I N OVAN ‘ E FORWARD, ALWAYS PROGRESSING

INOVANCE
o]
=

|8

I
J.JLEIEEIJ.I

Medium-Sized PLC

Programming Guide (Motion Control)

Q@Q@Q >

Ao evaent NCH e e Data code 19012378 A0O

Preface

Preface

Thank you for choosing the medium-sized programmable logic controller (PLC) and expansion modules
developed by Inovance and using InoProShop.

@® Intended Audience

This guide is intended for technicians who configure, program, and commission motion control
functions through the medium-sized PLC (including AM400/AM500/AM600/AC700/AP700/AC800). Readers
of this guide are supposed to have a basic understanding of automation and PLC.

® Content
Chapter 1 Overview of the PLCopen Specification

Chapter 2 Composition of the Motion Control Application System
Chapter 3 Composition of the Motion Control Program

Chapter 4 Execution Mechanism of the Motion Control Program

Chapter 5 Application Programming of Medium-sized PLC User Program.
Chapter 6 Common MC Instructions

Chapter 7 Simulation and Commissioning

Chapter 8 Other Functions (including instruction cache, hitting limit switch, defaults of motion control
function blocks, and curve reversal prevention)

Chapter 9 Appendix (including descriptions of homing mode supported by IS620N, a cheat sheet of
CiA402 common data objects supported by IS620N, and medium-sized PLC error codes)

Before using the software, read this guide carefully and perform operations correctly with due attention
to safety.

@® Terms and Abbreviations

Term/Abbr. Description
InoProShop Programming software for the medium-sized PLC
Gateway Dedicated communication service for the medium-sized PLC in this guide
PLC Programmable logic controller

@ Revision History

Date Version Change Description

March 2024 A0O0 First release

Contents

Contents

PIEIACE bbbttt bbbttt b e 1
1 Overview of the PLCopen SpecifiCationc.ciceveeieieicieecceeeee e 6
2 Composition of the Motion Control Application Systemcceeevevievieieeieninenereeeeeeenen 7
3. Composition of the Motion CONtrol Programcceeeveerieenieenieenieinieeeeeeveeeveseeeseeesenes 8
3.1 USEr Program SEIUCTUIE ..c.iiuiiieieeitet ettt sttt ettt st ne e 8

3.1.1 User Program COMPOSITIONccueuieiruiirieiirietcinteetetetestetetstet et es ettt ettt se st seee st st saesenes 8

3L 1.2 TASK TP ettt b ettt bt st b et bbbkt b et b bt ben ek e bt et b et b e st e bt et e et ne e 8

3.1.3 Benefits of a User Program Consisting of Multiple POUScceirrrrreeeirreeeeeesee e 9

3.1.4 How to Achieve Both Logic Control and Motion Controlin User Programcccceeeeveeenvreenennn 10

3.2 Writing and Commissioning a Simple USer Programcccceeeeveevenenenienieesesesieseeeeeeeens 10

3.2.1 CreatiNg @ PrOJECE ..ottt ettt ettt ettt sttt sttt s e s b et et e st esesbenee e eneenens 11

3.2.2 Writing POUS fOr FUNCEION PrOCESSING .vevivriiirciceeieieteieisistniicscieseieietetstst s sebesesess e sesesesseenes 11

3.2.3 Setting MOtOr ParamELersc.coviveuirieiiieieericetetc ettt ettt ettt bttt sttt 11

3.2.4 Writing Marquee CoNtrol LOGIC.....ccourrriiiueiiririririeiecicetnente ettt e 12

3.2.5 Associating a Variable with the Hardware OUtput POIt.........ceueuiiirininieeeceeeeeeeee e 12

3.2.6 Troubleshooting User Program COmMPilationccccoeeririeirierinieieirieerieeeie e 13

3.2.7 Monitoring the Running of the USer Programccccerreeeeiirrieeee et 13

3.2.8 Summary of Typical Steps of Writing a Motion Control Projectccoeeeivieceneeneneienieeeeieeens 13

4. Execution Mechanism of the Motion Control Programccceecvervenneneeneeniecnecnes 14
4.1 Task and Configuration in the USEr PrOJECtccvvveivieirieirieericerieeie e 14

4.2 Dataflow Analysis of the EtherCAT Bus NetWOIKc.ecveveeeeieiieeeceee e 15

4.3 Data Process for Communication With SErvo SIaVvesccceveerieirieinieeeeeeeee e 18

4.3.1 Control INfOrmation PrOCESScueueueueeeiririricieteic ettt ettt 19

4.3.2 CiA402 Data Object Dictionary and Common Objects for Servo Drives.........ccoevvrrnccececrerenennns 21

4.3.3 Configuration of Servo AXiS MOtOr Parametersoceeueeerininