameter (PA-03 \sim PA-05) data. The mode is selected through TCM0 \sim TCM1. The S-T signal controls the switching of the speed/torque mode.

In the torque mode (S-T set to ON), the torque command is selected via TCM0 and TCM1. The torque command is selected via SPD0 and SPD1 after switchover to the speed mode (S-T set to OFF). The motor rotates by following the rotation speed in the command immediately. After S-T is turned on, the speed mode returns to the torque instantly. For the relationship between the DI signal in each mode and

the selected command, refer to the description in the chapter for each single mode.

7.4.10 MSC/Position mixed mode

The Msc-P position command can come from the external pulse wave and the internal Msc command. In this mode, the home position return can be used in the position mode. If you do not choose to perform the home position return first or use the DisOrg parameter setting, the home position return will not be performed (PC- 18=1), the MSC command cannot be used. The MSC/Position mode switching is controlled by the MSC-P signal.

7.4.11 MSC/Speed mixed mode

The Msc-S position command comes from the internal Msc command. The speed command can be the external analog voltage or the internal parameter (PA-14 ~ PA-15). In this mode, the return-to-origin can only be used when the DI is switched to the MSC mode. Use, if you do not choose to perform home position return first or use the DisOrg parameter setting to not perform home position return (PC-18=1), the MSC command cannot be used. The MSC/speed mode switching is controlled by the MSC-S signal.

7.5. Others

7.5.1. Use of the speed limit

In the position, speed, torque and other modes (if available), the maximum speed limit is restricted by the internal parameter PA-07. The speed limit and command can be passed down in the same way, which is through the external analog voltage or internal parameter (PA-14~PA-16). Refer to 7.3.1. The speed limit is only allowed in the torque mode and it is used to restrict the motor rotation speed. If the external analog voltage is adopted for the torque command, extra DI signals are available. These signals can be regarded as SPD0~SPD1 and utilized to select the speed limit command. If number of DI signals is insufficient, the speed limit command can also be input via the analog voltage. The speed limit is activated when PA-02 us set to 1. The following shows the diagram:

7.5.2. Use of the torque limit

The speed limit and command can be passed down in the same way, which is through the external analog voltage or internal parameter (PA-03~PA-05). Refer to 7.4.1. The speed limit is effective in the position or speed mode and it is used to restrict the motor torque output. If the external pulse is adopted for the position command or the external analog voltage is adopted for the speed mode, extra DI signals are available. These signals can be regarded as TCM0~TCM1 and utilized to select the torque limit command. If number of DI signals is insufficient, the torque limit command can also be input via the analog voltage. The speed limit is activated when PA-02 us set to 1. The following shows the diagram:

7.5.3. Analog monitoring

The drive provides two analog channels. The user observes the drive status needed through analog monitoring.

PD-22	VMON	Analog output monito	Communication address: 032CH 032DH	
		Initial value	01	
		Control mode	ALL	
		Unit	N/A	
		Configuration range	00 ~ 0x55	
		Data size	16bit	
		Data format	Hex	

PD-28	VMR1	Ratio for MON1 analo output	og monitoring	Commu address: 0338H 0339H	nication
		Initial value	100		
		Control mode	ALL		
		Unit	%		
		Configuration range	0 ~ 100		
		Data size	16bit		
		Data format	Dec		

PD-29	VMR2	Ratio for MON2 analo output	Commu address: 033AH 033BH	nication	
		Initial value	100		
		Control mode	ALL		
		Unit	%		
		Configuration range	0 ~ 100		
		Data size	16bit		
		Data format	Dec		

PD-39	AOUT	Setting for the polarity output for the detector	y of the pulse	Commu address: 034AH 034BH	nication
		Initial value			
		Control mode			
		Unit			
		Configuration range			
		Data size			
		Data format			

7.5.4. Use of the electromagnetic brake

PC-21	BTOD	Turn-on delay time for electromagnetic brake	Commu address: 022AH 022BH	nication	
		Initial value	0		
		Control mode	ALL		
		Unit	ms		
		Configuration range	0 ~ 1000		
		Data size	16bit		
		Data format	Dec		

Parameter function: It sets the time delayed from the the time servo is activated to the time that the interlock signal of the electromagnetic brake (DO code 0x07, BREAK) is turned on.

PC-22	BTCD	Turn-off delay time for electromagnetic brake	Communi address: 022CH 022DH	cation	
		Initial value	0		
		Control mode	ALL		
		Unit	ms		
		Configuration range	-1000 ~ 1000		
		Data size	16bit		
		Data format	Dec		

Parameter function: It sets the time delayed from the the time servo is ready and turned off to the time that the interlock signal of the electromagnetic brake (DO code 0x07, BREAK) is turned off. (Refer to 7.5.4 for the use of the electromagnetic brake.)

- 1) When the BTCD delay time is not over and the motor rotation speed is below the one for PC-20, the interlock signal of the electromagnetic brake (BREAK) is turned off.
- 2) When the BTCD delay time is over and the motor rotation speed is above the one for PC-20, the interlock signal of the electromagnetic brake (BREAK) is turned off.
- 3) If the Alarm or EMGS occurs causes the servo to be turned off, the negative value of BTCD will not become effective if a negative value is assigned to BTCD. This is equivalent to the situation that BVCD is set to zero.

7.5.5. Use of the electromagnetic brake

For the electromagnetic brake by the drive, (1) BREAK is set to OFF. In this case, the electromagnetic brake is inoperative and the motor is under the machinery lockout condition. (2) BREAK is set to ON. In that case, the electromagnetic brake is in operation and the motor rotates freely. The operation of electromagnetic brake can be divided into two types below. The user uses the parameter BTOD (PC-21) and BTCD (PC-22) to set relevant delay. Usually the electromagnetic brake is used for Z-axis direction to prevent high quantity of heat generated by high resistance created continuously by the servo motor. Such heat would cause the shortening of motor lifetime. For this device, the electromagnetic brake is manipulated by the user, it can only be activated during braking. Therefore the braking force of the electromagnetic brake and the motor would be in the same direction. The drive operation becomes normal because it is less likely to require the intervention from the braking force of the electromagnetic brake. During acceleration or deceleration, the drive generates higher current to overcome the braking force of the electromagnetic brake. The alarm for overload protection could be triggered.

Time diagram of the control on electromagnetic brake:

Explanation regarding the timing for BREAK output:

1. After the servo is off, the motor rotation speed might be still over the one set in PC-20 after the time set the in PC-22 has elapsed. In this case, BREAK is OFF (electromagnetic brake lockout).

2. After the servo is off, the motor rotation speed might go below the one set in PC-20 even before the time set the in PC-22 has elapsed. In this case, BREAK is OFF (electromagnetic brake lockout).

LITEON

7.6. Msc mode

Motion Sequency Control provides simple motion trajectory planning and timing control to reduce the burden on the PLC and the host computer, thereby reducing system integration cost and complexity. Msc main functions can be divided into three categories: origin return, Msc motion planning instructions and electronic cam. The following are the various function settings and behaviors.

7.6.1. Return to origin

The origin return provides the user to quickly establish the Msc motion coordinate system to facilitate the path planning of the Msc command. Therefore, the user must first use the origin return to establish the starting point of the motion, as shown in the following figure, the driver controls and if the origin return is not completed. The Msc command cannot be executed. The main function of the return-to-origin is set as shown in the following table:

PG-00	 bit00 ~ bit03 mode: Forward PL limit, reverse NL limit, positive origin Org, reverse origin, current position bit04 ~ bit07 trigger: Rising edge/falling edge trigger bit08 ~ bit11 limit: Jump after the limit trigger ALM / automatic carriage return (only for the origin and current position as the origin reference) 		
PG-01	High speed setting (10 ~ 2000 rpm)	PG-06	Low speed deceleration time ($1 \sim 500 \text{ ms}$)
PG-02	Low speed setting (1 ~ 400 rpm)	PG-07	 Find the Z direction and the number of times: 1. 0 does not find Z 2. positive value to find Z 3. Negative value carriage return to find Z (±10000)
PG-03	High speed acceleration time (1 ~ 10000 ms)	PG-08	Origin definition (± 2147483647)
PG-04	High speed deceleration time (1 ~ 10000 ms)	PG-09	Encoder reading and reset status after reset (read only)
PG-05	Low speed acceleration time (1 ~ 500	PG-10	Emergency stop deceleration time after limit trigger $(1 \sim 50 \text{ ms})$
LITEON

ms)	

According to the original point of use, refer to the left and right limit signals, the origin signal and the current position, and find the system origin according to the Z setting. For the convenience of description, the definition behavior is as follows:

Case01: The starting position is in front of the reference signal

Case02: Start position in front of the reference signal and press Enter to find Z phase

Case03: Start position in front of the reference signal and proceed to find Z phase

Case04: The starting position is in the reference signal

Case05: The starting position is behind the reference signal

The reset process can be summarized in several steps: 1 high-speed collision reference signal 2 low speed find Z, no Z, low speed search signal edge 3 find Z and error correction lock point, the specific behavior is as follows:

In addition, when the system is reset, the system will do the limit wiring check. If the NL alarm is triggered in the forward direction, the system will stop and display the limit alarm.

When the starting position is at the origin signal or behind (case04, 05), and the PG-00 limit is set to 0, the automatic carriage return is started, and the PG-00 reverse setting is used to find the edge of the origin signal. The figure above is PG- The behavior of 00 reversal = 0, originally looking for the origin signal and the carriage return to find Z, after the impact limit, become the origin of the origin signal and forward to find Z, the advantage of this method is in the origin signal regardless of the starting position Before or after, the same location will be found as the system origin. For example, case02 and case 04~05 + carriage return to find Z, the two sets of settings are the same, but the starting position is in front of, before and after the origin signal, but the same position is locked as the system origin.

In addition, when the system is reset, the system will do the limit wiring check. If the NL alarm is triggered in the forward direction, the system will stop and display the limit alarm.

7.6.2. Return to origin - Execution trigger

The home position return currently provides two ways for the user to trigger the program. When the input PG-11 = 100 and DI Hom, the priority is triggered by the first trigger. When the return-to-origin is completed, the system provides the following two ways to inform the user:

Monitoring parameter PG-09: The highest meta-area value shows 0x1A as the beginning. Example: If the motor encoder reads 2 pulses after the return of the origin, PG-09 = 0x1A000002.

DO HomOK: When the return-to-origin is completed, DO HomOK is ON (the specific output level is mainly set by PC parameters).

7.6.3. Msc Motion Planning - Command Description

After the return of the origin is completed, the user inputs the Msc command according to the motion track requirement by using the PH and PJ parameters, and uses the PG parameter to set the command source and the trigger mode. The flow chart is as shown in the following figure. The main parameter setting contents are organized as follows:

16 bit parameter	bit15 ~ bit00								
PG-60	Set the external interrupt mode: 0x00	et the external interrupt mode: 0x00 is not interrupted, 0x01 is not interrupted, 0x02 is immediately interrupted							
PG-61 ~ 75	Set the instruction number of the DI M	et the instruction number of the DI MscNo1 ~ 4 status map (setting $1 \sim 68$, $0 = $ no trigger)							
PG-76 ~ 79	When the upper edge and the lower ed $\sim 68, 0 = $ no trigger)	lge of DI Ev	1 ~ Ev4 are	triggered,	the instru	ction number	is executed	(1~68.1	
PG-80	Total travel of the indexing coordinate	es (PUU)							
32 bit parameter	bit31~ bit28	bit27~ bit24	bit23~ bit20	bit19~ bit16	bit15~ bit12	bit11~ bit08	bit07~ bit04	bit03~ bit00	
		00 No command				NA	NA	NA	
		Constant speed PPS			No function				
		02 Constant speed RPM							
		03 Absolute Positioning							
PH-even PJ-even Such as PH-	0x00 does not overlap (delay effective) 0x01 can overlap (Starting at the fixed speed and	04 Relatively Positioning	↓ i0x00 stop 0xA0 sequential 0xB0 step 0x01~44 instruction (No.1~68 instructions)		Target speed 0x0~ 0xF	Deceleration time 0x0~ 0xF	Acceleration time 0x0~ 0xF	Delay time 0x0~ 0xF	
	(Starting at the fixed speed and deceleration)	05 Increment Positioning							
		06 Forward Indexing							
		07 Reverse Indexing							
		08 shortcut Indexing							
PH-odd PJ-odd Such as PH- 01	Actual command value 1. PH-00 is set to constant speed (PPS, RPM) and PH-01 is the speed command value. 2. PH-00 is set to positioning (absolute, relative, incremental), PH-01 is the position command value. 3. PH-00 is set to index (forward, reverse, shortcut), PH-01 is the position value in the index (≤ PG80). 4. PH 00 is set to no command PH 01 has no effect but still performs the imper operation seconding to PH 00 setting								

The Msc command configures two 32-bit meta-parameters to describe the command. The correspondence

between the command number and the actual parameters is shown in the following table. There are a total of 68 commands:

Msc command NO.	Mode setting	Actual command value
Msc No. 01	PH-00	PH-01
Msc No. 02	PH-02	PH-03
Msc No. 03~68	PH, PJ-even	PH, PJ-odd

The Msc command is mainly divided into four categories: no command, fixed speed, positioning and indexing, and can be mixed with unregulated conditions. In addition, all Msc commands are built in the PUU (user unit) system. Therefore, after Servo On, the system will force the lockdown ratio to be locked. Therefore, when the speed reduction ratio is not available in the Serc On mode, the DI can be switched to avoid the coordinate system being More action, it is recommended to determine the system reduction ratio before the return of the origin, improve the Msc stroke predictability. The specific behavior of each Msc instruction is described as follows:

The Msc fixed speed command has two units: PPS and RPM. The former corresponds to the command value up to ± 2147483647 , and the latter is \pm max speed (such as ± 60000). Regardless of the unit description of the fixed speed command, the system converts to Servo On. The PUU is used to provide a rear position controller. In the fixed speed command, the instruction overlap and the delay time behavior are different as shown in the above figure. When the fixed speed command reaches the speed command value, the delay time is calculated (such as the upper left figure), but if the instruction content has the overlap function enabled, The next Msc command is switched immediately when the speed command value is reached (as in the upper right figure).

If the current Msc fixed speed command does not set the subsequent Msc command, the system uses the deceleration time defined by the current Msc command to decelerate (as shown in the lower left figure). In this case, if the overlap function is enabled, the delay time is canceled, and the system starts to decelerate after reaching the speed command value (As shown in the lower right figure).

There are three types of Msc positioning instructions: absolute positioning instructions, relative positioning instructions and

incremental positioning instructions. The command values can reach ± 2147483647 . The execution paths of each type of instructions are as follows:

Absolute positioning command: Calculate the difference between the absolute command and the current absolute position of the motor based on the origin coordinates established after the return of the origin. The displacement is executed as the command unit, unit PUU (user unit). Example: If the current absolute motor position = 2000, absolute command = 4000, the system displacement = 4000 - 2000 = +2000, motor target position = 4000.

Relative positioning command: The relative type command directly adds the command command value to the current position, so the relative type command value is equal to the system displacement of the command. Example: If the current absolute motor position = 2000, relative command = 4000, the system displacement = +4000, the motor target position = 6000.

Incremental positioning command: the target position of the previous Msc command, plus the incremental command command value, as the new motor target position, and calculate the required displacement amount from the current motor position. If the previous Msc command is a fixed speed command, the previous target position is forcibly set to 0. Therefore, it is recommended that the previous command of the incremental command be a positioning type command or no command. Example: If the current absolute motor position = 2000, the previous positioning command target position = 4000, the current incremental command = 4000, the motor target position = 4000 + 4000 = 8000, system displacement = 8000 - 2000 = +6000.

The system calculates the required displacement amount of the current positioning command according to the above principle, and performs motion planning with the set value of acceleration and deceleration, etc. (as shown in the above figure). According to the overlap of the command and the amount of displacement, the four main conditions of the above figure appear. When the displacement is enough to supply the path planning of the command (such as condition 1 and condition 2), the system controls the motor motion curve according to the set acceleration/deceleration time, delay time and overlap setting. When the overlap is enabled, the system will decelerate soon. Node, load the next Msc instruction (as in the case of the above situation), otherwise the next time the delay time is completed, the next Msc instruction is loaded (see situation 1 above). If the displacement is insufficient for the path planning of the command (such as situation 3 and condition 4), the system will determine the deceleration node according to the path residual amount and the required distance for deceleration, and use the overlap enable or not to decelerate the node. Load the next Msc instruction (enable the overlap as shown in the third case above, disable the overlap as shown in Figure 4 above).

In addition to the difference between the calculation method of the indexing and the positioning type, the indexing command has the acceleration/deceleration time, the delay time and the overlap of the commands. In this respect, the behavior is consistent with the positioning line command, and this column is not described here.

7.6.4. Msc Motion Planning - Shared Information Group Description

In each type of Msc command mode setting parameter (PH, PJ-even number parameter), the data content of the lower 16-bit is mainly the shared data group number, and is mapped to the actual physical quantity by the number, and the relationship is as shown in the following table.

Msc	Т	arget spe	ed	Decele	Deceleration time			Acceleration time			Delay time		
command setting NO.	mapping	default	unit	mapping	default	unit	mapping	default	unit	mapping	default	unit	
0x0	PG-44	1	0.1RPM	PG-12	1	1ms	PG-12	1	1ms	PG-28	0	1ms	
0x1	PG-45	10	0.1RPM	PG-13	2	1ms	PG-13	2	1ms	PG-29	5	1ms	
0x2	PG-46	30	0.1RPM	PG-14	4	1ms	PG-14	4	1ms	PG-30	10	1ms	
0x3	PG-47	50	0.1RPM	PG-15	6	1ms	PG-15	6	1ms	PG-31	20	1ms	
0x4	PG-48	70	0.1RPM	PG-16	8	1ms	PG-16	8	1ms	PG-32	30	1ms	
0x5	PG-49	100	0.1RPM	PG-17	10	1ms	PG-17	10	1ms	PG-33	50	1ms	
0x6	PG-50	300	0.1RPM	PG-18	20	1ms	PG-18	20	1ms	PG-34	70	1ms	
0x7	PG-51	500	0.1RPM	PG-19	40	1ms	PG-19	40	1ms	PG-35	100	1ms	
0x8	PG-52	700	0.1RPM	PG-20	60	1ms	PG-20	60	1ms	PG-36	200	1ms	
0x9	PG-53	1000	0.1RPM	PG-21	80	1ms	PG-21	80	1ms	PG-37	300	1ms	
0xA	PG-54	3000	0.1RPM	PG-22	100	1ms	PG-22	100	1ms	PG-38	500	1ms	
ОхВ	PG-55	5000	0.1RPM	PG-23	200	1ms	PG-23	200	1ms	PG-39	700	1ms	
0xC	PG-56	7000	0.1RPM	PG-24	400	1ms	PG-24	400	1ms	PG-40	1000	1ms	
0xD	PG-57	10000	0.1RPM	PG-25	600	1ms	PG-25	600	1ms	PG-41	2000	1ms	
0xE	PG-58	20000	0.1RPM	PG-26	800	1ms	PG-26	800	1ms	PG-42	3000	1ms	
0xF	PG-59	30000	0.1RPM	PG-27	1000	1ms	PG-27	1000	1ms	PG-43	5000	1ms	

7.6.5. Msc Motion Planning - command selection and triggering

When the system does not perform the return-to-origin, the control prohibits the execution of each type of Msc command. Therefore, before the Msc command is triggered, please perform the return-to-origin return to facilitate the system to establish the coordinate system. In principle, the incremental (or single-turn absolute) motor needs After each power-on, the origin is restored to establish coordinates. Multi-turn absolute motor because the encoder has the battery position after the battery memory is turned off, so after the first Msc command is executed, the original point is reset. If the machine structure and the encoder remanufacturing are not changed, the subsequent power transmission is completed. The Msc command can be directly triggered, and the user can observe the PG-86 status to see if the multi-turn absolute motor has completed the return-to-origin operation.

In the case of a multi-turn absolute motor, if the AL033 absolute position is lost, the AL035 absolute position lap overflow and the AL038 position (PUU unit) counter overflow occur, the system cannot maintain the coordinate integrity. Therefore, the Msc module will not be executed. If these alarms occur,

LITEON

perform the home position return operation to rebuild the coordinate system.

The system provides software trigger (PG-11) and DI hardware trigger (MscTrg, MscEv1~4) for the user to trigger the Msc command to be executed. The specific trigger mode and command selection are as follows: Software trigger (PG-11): When PG-11 = $1 \sim 68$ input, the system starts triggering the corresponding Msc number command with the input value. For example, input 1 triggers the Msc number 1 command, and input 2 triggers the Msc number 2 command.

DI MscTrg hardware trigger: When DI MscTrg turns ON, the system triggers the selected Msc number command according to the 4 DI (MscNo1~4) state and the corresponding PG-61 ~ PG-75 setting value, DI MscNo and selected Msc number. The correspondence is described in the following table:

		DI functi	on name		DI state total	PG		
MscNo6	MscNo5	MscNo4	MscNo3	MscNo2	MscNo1	value	parameters	
OFF	OFF	OFF	OFF	OFF	OFF	0	No	No
OFF	OFF	OFF	OFF	OFF	ON	1	PG-61	PG-61 setting \cdot default = 1
OFF	OFF	OFF	OFF	ON	OFF	2	PG-62	PG-62 setting · default = 2
OFF	OFF	OFF	OFF	ON	ON	3	PG-63	PG-63 setting \cdot default = 3
OFF	OFF	OFF	ON	OFF	OFF	4	PG-64	PG-64 setting \cdot default = 4
OFF	OFF	OFF	ON	OFF	ON	5	PG-65	PG-65 setting \cdot default = 5
OFF	OFF	OFF	ON	ON	OFF	6	PG-66	PG-66 setting \cdot default = 6
OFF	OFF	OFF	ON	ON	ON	7	PG-67	PG-67 setting \cdot default = 7
OFF	OFF	ON	OFF	OFF	OFF	8	PG-68	PG-68 setting \cdot default = 8
OFF	OFF	ON	OFF	OFF	ON	9	PG-69	PG-69 setting \cdot default = 9
OFF	OFF		OFF			10	PG-70	PG-70 setting \cdot default =
OFF	OFF		OFF	ON	OFF	10	FG-70	10
OFF	OFF	ON	OFF	ON	ON	11	PG-71	PG-71 setting · default =11
OFF	OFF	ON	ON	OFF	OFF	12	PG-72	PG-72 setting · default =12
						12	PC 72	PG-73 setting \cdot default =
OFF	OFF	ÖN		OFF	ON	15	FG-73	13
OFF	OFF	ON	ON	ON	OFF	14	PG-74	PG-74 setting · default =
	011	ÖN		ON	011	17	1074	14
OFF	OFF	ON	ON	ON	ON	15	PG-75	PG-75 setting · default =
	011					15	1075	15
OFF	ON	OFF	OFF	OFF	OFF	16	No	16
OFF	ON	OFF	OFF	OFF	ON	17	No	17
OFF	ON	OFF	OFF	ON	OFF	18	No	18
OFF	ON	OFF	OFF	ON	ON	19	No	19
OFF	ON	OFF	ON	OFF	OFF	20	No	20
OFF	ON	OFF	ON	OFF	ON	21	No	21
OFF	ON	OFF	ON	ON	OFF	22	No	22
OFF	ON	OFF	ON	ON	ON	23	No	23

		DI functi	on name		DI state total	PG		
MscNo6	MscNo5	MscNo4	MscNo3	MscNo2	MscNo1	value	parameters	IVISC INU.
OFF	ON	ON	OFF	OFF	OFF	24	No	24
OFF	ON	ON	OFF	OFF	ON	25	No	25
OFF	ON	ON	OFF	ON	OFF	26	No	26
OFF	ON	ON	OFF	ON	ON	27	No	27
OFF	ON	ON	ON	OFF	OFF	28	No	28
OFF	ON	ON	ON	OFF	ON	29	No	29
OFF	ON	ON	ON	ON	OFF	30	No	30
OFF	ON	ON	ON	ON	ON	31	No	31
ON	OFF	OFF	OFF	OFF	OFF	32	No	32
ON	OFF	OFF	OFF	OFF	ON	33	No	33
ON	OFF	OFF	OFF	ON	OFF	34	No	34
ON	OFF	OFF	OFF	ON	ON	35	No	35
ON	OFF	OFF	ON	OFF	OFF	36	No	36
ON	OFF	OFF	ON	OFF	ON	37	No	37
ON	OFF	OFF	ON	ON	OFF	38	No	38
ON	OFF	OFF	ON	ON	ON	39	No	39
ON	OFF	ON	OFF	OFF	OFF	40	No	40
ON	OFF	ON	OFF	OFF	ON	41	No	41
ON	OFF	ON	OFF	ON	OFF	42	No	42
ON	OFF	ON	OFF	ON	ON	43	No	43
ON	OFF	ON	ON	OFF	OFF	44	No	44
ON	OFF	ON	ON	OFF	ON	45	No	45
ON	OFF	ON	ON	ON	OFF	46	No	46
ON	OFF	ON	ON	ON	ON	47	No	47
ON	ON	OFF	OFF	OFF	OFF	48	No	48
ON	ON	OFF	OFF	OFF	ON	49	No	49
ON	ON	OFF	OFF	ON	OFF	50	No	50
ON	ON	OFF	OFF	ON	ON	51	No	51
ON	ON	OFF	ON	OFF	OFF	52	No	52
ON	ON	OFF	ON	OFF	ON	53	No	53
ON	ON	OFF	ON	ON	OFF	54	No	54
ON	ON	OFF	ON	ON	ON	55	No	55
ON	ON	ON	OFF	OFF	OFF	56	No	56
ON	ON	ON	OFF	OFF	ON	57	No	57
ON	ON	ON	OFF	ON	OFF	58	No	58
ON	ON	ON	OFF	ON	ON	59	No	59
ON	ON	ON	ON	OFF	OFF	60	No	60

Lite-On Technology Corp. Industrial Automation

		DI functi	on name			DI state total	PG		
MscNo6	MscNo5	MscNo4	MscNo3	MscNo2	MscNo1	value	parameters	MSC NU.	
ON	ON	ON	ON	OFF	ON	61	No	61	
ON	ON	ON	ON	ON	OFF	62	No	62	
ON	ON	ON	ON	ON	ON	63	No	63	

DI MscEv1~4 hardware trigger: When the MscEv1~4 status changes, the system triggers the selected Msc number command according to the corresponding PG-76~79 setting value. The correspondence between MscEv1~4 and the selected Msc number is described as follows:

DI name	trigger	PG parameters	MSC NO.
MaaEu1	Rising edge	PG-76	The two digits of the PG-76 higher set value (as shown below)
IVISCE VI	Falling edge	PG-76	The lower two digits of the PG-76 set value (as shown below)
MscEv2	Rising edge	PG-77	The two digits of the PG-77 higher set value (as shown below)
	Falling edge	PG-77	The lower two digits of the PG-77 set value (as shown below)
MecEv2	Rising edge	PG-78	The two digits of the PG-78 higher set value (as shown below)
WISCEV3	Falling edge	PG-78	The lower two digits of the PG-78 set value (as shown below)
MeeEyA	Rising edge	PG-79	The two digits of the PG-79 higher set value (as shown below)
WISCE V4	Falling edge	PG-79	The lower two digits of the PG-79 set value (as shown below)
	Useless digits	high two digits	low two digits
Display	\blacksquare	88	88

Trigger priority order: PG-11 software trigger, MscTrg and MscEv1~4 hardware trigger, etc. The priority of the three types of triggers is as follows:

Trigger type	Priority (the smaller the number, the higher)	
MscEv1 rising edge hardware	1	
trigger	1	
MscEv1 falling edge	3	
hardware trigger	2	
MscEv2 rising edge hardware	3	
trigger	C.	
MscEv2 falling edge	4	
hardware trigger		
MscEv3 rising edge hardware		
trigger	5	
MscEv3 falling edge	6	
hardware trigger	0	
MscEv4 rising edge hardware	7	
trigger	7	
MscEv4 falling edge	8	
hardware trigger	0	

MscTrg hardware trigger	9
PG-11 software trigger	10

If all kinds of trigger sources occur at the same time, the system selects the trigger source to be executed as described above, and the unselected trigger source is masked by the system. Therefore, when multiple trigger sources occur at the same time, the system only selects the trigger source with the highest priority.

7.6.6. Msc Motion Planning – command jump and interrupt

The jump operation after the Msc command is interrupted and the command is completed is determined by the setting values of bit 16 to bit 23 in the PG-60 and Msc command mode settings, as follows:

Instruction Interruption: The PG-60 setting determines the interpolating behavior of all Msc commands in the system. The specific behavior is as follows:

PG-60 setting	Function	Desctiption
0x0	Not interrupted	When the Msc instruction is executed, if other trigger sources require execution of other Msc instructions, the system directly ignores the requirement and does not interrupt the current instruction. After the system completes all Msc instructions, it is open to accept the trigger source request.
0x1	Only after the completion	When the Msc instruction is executed, if other trigger sources require execution of other Msc instructions, the system immediately continues the required Msc instruction after the current instruction is completed. The jump setting of the original execution instruction plan is ignored. The specific instruction connection mode is still set according to the overlap of the original execution instructions, and the Msc instruction is executed in succession. If multiple sets of trigger sources require interrupting the current Msc instruction, still follow the contents of 7.6.5, and continue the high priority Msc instruction after the current instruction is completed.
0x2	Immediate interruption	When the Msc instruction is executed, if other trigger sources require execution of other Msc instructions, the system immediately aborts the current instruction and directly connects the required Msc instruction.

Command jump: The setting value of bit16~bit23 in the Msc command mode setting determines whether the other Msc commands are connected after the current command is completed. The specific behavior is as follows:

PH, PJ-even bit16 ~bit23	Function	Desctiption
0x00	Stop continuously	After the current instruction is completed, the system stops the Msc instruction. When the trigger source starts and starts again, DO MscBusy will be OFF.
0xA0	Sequential connection	After the current instruction is completed, the system will take the next Msc command. For example, the Msc number 1 command is currently executed. In this mode, the number 1 command will be automatically followed by the number 2 command, and DO MscBusy will be ON.
0xB0	Step up command	After the current instruction is completed, the system will take the previous Msc command. For example, the current execution of the Msc number 1 command is immediately interrupted to the number 3 command. If the number 3 is set to this mode, the number 1 command is automatically connected after the number 3 is completed. MscBusy will be ON.
0x01	Number 1 command	After the current command is completed, the system automatically connects the Msc number 1 command, and DO MscBusy will be ON.
0x02	Number 2 command	After the current command is completed, the system automatically connects the Msc number 2 command, and DO MscBusy will be ON.
0x03 ~ 0x44	Connect the number 3~68 command	After the current command is completed, the system automatically connects the Msc number 3 ~ 68 commands (depending on the set value), DO MscBusy will be ON.

7.6.7. Msc Motion Planning – command monitoring

When the Msc command is executed, the user can use the PD-22 to set the analog pulse command frequency output to observe the actual speed curve. However, in the Msc mode, the analog pulse frequency is changed by the PG-81 (other modes remain fixed). Magnification: 4.5 Mbps output 8V) to observe the full speed curve.

Example: If you execute the following command

Absolute positioning command 01 = 524288, next step, target speed, deceleration, acceleration and delay time code is 0xDDDA Absolute positioning command 02 = 0, connected to the previous step, the target speed, deceleration, acceleration and delay time code is 0xDDDA

The two commands turn off the overlap and turn on the overlap function, and the waveforms are monitored by the analog monitor pulse command and DO MscDelay as follows:

From the waveform, the triangle of the positive voltage is the motion curve of the command 01, and the triangle of the negative voltage is the motion curve of the command 02, and both curves have a delay of 500 ms.

From the waveform, the triangle of positive voltage is the motion curve of command 01, and the triangle of negative voltage is the motion curve of command 02. When the command 01 starts decelerating, the overlap function is enabled immediately, so the speed is directly decelerated and the command 02 is connected, and the command 02 After the completion, perform a 500ms delay time.

In addition to using the pulse wave command frequency to observe the dynamic speed curve, the system also provides four sets of monitoring parameters for the user to observe before and after the execution, the specific displacement and the actual PUU coordinate value, in addition to the original CD-P, FB-P and other system position monitoring The parameter still has an effect in Msc mode.

Monitoring	Function	Description	
parameter	I'uncuon	Description	

	When Msc starts	In Msc mode, when Serv Off -> On, the system records the absolute
PG-82	Position coordinate monitoring	position of the Msc coordinate (PUU) at the time of switching to PG-
	parameter	82 for verification of the displacement.
	Msc current	In Msc mode, the system records the current Msc coordinate absolute
PG-83	Position coordinate monitoring	position (PUU) in PG-83 for verification of the current Msc
	parameter	coordinate position.
	When Msc starts	In Msc mode, when Serv Off -> On, the system records the Msc index
PG-84	Indexing coordinate monitoring	coordinate absolute position (PUU) at the time of switching to PG-84
	parameters	for verification of the displacement amount.
PG-85	Msc current	In Msc mode, the system records the current Msc indexing absolute
	Indexing coordinate monitoring	position (PUU) on the PG-85 for verification of the current Msc
	parameters	indexing coordinate position.

Example: If the origin is reset, the system origin is defined as 0, the Msc command is the absolute positioning command 10000 PUU, the total division stroke (PG-80) = 4000, acceleration and deceleration and delay time 100 ms, gear ratio = 1, After Servo Off is switched to On, the motor encoder reads = 100. After the execution of the Msc command, the parameters of PG-82 \sim PG-85, CD-P, FB-P are as follows:

Parameter	Function	Value	Description
PG-82	When Msc starts Position coordinate monitoring parameter	100	After the servo Off is switched to On, the system memorizes the encoder reading value and converts the gear ratio to PG-82.
PG-83	Msc current Position coordinate monitoring parameter	10000	After the absolute positioning command is executed, the motor Msc coordinates are located.
PG-84	When Msc starts Indexing coordinate monitoring parameters	100	After the servo Off is switched to On, the system memorizes the encoder reading value and converts the PG-84 with the gear ratio and the total indexing stroke (PG-80). P-G84 = PG-82 divided by the remainder of PG-80
PG-85	Msc current Indexing coordinate monitoring parameters	2000	After the absolute positioning command is executed, the motor Msc coordinates the position, and then divides the total stroke (PG-80 PG-85. PG-85 = PG-83 divided by the remainder of PG-80)
CD-P	Pulse wave command input pulse wave number	9900	Actual displacement = $PG-83 - PG-82$
FB-P	Motor feedback pulse number	10000	Servo Off switches to the value after On + the actual amount of displacement.

8. Communication Mechanism

LITEON

8.1. RS-485/RS-232 Communication hardware interface

For communication, the servo drive supports two serial communication functions RS-485 and RS-232 to access and alter the parameter in the servo system. The communication functions RS-485 and RS-232 cannot be used simultaneously. The description is as follows:

Definition of the CN3 interface pin for servo motor:

Fig. 8.1 Definition for the communication Interface CN3 of servo motor For RS232 communication, use Pin 1 (TX), Pin 2 (RX) and Pin 3(GND) of Interface CN3. For RS485 communication, use Pin 4 (+) and Pin 5 (-) of CN3 Interface.

Note: The definition of RS232TX and RS232RX defined in Interface CN3 is the one for the signal at the servo drive end. If the servo motor is the slave for communication, dock TX of the master end for communication to RS232RX at the slave end. Dock RX at the master end to RS232TX at the slave end.

Description for the use of RS232:

1) 15 m is required for the environment with less noise. For the transmission speed above 38400bps, use the communication line with the length below 3 m to ensure the transmission accuracy.

2) For the definition of the wiring regarding RS232 connector, refer to Fig. 8.1 Definition for the communication Interface CN3 of servo motor.

Description for the use of **RS-485**:

1) It is suggested to use the line with the length below 15 m to ensure the transmission accuracy.

2) For the definition of the wiring regarding RS-485 connector, refer to Fig. 8.1 Definition for the communication Interface CN3 of servo motor.

3) When using RS-485, 32 drives can be connected simultaneously. For connecting more servo drives or increase the communication distance, a repeater must be installed for expansion. Up to

254 servo drives can be connected to.

8.2. RS-485/RS-232 Communication parameter setting

PD-00 Setting of the branch number, PD-01 Communication transmission rate and PD-02 Protocol are the parameters must be set and confirmed before a servo drive is connected to the communication network. Rest of the settings are optional, including PD-03 Handling of the communication error, PD-04 Setting for the communication timeout, PD-06 Control switch for the source of the input contact (DI), PD-07 Time for the delay of the communication response and PD-08 Monitoring Mode. Refer to Chapter 7 in the manual for details.

The following is the setting for the communication group of Parameter PD: Communication address for rate of ADR communication transmission: 0300H~0301H

PD-00	ADR		Setting of the communication number	office	Communicat address: 0300H 0301H	ion
		Initial value		7Fh		
		Co	ontrol mode	ALL		
		Unit		-		
		Configuration range		01h ~ 7	Fh	
		Data size		16 bi	t	
		Data format		HEX		

When RS-232/RS-485 is used for communication, only one branch number may be set per servo drive. If one branch number is set for multiple drives in the communication network, the communication would not work properly.

The station number implies the address of the drive in the communication network. It is also applicable to RS-232/485.

Communication address for rate of BRT communication transmission: 0302H~0303H

Operation interface: Index related to the panel/software communication: Sec. 8.2

PD-1	BRT		Setting of commu transmission rate	inication	Communicat address: 0302H 0303H	tion
		I	nitial value	33h		
		C	ontrol mode	ALL	,	
			Unit	Bps		
		Conf	figuration range	00h ~ 5	5h	
			Data size	16 bi	t	
		Data format		HEX		
	🗌 🔳 : RS23	2				

RS485

The following shows the definition of the set value for communication transmission rate for A and B:

- 0:4800
- 1:9600
- 2:19200
- 3:38400
- 4:57600
- 5:115200

Communication address for PTL protocol: 0304H~0305H

PD-02	PTL		Protocol setting		Communicati address: 0304H 0305H	on
		I	nitial value	6		
		C	ontrol mode	ALL	<i>_</i>	
			Unit	-		
		Configuration range		6 ~ 8	3	
		Data size		16 bi	it	
		Data format		DEC	2	

Parameter function: The protocol shared by RS-485 and RS-232 is set to the lowest bit A (4-bit, 16 bit).

	0	0	0	А	
Communication method	-	-	-	RS-485	RS-232
Configuration range	0	0	0	6~8	8

The following is the definition for the set value of protocol shared by RS-485 and RS-232:

6:8, N, 2(MODBUS, RTU)

7:8, E, 1(MODBUS, RTU)

8:8, O, 1(MODBUS, RUT)

8.3. MODBUS protocol

For the RTU (Remote Terminal Unit) mode, the user sets the required protocol in Parameter PD-02. As for functions supported by the drive, 03H Multiple Word Reading, 06H Single Word Writing and 10H Multiple Word Writing. Refer to the description below.

Data structure of communication

The following is the definition for the data frame in the RTU communication mode:

RTU mode:

Start	Standstill period over 10 ms
Slave address (communication address)	Slave address (communication address): 1-byte
Function code:	Function code: 1-byte
Data (n-1)	Data (n-1)
	Data content: n-word =2n-byte, n<=10
Data (0)	Data (0)
CRC error check:	CRC error check: 1-byte
End 1	Standstill period over 10 ms

The RTU (Remote Terminal Unit) communication mode begins from a static signal and ends with another static signal. The communication position, function code, data content, check for Cyclical Redundancy Check (CRC) error...etc. are between the beginning and end.

Example 1, Function Code 03H Multiple Word Reading:

For the example below, the master passes down the command to No. 127 (7FH) Slave for reading the data from two words in a row starting from the home address 0200H. The data content replied by the slave is Location 0200H = > Content 1122H and Location 0201H = > Content 3344H. Up to 10 entries allowed to be read at once.

RTU mode:

Request command: Response command:

Request command:

Slave Address (1 Bytes)	7FH
Function (1 Bytes)	03H
Initial data location (2 bytes)	02H (high bit set) 00H (low bit set)

Number of data	
entries	00H (high bit set)
(Unit: word)	02H (low bit set)
(2 bytes)	
CRC Check Low	CEH (low bit set)
(1 Bytes)	CFH (low bit set)
CRC Check High	ADH (high bit sat)
(1 Bytes)	ADII (ingli bit set)

Response command:

Slave Address (1 Bytes)	7FH
Function (1 Bytes)	03H
Number of data entries (Unit: byte) (1 byte)	04H
Initial data address Contents of 0200H (2 bytes)	11H (high bit set) 22H (low bit set)
Address of the second data Contents of 0201H (2 bytes)	33H (high bit set) 44H (low bit set)
CRC Check Low (1 Bytes)	D5H (low bit set)
CRC Check High (1 Bytes)	C1H (high bit set)

Note: A standstill period for 10 ms is required before and after transmission.

Example 2, Function Code 06H Single Word Writing:

For the following example, the master passes down the writing command to No. 127 (7FH) Slave for writing the data 1234H to the address 0200H. The slave replies the master after writing is complete.

RTU mode:

Request command: Response command:

Request command:

Slave Address (1 Bytes)	7FH
Function (1 Bytes)	06H
Initial data location (2 bytes)	02H (high bit set) 00H (low bit set)
Data content (2 bytes)	12H (high bit set) 34H (low bit set)
CRC Check Low (1 Bytes)	8FH (low bit set)

CRC Check High (1 Bytes)	1BH (high bit set)
-----------------------------	--------------------

Response command:

mand:	
Slave Address (1 Bytes)	7FH
Function (1 Bytes)	06H
Initial data location (2 bytes)	02H (high bit set) 00H (low bit set)
Data content	12H (high bit set)
(2 bytes)	34H (low bit set)
CRC Check Low (1 Bytes)	8FH (low bit set)
CRC Check High (1 Bytes)	1BH (high bit set)

Note: In the RTU mode, a standstill period for 10 ms is required before and after transmission.

Example 3, Function Code 10H, Multiple Word Writing:

For the example below, the master passes down the writing command to Slave No. 127 (7FH) for writing two words EF01H and 2345H to the home address 0012H. In other words, Location 0012H is written to EF01H and Location 0013H is written to 2345H. Up to 10 entries allowed to be read at once. The slave replies the master after writing is complete.

Request command: Response command:

Request command:

Slave Address (1 Bytes)	7FH
Function (1 Bytes)	10H
Initial data location (2 bytes)	00H (high bit set) 12H (low bit set)
Number of data entries (Unit: word) (2 bytes)	00H (high bit set) 02H (low bit set)
Number of data entries (Unit: byte) (1 byte)	04H
First data written to Location 0012H	EF01H
Second data written to Location 0013H	2345H
CRC Check Low (1 Bytes)	50H (low bit set)

	CRC Check High (1 Bytes)	84H (high bit set)
Response com	mand:	
	Slave Address (1 Bytes)	7FH
	Function (1 Bytes)	10H
	Initial data location (2 bytes)	00H (high bit set) 12H (low bit set)
	Number of data entries (Unit: word) (2 bytes)	00H (high bit set) 02H (low bit set)
	CRC Check Low (1 Bytes)	EBH (low bit set)
	CRC Check High (1 Bytes)	D3H (high bit set)

The following must be noted:

For PD-01, the new transmission rate must be used to transfer data for writing the next data after the new set value of transmission speed is written when the communication speed is altered.

For PD-02, the new protocol value must be used to transfer data for writing the next data after the new set value of protocol is written when the protocol is altered.

PD-31 relates to the control of forced output contact. With this parameter, the user tests the functioning of DO (Digit Output) more easily. The user writes in 1, 2, 4, 8 and 16 to test DO1, DO2, DO3, DO4 and DO5, respectively. After testing complete, 0 must be written to this parameter and the servo drive shall be notified for test completion.

Communication read parameter:

The parameter read by the servo drive via the communication method include:

PA-00~PA-21 PB-00~PB-41 PC-00~PC-25 PD-00~PD-55

9. Warning Troubleshooting

9.1. Drive Alarm List

Alarm indication	Alarm name	Description for alarm activation i		Switching of servo state
AL001	Overvoltage	It is activated when the voltage of main circuit is above the specified value.	ALM	Servo Off
AL002	Overcurrent	It is activated when the instantaneous current of the main circuit is above the current tolerance level of IGBT hardware.	ALM	Servo Off
AL003	Error with motor coupling	The drive does not match the corresponding motor.	ALM	Servo Off
AL004	Regeneration error	It is activated if any regeneration error occurs.	ALM	Servo Off
AL005	Overload	It is activated when the output of the drive is above the load curve.	ALM	Servo Off
AL006	Overspeed	It is activated when the motor speed is above the normal speed.	ALM	Servo Off
AL007	Abnormality in the pulse command	It is activated when the pulse command input frequency is above the specified value.	ALM	Servo Off
AL008	Excessive location error	It is activated when the value of location error is above the set value.	ALM	Servo Off
AL009	Abnormality in the encoder	The communication error regarding the data of the encoder occurs.	ALM	Servo Off
AL010	Abnormality in the calibration		ALM	Servo Off
AL011	The IGBT is overheated.	The IGBT of drive is overheated.	ALM	Servo Off
AL012	Abnormality in the EEPROM	It is activated due to abnormality in the memory access.	ALM	Servo Off
AL013	Abnormality in the output signal of the detector		ALM	Servo Off
AL014	Serial communication error		ALM	Servo Off
AL015	Overheated environment	The ambient temperature is too high.	ALM	Servo Off
AL016	Internal error in the encoder		ALM	Servo Off
AL017	Error in the data reliability of the encoder	An abnormality occurs in the internal data of the encoder three times in a row.	ALM	Servo Off
AL018	Overheated motor	The motor is overheated.	WRN	Servo On
AL019	Error in the CRC communication	It is activated when an abnormality occurs in RS-232/485 communication.	ALM	Servo Off
AL020	Timeout of the serial communication	It is activated when a timeout occurs in RS-232/485 communication.	ALM	Servo Off

Alarm indication	Alarm name	Description for alarm activation		Switching of servo state
AL021	Error in the motor collision		ALM	Servo Off
AL022	Exceeding the upper limit for the motor temperature	The motor temperature exceeds the tolerance range.	ALM	Servo Off
AL023	Exceeding the upper limit for the encoder temperature	The encoder temperature exceeds the tolerance range.	ALM	Servo Off
AL024	Abnormality in the encoder output		ALM	Servo Off
AL025	Overheated encoder	The encoder is overheated.	ALM	Servo On
AL027	Retrogradation overload	The retrogradation of the drive exceeds the capacity of retrogradation resistance.	ALM	Servo Off
AL029	RST input voltage below level	The RST input voltage is too low.	ALM	Servo Off
AL030	Encoder high voltage error or Encoder internal error	The driver charging circuit is not removed, causing the battery voltage to be higher than the specification (> 3.8V), or the encoder signal is incorrect.	ALM	Servo Off
AL033	Absolute position loss	Absolute coordinate initialization is not performed. The absolute encoder loses the number of turns recorded internally due to low battery voltage or power interruption.	WRN	Servo On
AL034	Encoder low voltage error	Absolute encoders have a lower battery voltage than the specification or a battery voltage error.	WRN	Servo On
AL035	Absolute position circle overflow (PD-57, bit2 can be turned off, Msc mode is forced to enable)	The number of absolute position turns exceeds the maximum range (-32768~+32767). Absolute coordinate initialization must be performed again.	WRN	Servo On
AL036	Absolute data I/O transmission error	Timing error in reading absolute position with DI/DO	WRN	Servo On
AL037	Motor type error	Incremental motors do not support absolute functions.	ALM	Servo Off
AL038	Position counter overflow (PD-57, bit2 can be turned off, Msc mode is forced to enable)	The position counter overflows. The pulse wave number in PUU mode exceeds -2147483648 ~ 2147483647 Absolute coordinate initialization must be performed again.	WRN	Servo On
AL050	Low voltage	The voltage of the main circuit is too low.	WRN	Servo Off
AL051	Emergency stop	It is activated when the emergency stop button is pressed.	WRN	Servo Off
AL052	Abnormality in the CCW-limit	It is activated when the CCW-limit switch is pressed.	WRN	Servo On
AL053	Abnormality in the CW-limit	It is activated when the CW-limit switch is pressed.	WRN	Servo On

Alarm indication	Alarm name	Description for alarm activation	Indicat ion DO	Switching of servo state
AL054	Timeout of the serial communication		ALM	Servo Off
AL055	Phase failure for the power of the main circuit	The power of the main circuit is input in one way only.	WRN	Servo Off
AL056	Warning of the expected overload		WRN	Servo Off
AL057	Abnormality in the fan	It is activated when the fan operates abnormally.	ALM	Servo Off
AL058	Abnormality in the DSP	It is activated when the DSP operates abnormally.	WRN	Servo Off

9.2. Reason for and handling of the alarm

AL001 : Overvoltage

Reason for abnormality	Check for abnormality	Handling of abnormality
The input voltage of the main circuit exceeds the allowance.	Measure the input power by the voltmeter to see if it is consistent with the specified value.	Use the adequate power supply or cascade the voltage stabilizer.
Malfunction of the drive hardware	An alarm occurs despite that the input power is consistent with the specified value.	Return it to the dealer or factory for repair.
Abnormality in the regeneration system	The regeneration system fails or the regeneration voltage is too high.	Check the regeneration system or mechanism.

AL002 : Overcurrent

Reason for abnormality	Check for abnormality	Handling of abnormality
The output of the drive is	Check the connection of the motor	The open circuit issue is solved to
open.	and drive.	prevent the exposure of conductor.
Abnormality in the motor	Check the wiring order for the	The wiring must be conducted
wiring	motor.	again based on specifications.
Abnormality in the IGBT	Breakdown and abnormality in	Return it to the dealer or factory
	the IGBT module	for repair.
Abnormality in the setting	The control or gain value is set	The value is reset to the initial
of the control parameter	too high.	value. It will be set and calibrated
of the control parameter		again.
Abnormality in the	Check if the input command is in	Modify the input command or turn
control command	a state of high severity.	on the filter function.

AL003 : Error with motor coupling

Reason for abnormality	Check for abnormality	Handling of abnormality
Encoder damage	An abnormality occurs in the encoder.	Replace the motor.
Loose encoder connector	The encoder wire is loose.	It is reattached.
Error with motor coupling	The motor does not match the drive.	Replace the motor.

AL004 : Regeneration error

Reason for abnormality	Check for abnormality	Handling of abnormality
Wrong selection of the regenerative resistor or no external regenerative resistor connected	Check the condition of the regenerative resistor.	Reset the parameter value. Send the resistor back to the factory if the abnormality is unsolved.
The parameter for resistor capacity not returned to zero when the regenerative resistor not in use	Check the parameter for the resistor capacity.	The parameter for resistor capacity must be returned to zero when the regenerative resistor is not in use.

AL005 : Overload

	Reason for abnormality	Check for abnormality	Handling of abnormality
	Continuous use while exceeding the rated load of the drive	Check if the motor operates in the condition that the rated load is above 100% for a long time through the monitoring state AVG-L.	Replace the old motor with the one with higher watts or reduce the load.
	Inadequate setting of the system parameter	 Check if the mechanical system sways. The acceleration and deceleration constant is set too short. 	Reset the value of switch parameter.
	Wrong wiring of the motor and encoder	Check the UVW and encoder wiring.	Install the wire correctly.
A	L006 : Overspeed		
Ī	Reason for abnormality	Check for abnormality	Handling of abnormality
	Excessive variation of speed command	Check if the speed command of the upper input is abnormal.	Modify the command or turn on the filter function.
	Inadequate setting of the system parameter	Check if the condition for the overspeed warning (PD-53) is insufficient.	Set the parameter value correctly.
A	L007 : Abnormality in	the pulse command	
	Reason for abnormality	Check for abnormality	Handling of abnormality
	Frequency in the pulse command above the rated input frequency	Check the pulse frequency sent by the upper controller.	Set the upper controller correctly.
	1 1 7		
A	L008 : Excessive location	on error	
A	L008 : Excessive location Reason for abnormality	on error Check for abnormality	Handling of abnormality
A	L008 : Excessive location Reason for abnormality The set value of parameter for position control error set too low	On error Check for abnormality Check the set value of parameter for position control error (PD-54).	Handling of abnormality Increase the set value of parameter for position control error (PD-54).
A	L008 : Excessive location Reason for abnormality The set value of parameter for position control error set too low Control gain set too low	On errorCheck for abnormalityCheck the set value of parameter for position control error (PD-54).Check if the position and speed gains are appropriate.	Handling of abnormalityIncrease the set value of parameter for position control error (PD-54).Calibrate the control gain again.
A	L008 : Excessive location Reason for abnormality The set value of parameter for position control error set too low Control gain set too low Torque limit too low	On errorCheck for abnormalityCheck the set value of parameter for position control error (PD-54).Check if the position and speed gains are appropriate.Check the torque limit value.	Handling of abnormalityIncrease the set value of parameter for position control error (PD-54).Calibrate the control gain again.Set the torque limit correctly.
A	L008 : Excessive location Reason for abnormality The set value of parameter for position control error set too low Control gain set too low Torque limit too low Excessive external load	On errorCheck for abnormalityCheck the set value of parameter for position control error (PD-54).Check if the position and speed gains are appropriate.Check the torque limit value.Check the state of external load.	Handling of abnormalityIncrease the set value of parameter for position control error (PD-54).Calibrate the control gain again.Set the torque limit correctly.Reduce the load or replace the old motor with the one with higher watts.
A	L008 : Excessive location Reason for abnormality The set value of parameter for position control error set too low Control gain set too low Torque limit too low Excessive external load L009 : Abnormality in	On error Check for abnormality Check the set value of parameter for position control error (PD-54). Check if the position and speed gains are appropriate. Check the torque limit value. Check the state of external load.	Handling of abnormalityIncrease the set value of parameter for position control error (PD-54).Calibrate the control gain again.Set the torque limit correctly.Reduce the load or replace the old motor with the one with higher watts.
	L008 : Excessive location Reason for abnormality The set value of parameter for position control error set too low Control gain set too low Torque limit too low Excessive external load L009 : Abnormality in Reason for abnormality	On errorCheck for abnormalityCheck the set value of parameter for position control error (PD-54).Check if the position and speed gains are appropriate.Check the torque limit value.Check the state of external load.the encoderCheck for abnormality	Handling of abnormalityIncrease the set value of parameter for position control error (PD-54).Calibrate the control gain again.Set the torque limit correctly.Reduce the load or replace the old motor with the one with higher watts.Handling of abnormality
A	L008 : Excessive location Reason for abnormality The set value of parameter for position control error set too low Control gain set too low Torque limit too low Excessive external load L009 : Abnormality in Reason for abnormality Loose encoder wire	On error Check for abnormality Check the set value of parameter for position control error (PD-54). Check if the position and speed gains are appropriate. Check the torque limit value. Check the state of external load. the encoder Check for abnormality Check if the encode wire is loose.	Handling of abnormalityIncrease the set value of parameter for position control error (PD-54).Calibrate the control gain again.Set the torque limit correctly.Reduce the load or replace the old motor with the one with higher watts.Handling of abnormality Reattach the encoder wire.

An abnormality occurs in the

motor.

Malfunction of encoder

Replace the motor.

AL010 : Abnormality in the calibration

Г	Descen for chromesliter	Chaoly for abnormality	Handling of abnormality		
ŀ	Reason for abnormality	Check for abnormality	nandling of abnormality		
	Analog Input contact not	Measure if the voltage level of the	The analog input contact is		
	returned to zero	analog input contact is equivalent	grounded correctly.		
_		to the ground potential.	8j.		
	Damage of the detecting	Detection of power reset	If any abnormality still occurs,		
	element		return the element to the factory for		
	clonicht		repair.		
AI	L011 : IGBTOverheate	ed module			
	Reason for abnormality	Check for abnormality	Handling of abnormality		
	Overheated drive	Check if the drive temperature is	I arrive the drive term protive		
	Overneated drive	too high.	Lower the drive temperature.		
AI	L012 : Abnormality in	the EEPROM			
	Reason for abnormality	Check for abnormality	Handling of abnormality		
	Mamory damaga		Return it to the dealer or factory		
	Memory damage		for repair.		
AI	AL015 : Ambient temperature too high				
	Reason for abnormality	Check for abnormality	Handling of abnormality		
	Ambient temperature of	Check if the drive temperature is	I ower the drive temperature		
	the drive too high	too high.	Lower the drive temperature.		
AI	L017 : Error in the dat	a reliability of the encoder			
	Reason for abnormality	Check for abnormality	Handling of abnormality		
		1. Check if the motor is	1. Make sure that the ground end		
		grounded normally.	of the UVW connector is		
		2. Check if the signal cable of	connected to the heat		
		the encoder is entangled with	dissipation of the drive.		
	Abnormality in three data	the line with the power or high	2. Check the wiring for the signal		
	entries of the encoder data	current. If not, the interference	cable of the encoder to prevent		
	received by the drive in a	source can be avoided.	it from entangling with other		
	row.	3. Check if the mesh is used for	lines.		
		the filament of the encoder.	3. Use the filament with mesh.		
			4. If the situation is not improved,		
			return the drive the factory for		
			repair.		
		to a	<u>*</u>		

AL018 : Overheated motor

Reason for abnormality	Check for abnormality	Handling of abnormality
The motor temperature is over 75°C.	Check if the motor temperature is too high.	Reduce the motor temperature.

AL019 : Error in the CRC communication

Reason for abnormality	Check for abnormality	Handling of abnormality
Error in RS-232/485 communication	Check if the signal cable is interfered with.	Check the wiring for the signal cable to prevent it from entangling with other lines.

AL020 : Timeout of the serial communication

Reason for abnormality	Check for abnormality	Handling of abnormality
Inadequate setting of the	Check the setting of timeout	Sat the perameter correctly
timeout parameter	parameter.	Set the parameter confectly.
Communication	Check if the wire is loose.	Connect the wire correctly.

	interruption		
AL021	: Error in the mo	tor collision	
Rea	ason for abnormality	Check for abnormality	Handling of abnormality
Inac	dequate setting of the timeout parameter	Check the setting of timeout parameter.	Set the parameter correctly.
	Communication interruption	Check if the wire is loose.	Connect the wire correctly.
AL022	: Exceeding the u	pper limit for the motor temp	erature
Rea	ason for abnormality	Check for abnormality	Handling of abnormality
The	motor temperature is over 90° C.	Check if the motor temperature is too high.	Reduce the motor temperature.
AL023	Exceeding the u	pper limit for the encoder tem	perature
Rea	ason for abnormality	Check for abnormality	Handling of abnormality
E	ncoder temperature exceeding 85°C	Check if the encoder temperature is too high.	Lower the encoder temperature.
AL025 : Overheated encoder			
Rea	ason for abnormality	Check for abnormality	Handling of abnormality
E	ncoder temperature exceeding 65°C	Check if the encoder temperature is too high.	Lower the encoder temperature.
AL026 : Overcurrent output by the servo			
Rea	ason for abnormality	Check for abnormality	Handling of abnormality
Abn of t	ormality in the setting he control parameter	The control or gain value is set too high.	The value is reset to the initial value. It will be set and calibrated again.
ŀ	Abnormality in the	Check if the input command is in	Modify the input command or turn
	control command	a state of high severity.	on the filter function.
AL027	: Regeneration ov	verload	
Rea	ason for abnormality	Check for abnormality	Handling of abnormality
Er	ror in the parameter setting	Check the parameter for the resistor capacity and the resistor parameter.	Reset the parameter value.
reg	The capacity of generative resistor is insufficient.	Check if the deceleration time is too short or if the capacity of the regenerative resistor is too low.	Increase the deceleration time or attach the regenerative resistor with higher watts.

AL030 : Encoder high voltage error or encoder internal error

Reason for abnormality	Check for abnormality	Handling of abnormality
Battery voltage is too high	Check if the battery installation is abnormal (Voltage is high > 3.8V).	If the battery voltage is too high, check or replace the battery.
Encoder internal error	 Check if it is an absolute encoder. Is the motor ground ground properly grounded. The encoder signal line is separated from the power supply or high current line to 	1. After checking and excluding the above abnormal causes, there is still no improvement, please return it to the dealer or the original factory for repair.

	avoid the generation of	2	Connect the ground (green) of
	interference sources	2.	the LIVW connector to the heat
4	Is the wire of the position		sink of the drive
	detector used to use the isolation	3.	Separate the encoder signal line
	net?		from the power or high current
			line.
		4.	Please use wire with isolation
			net. If there is still no
			improvement, please return it to
			the dealer or the original factory
			for repair.

AL033 : Absolute position loss

Reason for abnormality	Check for abnormality	Handling of abnormality
The battery voltage is too		After replacing the battery, re-
low or the battery is	Check if the battery voltage is lower	execute the system initialization
replaced under low voltage	than 1.2V or replace the battery	program and perform absolute
conditions.	with the drive control power OFF.	coordinate initialization as described
		in sections 11.3.4 to 11.3.5.
Absolute position	1. Install the battery.	Re-execute the system initialization
coordinate initialization has	2. Check the battery power wiring	program and refer to the instructions
not been completed after	of the battery's external box and	in sections 11.3.4 to 11.3.5 for
the absolute function is	the drive.	absolute coordinate initialization.
activated	3. Check the encoder wiring.	
Poor battery contact or		Connect or repair the wiring so that
disconnection	1 Check the encoder wiring	the battery power can be supplied to
	2. Check the wiring of the bettern's	the encoder normally. Re-execute the
	2. Check the winning of the battery's	system initialization program. Refer
	external box and the drive.	to Section 11.3.4 ~ 11.3.5 for
		absolute coordinate initialization.

AL034 : Encoder low voltage error

Reason for abnormality	Check for abnormality Handling of abnormality
	1. Check if the panel battery Replace the battery with the driv
Pattory voltage is too low	voltage is lower than 3.1 V. control power ON. AL034 will
Battery voltage is too low	2. Measure if the battery voltage is automatically disappear afte
	lower than 3.1 V. replacing the new battery.

AL035 : Absolute position circle overflow

Reason for abnormality	Check for abnormality	Handling of abnormality
The number of turns is out of range	Check if the number of motor turns is -1048576 ~ 1048575 laps.	 Re-run the coordinate initialization program and refer to the instructions in 11.3.1 for absolute coordinate initialization. If you do not need to accept the lap time overflow warning message, set PD-57, bit2 to 1, to turn off this warning function. The Msc mode will force this warning function to be triggered. In the Msc mode, this alarm occurs. Please refer to the origin return program 7.6.1 to reconstruct the coordinate system.

AL036 : Absolute data I/O transmission error

Reason for abnormality	Check for abnormality	Handling of abnormality
Read time expired	Check that the On-> Off and Off-> On switching times of DO (AENC_D) match the settings required by Tq or Tout.	 The DI (AENC_E) must be reset to the low level to clear the alarm and re-arm. Perform absolute position information for DI/DO reading in accordance with the timing instructions in 11.3.6.

AL037 : Motor type error

Reason for abnormality	Check for abnormality	Handling of abnormality
Incremental motor set to absolute function	 Check that the motor is an incremental or absolute encoder. Check parameter PD-56. 	To use the absolute function, use an absolute motor. If the absolute function is not used, set parameter PD-56 to 0.

AL038 : Position counter overflow

Reason for abnormality	Check for abnormality	Handling of abnormality
Position counter overflow	Check that the stroke exceeds the maximum count range, or set the appropriate gear ratio to avoid feedback calculation overflow.	If you do not need to accept the overflow warning message, set PD- 57, bit3 to 1, to turn off this warning function. Msc mode will force this warning function, please refer to the origin return program 7.6.1 to reconstruct the coordinate system.

AL050 : Low voltage

Reason for abnormality	Check for abnormality	Handling of abnormality
Input voltage of the main	Measure the input power by the	Use the adequate power supply or

	circuit below the	voltmeter to see if it is consistent	cascade the voltage stabilizer.
	allowance	with the specified value.	6
AL051 : Emergency stop			
	Reason for abnormality	Check for abnormality	Handling of abnormality
	Emergency stop switch pressed	Check the switch status.	Turn on the emergency stop switch.
AL052 : Abnormality in the CCW-limit			
	Reason for abnormality	Check for abnormality	Handling of abnormality
	CCW-limit switch pressed	Check the switch status.	Turn on the CCW-limit switch.

AL053 : Abnormality in the CW-limit

	Reason for abnormality	Check for abnormality	Handling of abnormality
	CW-limit switch pressed	Check the switch status.	Turn on the CW-limit switch.
AL055 : Phase failure for the power of the main circuit			t
	Reason for abnormality	Check for abnormality	Handling of abnormality
Phase failure for the power of the main circuit with only single phase input available		 Check if the power connection is loose. Check if the power input is normal. 	Make sure that the three-way power supply is connected. Return the power supply to the factory for repair if there is still any abnormality.

AL056 : Warning of the expected overload

Reason for abnormality	Check for abnormality	Handling of abnormality	
Warning of the expected overload	 Check for the use during continuous overloading. 2. 	 Refer to AL005 for handling. 2. 	

AL057 : Abnormality in the fan

Reason for abnormality	Check for abnormality	Handling of abnormality
Abnormality in the fan	Check the condition of the fan.	Return it to the dealer or factory for repair.

AL058 : Abnormalityin the DSP

Reason for abnormality	Check for abnormality	Handling of abnormality
Abnormality in the DSP	Check whether the drive operates	Return it to the dealer or factory
renormanty in the Dor	normally.	for repair.

9.3. Alarm troubleshooting

Alarm indication	Alarm name	Action for recovery after alarm
AL001	Overvoltage	DI: ARST clear
AL002	Overcurrent	DI: ARST clear
AL003	Error with motor coupling	DI: ARST clear
AL004	Regeneration error	DI: ARST clear
AL005	Overload	DI: ARST clear
AL006	Overspeed	DI: ARST clear
AL007	Abnormality in the pulse	DI: ARST clear
A.T. 000	command	
AL008	Excessive location error	DI: ARST clear
AL009	Abnormality in the encoder	DI: ARST clear
AL010	Abnormality in calibration	DI: ARST clear
ALOII	Overheated IGBT	DI: ARST clear
AL012	Abnormality in EEPROM	DI: ARST clear
AL013	Abnormality in the output signal of the detector	DI: ARST clear
AL014	Serial communication error	DI: ARST clear
AL015	Overheated environment	It is cleared automatically after temperature recovery.
AL016	Internal error in the encoder	DI: ARST clear
AL017	Error in the data reliability of the encoder	DI: ARST clear
AL018	Overheated motor	It is cleared automatically after temperature recovery.
AT 010	Error in the CRC	DI: ARST clear
AL019	communication	
AI 020	Timeout of the serial	DI: ARST clear
111020	communication	
AL021	Error in the motor collision	DI: ARST clear
AL022	Exceeding the upper limit for the motor temperature	It is cleared automatically after temperature recovery.
AL023	Exceeding the upper limit for	It is cleared automatically after temperature recovery.
	the encoder temperature	
AL024	Abnormality in the encoder output	DI: ARST clear
AL025	Overheated encoder	It is cleared automatically after temperature recovery.
AT 026	Overcurrent output by the	DI: ARST clear
AL020	servo	
AT 027	Abnormality in the	DI: ARST clear
<u>AL027</u>	regeneration	
AL030	Encoder high voltage error or	
112030	Encoder internal error	
AL033	Absolute position loss	
AL034	Encoder low voltage error	

Alarm indication	Alarm name	Action for recovery after alarm
	Absolute position circle	
	overflow	
AL035	(PD-57, bit2 can be turned	
	off, Msc mode is forced to	
	enable)	
AL036	Absolute data I/O	
11007	transmission error	
AL037	Motor type error	
	Position counter overflow	
AL038	(PD-57, bit2 can be turned	
	off, Msc mode is forced to	
	enable)	It is alcound automatically after the voltage returns to
AL050	Low voltage	normal
AL051	Emergency stop	DI: It is cleared automatically after EMG is clear
TILOUT	Abnormality in the CCW-	DI: ARST clear
AL052	limit	
AL053	Abnormality in the CW-limit	DI: ARST clear
AT 054	Timeout of the serial	DI: ARST clear
AL034	communication	
AT 055	Phase failure for the power of	DI: ARST clear
AL033	the main circuit	
AT 056	Warning of the expected	DI: ARST clear
AL030	overload	
AL057	Abnormality in the fan	DI: ARST clear
AL058	Abnormality in the DSP	Return it to the dealer or factory for repair.

10. Specifications

10.1. Standard specification for the servo drive

Model name	of serve	o drive: ISA-7X	100W	200W	400W	750W	1kW	1.5kW	2.0kW		
			010	020	040	075	100	150	200		
Output	Rated	voltage (Note 1)	0.7			Three phase	170VAC	40.0	44.0		
power	Rated	I current [A] (Note	0.9	1.7	2.8	5.8	6.0	10.0	11.0		
-	1)	Voltogo/fragest		-TTI-	a phase AC 200	220W/50_C0H-		Three phone 200	WAC 220WAC		
		voltage/frequency		Thre	e pnase AC 200 ~	230 V/30, 60HZ		inree phase 200	0H7		
		Poted ourrent [A]		Single phase AC 250 V/50, 00Hz 50/60Hz							
		(Note 1)	0.7	1.5	2.6	3.8	5.0	8.0	10.5		
Power supply	input	Allowable voltage			Three phase: 170	~ 255 VAC		Three phase: 1	70 ~ 255 VAC		
of the main cir	rcuit	variation			Single phase: 200	~ 255 VAC		Three phase. I	70 255 VIIC		
		Allowable			8 F	Maximur	n +5%				
		frequency									
		variation									
		Voltage/frequency			Sing	gle phase 200VAC	-240VAC, 50/60Hz				
		Rated current [A]				0.2					
		Allowable voltage				Single phase 170	VAC-255VAC				
Power supply	input	variation									
of the control		Allowable				Maximur	n ±5%				
circuit		veriation									
		Power				30					
		consumption [W]				50					
Power supply	for inte	rface			24VD0	$2 \pm 10\%$ (required (current canacity 0.5	(A)			
Method for co	ntrol of	main circuit			Space-ve	ector PWM control	l/current control me	thod			
Built-in regen	erative	resistor			<u> </u>	60	60	100	100		
Allowable reg	enerativ	ve power [W]			60	60	60	100	100		
Dynamic brak	e					Built	-in				
Communicatio	on funct	tion		RS232/RS485							
Output pulse of	of encod	ler	Compatible (A/B/Z-phase pulse)								
Analog monite	oring		Two channels are available. Use the parameter to set the monitoring signal (range of output voltage: ±8V).								
External contr	ol meth	od	Pulse and analog signals								
		Pulse frequency									
		of maximum	500k/4Mpulses/s (if the differential receiver is used) and 200kpulse/s (if the open collector is used)								
		Commond nulso									
		mode	Pulse +symbol; A phase + B phase; CCW pulse + CW pulse								
		Command control									
		method				External pul	se control				
		Command									
		smoothing			Lo	w-pass and P-curv	ve smoothing filter				
Position contr	പ	method									
mode	01	Position feedback				Encoder resolu	tion: 20 bits				
mode		pulse				Encoder resolu	20 0113				
		Command pulse		A/B r	ate of electronic	gear, A: 1-167772	215, B: 1-16777215,	1/10 < A/B < 4000			
		rate Width cotting for									
		width setting for			0.	+65525 mulaos (ao	mmand nulsa unit)				
		completion			0		initiatiu puise unit)				
		Excessive error	+ 10 rotation								
		Torque limit	Via the parameter or external analog input (0- +10 VDC/maximum torque)								
		Feed-forward									
		compensation				Parameter sett	ing method				
		Speed control			Analog speed o	ommand 1.2000 i	nternal speed comm	and 1:5000			
		range			Analog speed c	ommand 1.2000, I	internal speed comm	and 1.5000			
		Bandwidth				Maximum	550Hz				
		Command control			Control of exte	rnal analog comm	and/control of interr	nal register			
		method									
Speed control		Command			Low not	amoothing filtom	C aurea amoothing	filton			
mode		smootning			Low-pas	s smootning filter;	S-curve smoothing	Inter			
		Input of analog									
		speed command	0-±	10VDC/rated	speed (may be cha	anged via the parar	meter at 10V speed)	(Input resistance: 10)kΩ-12 kΩ)		
		Speed variation		Maxim	um +0.01% (load	variation ratio 0-1	00%), 0% (nower v	ariation ratio: +10%)		
		ratio		Maximum +	0.2% (ambient ter	nperature: $25^{\circ}C + 1$	10° C); then the analog	og speed command i	s used		
		Torque limit		Vi	a the parameter or	external analog in	put (0- +10 VDC/m	aximum torque)			
Torque contro	1	Command control			C	ontrol of external	analog command	1			
					-		<u> </u>				

mode	method				
	Command				
	smoothing	Low-pass smoothing filter			
	method				
	Input of analog	$0 \pm 10 \text{VDC/maximum targua (ii)}$	10kO 12 kO		
	torque command	0- ±10 v DC/maximum torque (in	iput resistance. Toks2-12 ks2)		
	Speed limit	Via the parameter or external analog	g input (0- +10VDC/rated speed)		
Digital I/O	Servo start, error reset, gain switch, pulse clear, zero speed clamping, command input reverse contr speed limit, motor stop, speed command selection, selection and switching of command for the speed mode, selection and switching of command for the speed/torque mixed mode, selection and switching the torque/position mixed mode, emergency stop, CW- /CCW-limit, CW- /CCW-limit torque limit, jog input, selection of ratio for the numerator of the electronic gear ratio and the pulse input				
-		A/B/Z line da	river input		
	Output	Servo ready, servo start, zero speed detection, command speed arrival, command position arrival, torque limiting, servo alarm, electromagnetic brake, overload alert, servo warning, software limit (reverse direction), software limit			
		(forward direction) and servo procedure complete.			
		Overcurrent protection, regenerative overvoltage protection, overload protection (electronic thermal relay), servo			
Protection fund	ction	motor overheat protection, encoder error protection, regene	eration error protection, low voltage protection, transient		
		power failure protection, overspeed protection, excessive err	or protection, magnetic pole detection protection, as well		
~ ~ ~ ~ ~		as the malfunction protection of linear servo control malfunction.			
Safety authenti	ication	IEC/EN 61800-5-1, UL508C (planned)			
Structure (IP le	evel)	Natural cooling, open type (IP20)	Forced cooling, open type (IP20)		
Close fitting		Allowed (Note 2)			
Ambient temperature		0-55°C (non-frozen), storage	: -20°C-65°C (non-frozen)		
		(If the ambient temperature is above 45°C, enforce the peripheral air cycling.)			
Environment	Ambient humidity	Maximum 90% RH (non-condensing), stora	ge: maximum 90% RH (non-condensing)		
Environment	Installation location	It must be installed indoor without direct sunlight,	corrosive gas, flammable gas, oil mist or dust.		
	Height	Height above sea lev	el - below 1000 m		
	Vibration resistance	5.9m/s ² at 10-55Hz (X,	Y and Z directions)		

10.1.1. Outline dimension drawing (drive)

Power	А	В	С	D	Е	Weight
200W~400W	173(6.81)	185(7.28)	50(1.97)	32.5(1.28)	162.5(6.40)	1.05(2.31)
750W~1kW	173(6.81)	195(7.68)	70(2.76)	52.5(2.07)	163(6.42)	1.64(3.61)
1.5kW~2kW	212.4(8.36)	209.2(8.24)	108(4.25)	95 (3.74)	200 (7.87)	3.4 (7.5)

10.2. Standard specification for the servo motor

10.2.1. Size of the motor fixed screw

Item			Unit	Specifications		
V	oltage		V	AC200V ~ 240V		
Model of the electric machinery (IOSMPHA04010M						
A)			-	Medium inertia		
Size of m	ounted flange		mm	□40		
Dize of it	iounted mange	No actuator		0.55		
Schematic we	eight	With actuator	kg	0.75		
	Rated ou	tput	W	100		
	Rated tor	que	N·m	0.318		
	Maximum trans	ient torque	N·m	0.96		
	Rated cur	rent	Arms	0.9		
	Maximum transi	ient current	Arms	2.7		
	Rated rotatio	n speed	r /min	3000		
	Max. sp	eed	r /min	6000		
	Torque cor	nstant	N · m/Arms	0.37		
Basic specifications	Induced voltage con	nstant for each		22.7		
	phase		mV/(r/min)	23.7		
	Rated power	No actuator	kW/s	Maximum power per second		
		With actuator		12.3		
	Machinery constant	No actuator	ms	Mechanical constant		
	Electric en	With actuator		1.8/		
	Electric co	No option	10-4	U.SS Deter inertie		
	Rotor inertia		×10			
		with actuator	kg∘m	0.082		
	Encode	er		20bit serial communication (RS-422)		
	Purpose			Holding brake (not for braking)		
	Power supply		-	Use SELV power supply / power supply that is reinforced with hazardous voltages		
	Rated voltage		V	DC24V±10 %		
Actuator specifications	Rated current		А	0.25		
Actuator specifications	Static friction	n torque	N·m	>0.32		
	Pull-in time		ms	<40		
	Release time		ms	<20		
	Release vo	oltage	V	>DC1.2V		
	Rated ti	me		continous		
	Temperature of	application	0°C ~ 40°C			
	environm Humidity of ar	nent polication				
	environm	nent		20 to 85% RH (no condensation)		
	Temperature o	of storage	-20	-20 $^{\circ}$ C ~ 65 $^{\circ}$ C (no condensation) Maximum temperature: 80 $^{\circ}$ C, 72 hours		
	Humidity of storage	e environment		20 to 85% RH (no condensation)		
Condition of application	Use of the air in	the storage	Indoor (no	direct sunlight) non-corrosive gas, flammable gas, oil mist, dust, combustibles,		
environment	environm	nent		abrasives, etc.		
	Thermal resista	ance level		Class B		
	Insulation res	sistance		A C1500V 1 minute		
	Altitude for e			AC1500 V 1 IIIIIIIIE		
	Vibration	level		V15 (IEC2121)		
	Findurance vi	ibration		V15 (JEC/21/21)		
	Endurance	shock		<u>49m/s2 (50)</u>		
Protective structure			9011/52 (1UC) ID65 (ID67 can be used)			
	Tioteeure se	raetare		Regified to be grounded ClassI grade		
				Overvoltage Category II "Overvoltage category II" grade		
				Pollution degree 2 "Pollution degree 2" grade product		
	Notes		• The value	e indicated by the rated torque is the value when it is mounted on the L-flange of		
				approximately 2 times the flange size.		
			• The bra	ke cable has polarity. Connect the wire yellow (BRK+) to +24V and wire the wire		
			Blue (BRK-) is connected to GND.			

Item		Unit	Specifications			
	Voltage		V	AC200V	V ~ 240V	
Model of the elec	tric machinery	(IOSMPHA060	-	IOSMPHA06020M A Medium inertia	IOSMPHA06040M A Medium inertia	
Size	of mounted flan	nge	mm		50	
Schematic	weight	No actuator	kg	1.1	1.6	
	Data	With actuator	NV S	1.5	2.1	
	Ratec		vv	200	400	
	Katec	torque	N·m	0.64	1.27	
	Maximum tr	ansient torque	N·m	1.9	3.8	
	Rated	current	Arms	1.7	2.8	
	Maximum tr	ansient current	Arms	5.1	8.4	
	Rated rot	ation speed	r /min	30	00	
	Max	. speed	r /min	60	00	
Basic	Torque	constant	N · m/Arms	0.38	0.454	
specifications	Induced volta each	ige constant for phase	mV/(r/min)	25	29.86	
	Rated power	No actuator	kW/s	15.1	58.7	
		With actuator		14.1	51.9	
	Constant	No actuator	ms	0.60	0.67	
	Electric	constant	ms	2.16	2.37	
		No actuator	×10 ⁻⁴	0.27	0.49	
	Rotor inertia	With actuator	kg · m²	0.29	0.51	
	End	coder	U	20bit serial communication (RS-422)		
	Pu	pose		Holding brake (not for bra	iking)	
	Power	r supply	-	- Use SELV power supply / power supply that is reinforced with hazardous voltages		
	Rated	voltage	V	DC24V±10 %		
Actuator	Rated current		А	0.3		
specifications	Static fric	ction torque	N·m	>1.27		
	Pull-	in time	ms	<50		
	Relea	se time	ms	<2	20	
	Release	d time	v	V >DC1.2V		
	Temperature	of application		0°C ~40°C		
	envir	onment				
	Humidity o	of application	$20 \sim 85\%$ RH (non-condensing)			
	Temperatu	onment				
	envir	onment		ours	\sim	
Condition of	Humidity	of storage		$20 \sim 85\%$ RH (non-conder	nsing)	
application	Use of the ai	r in the storage	It muu be insteinate indc corr sivu gant dure e ga dure e ga filan mais com ustii indc corr filan mais corr indc corr filan ustii corr filan ustii corr filan ustii corr filan corr f corr			
environment	Thermal rea	sistance level		Class B		
	Insulation	n resistance		DC1000V above 5M	Ω	
	Insulation vo	ltage resistance		AC1500V 1 minute	a 2	
	Altitude fe	or operation		Altitude below 1000r V15 (JEC2121)	n	
	Endurand	e vibration		49m/s2 (5G)		
	Endura	nce shock	98m/s2 (10G)			
	Protectiv	e structure		IP65 (corresponding to I	P67)	
				Regified to be grounded, Cl	assI grade	
				Overvoltage Category II "Overvoltage	e category II" grade	
				Pollution degree 2 "Pollution degree	e 2" grade product	
	Notes		• The value indication	ated by the rated torque is the value when it is times the flange size	mounted on the L-flange of approximately 2	
		• The brake cable has polarity. Connect the wire yellow (BRK+) to +24V and wire the wire Blue (BRK-) is connected to GND.				

Item		Unit	Specifications			
	Voltage		V	AC200V ~ 240V		
Model of t	he electric mach	inery				
(IOSMPH	A08075M	A)	-	Medium inertia		
Size o	f mounted flang	e	mm	□80		
		No actuator		2.7		
Schematic	e weight	With actuator	kg	3.3		
	Rated o	utput	Rated output	750		
	Rated to	orque	Rated torque	2.39		
	Maximum tran	isient torque	Rated current	1.2		
	Maximum tran	sient current	Maximum transient current	15		
	Rated rotati	on speed	Rated rotation speed	3000		
	Max. s	peed	Max. speed	6000		
	Torque co	onstant	Torque constant	0.48		
Pasia	Induced volta for each	ge constant phase	Induced voltage constant for each phase	31.25		
specifications		No actuator		64.1		
-r	Rated power	With	kW/s	52.8		
		actuator No estuator		0.52		
	Machinery	No actuator With	ms	0.55		
	constant	actuator	1115	0.64		
	Electric c	onstant	Electric constant	3.47		
		No actuator	×10 ⁻⁴	1.61		
	Rotor inertia	With	kg·m²	1.65		
	Enco	der	20bit serial communication (RS-422)			
	Purpo	ose	Holding brake (not for braking)			
	Power s	upply	-	Use SELV power supply / power supply that is reinforced with hazardous voltages		
	Rated vo	oltage	V	DC24V±10 %		
Actuator	Rated cu	urrent	А	0.33		
specifications	Static friction	on torque	N∙ m	>2.39		
	Pull-in	time	ms	60		
	Release	time	ms	20		
	Release v	oltage	V	>DC1.2V		
	Rated	time				
	Temperature of environ	ment	$0 C \sim 40 C$			
	Humidity of a	application	20~85%RH (non-condensing)			
	Temperature	of storage	-20° C $\sim 65^{\circ}$ C (non-condensing) Highest temperature: 80°C with 72 hours			
	environ	ment				
Condition of	environ	ment	$20 \sim 85\%$ KH (non-condensing)			
application	Use of the air in environ	n the storage ment	It must be installed indoor without direct sunlight, corrosive gas, flammable gas, oil mist, dust, combustible			
environment	Thermal resis	tance level		Class B		
	Insulation r	esistance		DC1000V above 5M Ω		
	Insulation	voltage		AC1500V 1 minute		
	Altitude for	operation		Altitude below 1000m		
	Vibration	n level		V15 (JEC2121)		
	Endurance	vibration		49m/s2 (5G)		
Endurance shock		98m/s2 (10G)				
	Protective	structure		IP65 (corresponding to IP67)		
				Regified to be grounded, ClassI grade		
				Overvoltage Category II "Overvoltage category II" grade		
				Pollution degree 2 "Pollution degree 2" grade product		
	Notes		 The value indicated by the 	e rated torque is the value when it is mounted on the L-flange of approximately 2 times		
			. The broke of	the has polarity Connect the wire vallow (BDK) to 124W and wire the wire		
			The brake cat	Blue (BRK-) is connected to GND.		

Item		Unit	Specifications					
	Voltage	e	V					
Model o	f the electr	ic machinery	-	IOSMPHB131D0M	IOSMPHB131D5M	IOSMPHB132D0M		
Size	of mounte	d flange	mm		□130	Medium inertia		
5120		No actuator		6.1	7.6	9.3		
Schematic	weight	With actuator	kg	8.1	9.7	11.4		
	Ra	ited output	Basic specifications	1000	1500	2000		
	Rated torque Maximum transient torque		N· m	4.77	7.16	9.55		
			N∙ m	14.3	21.5	28.65		
	Ra	ted current	Arms	5.8	8.6	11.7		
	Maximum	n transient current	Arms	18.6	28.8	37.8		
	Rated	rotation speed	r /min	2000	2000	2000		
	М	lax. speed	r /min	3000	3000	3000		
Basic	Torc	que constant	N · m/Arms	0.856	0.86	0.829		
specifications	Induced vo	oltage constant for ach phase	mV/(r/min)	53.8	53.5	52		
	Rated	No actuator	kW/s	18.2	27.7	37.7		
	power	With actuator		15.7	25.0	34.8		
	constant	With actuator	ms	1.15	1.02	0.84		
	Elec	tric constant	ms	7.53	7.87	8.06		
	Rotor	No actuator	$\times 10^{-4}$	12.5	18.5	24.2		
	inertia	With actuator	kg ∙ m²	14.5	20.5	26.2		
]	Encoder	20bit serial communication (RS-422)					
		Purpose		Holding brake (not for braking)				
	Po	wer supply	- Use SELV power supply / power supply that is reinforced with hazardous voltages					
	Rat	ted voltage	V DC24V±10 %					
Actuator	Ra	ted current	A 0.82					
specifications	Static friction torque		N· m	n >9.55				
	Pu	ill-in time	ms 120					
	Re	elease time	ms		80			
-	Rele	ated time	v >DU1.2V					
	Temperat	ure of application	0°C ~40°C					
	en	vironment	1					
	Humidit	y of application	$20 \sim 85\%$ RH (non-condensing)					
	Temper	ature of storage	-20° C ~ 65 °C (non-condensing) Highest temperature: 80 °C with 72 hours					
	en	vironment						
Condition of	Humic	vironment		$20 \sim 85\%$ RH (no	n-condensing)			
application	Use of the	e air in the storage	It must be installed indoor	without direct sunlight, corrosive	gas, flammable gas, oil mist, dust, c	combustible material or		
environment	Thornal	vironment		grinding co	mpound.			
	Inermal	tion resistance		DC1000V ab	B ove 5MO			
	Insulation	voltage resistance		AC1500V	1 minute			
	Altitud	e for operation		Altitude belo	ow 1000m			
	Vib	ration level		V15 (JEC	(2121)			
	Endur	ance vibration		49m/s2	(5G)			
	Endu	tive structure	98m/s2 (10G)					
	FIOLEC	cuve structure		Regified to be group	nded ClassI grade			
				Overvoltage Category II "Overvoltage Category II"	vervoltage category II" grade			
				Pollution degree 2 "Pollution	on degree 2" grade product			
	Notes		• The value indicated by t	he rated torque is the value when i	t is mounted on the L-flange of app	proximately 2 times the		
			• The brake	e cable has polarity. Connect the w	ire yellow (BRK+) to +24V and wi	re the wire		
		Blue (BRK-) is connected to GND.						

10.2.2. Motor fixing screw size

•	The motor should be secured with the recommended size screws.	Otherwise, shortened as Unable to p	the nd lay th	motor ne origin	life al fun	will ction.	be
---	---	---	---------------------	--------------------	----------------	----------------	----

Motor fixing screw					
Servo motor model	Fixed hole	Recommended			
IOSMPHA04010M	2-φ4.5	Over M4 X 12mm			
IOSMPHA06020M	4-φ5.5	Over M5 X 12mm			
IOSMPHA06040M	4-φ5.5	Over M5 X 12mm			
IOSMPHA08075M	4-φ7	Over M6 X 14mm			
IOSMPHB131D0M					
IOSMPHB131D5M	4-φ9	Over M8 X 18mm			
IOSMPHB132D0M					

In combination with a reducer, the oil may enter the necessary to specify an oil seal on the motor.

10.2.3. Outline dimension drawing (Motor)

Power		100W		
Model Name	IOSMPHA04010M□□NA	IOSMPHA04010M□□EA		
LL	99	127.5		
LZ		63.5		
LA		Φ46		
LB		2-Ф4.5		
LC		40		
LD	(Ф30 h7		
LE		Φ8 h6		
LF		2.5		
LG		5.2		
LR		25		
KL		16		
KW		3 N9		
КН		6.2		
TP	M3 Depth 8			
НА		52		

Power	200W			
Model Name	IOSMPHA06020M□□NA	IOSMPHA06020M□□EA		
LL	97	131		
LZ	6	2		
LA	Ф.	70		
LB	4- Φ	95.5		
LC	6	0		
LD	Φ5(Φ50 h7		
LE	Ф14 h6			
LF	3			
LG	7.	7.7		
LR	3	30		
KL	2	0		
KW	51	5 N9		
КН	11			
ТР	M4 Depth 15			
НА	7	2		

Power	400W		
Model Name	IOSMPHA06040M□□NA	IOSMPHA06040M□□EA	
LL	120	154	
LZ	80	86	
LA	Φ70		
LB	4-Φ5.5		
LC	60		
LD	Φ50 h7		
LE	Ф14 h6		
LF	3		
LG	7.7		
LR	30		
KL	20		
KW	5 N9		
КН	11		
ТР	M4 Depth 15		
НА	72	72	

Power	750W	
Model Name	IOSMPHA08075M□□NA	IOSMPHA08075M□□EA
LL	122	155
LZ	84	
LA	Φ90	
LB	4-Ф7	
LC	80	
LD	Φ70 h7	
LE	Φ19 h6	
LF	3	
LG	8.8	
LR	35	
KL	25	
KW	6 N9	
КН	15.5	
ТР	M6 Depth 15	
НА	92	

Power	1kW	
Model Name	IOSMPHB131D0M□□NA	IOSMPHB131D0M□□EA
LL	140	191
LZ	85.5	
LA	Φ145	
LB	4-Φ9	
LC	130	
LD	Ф110 h7	
LE	Ф24 h6	
LF	5	
LG	14	
LR	55	
KL	36	
KW	6 N9	
КН	19.5	
ТР	M6 Depth 15	
НА	179	

Power	1.5kW	
Model Name	IOSMPHB131D5M□□NA	IOSMPHB131D5MDDEA
LL	160	209
LZ	105.5	
LA	Φ145	
LB	4-Φ9	
LC	130	
LD	Ф110 h7	
LE	Ф24 h6	
LF	5	
LG	14	
LR	55	
KL	36	
KW	6 N9	
КН	19.5	
TP	M6 Depth 15	
НА	179	

Power	2kW	
Model Name	IOSMPHB132D0M□□NA	IOSMPHB132D0M□□EA
LL	179	229
LZ	124.5	
LA	Φ145	
LB	4-Φ9	
LC	130	
LD	Ф110 h7	
LE	Ф24 h6	
LF	5	
LG	14	
LR	55	
KL	36	
KW	6 N9	
КН	19.5	
ТР	M6 Depth 15	
НА	179	

10.2.4. T-N Characteristic figure

100W

200W

400W

750W

1kW

1.5kW

2kW

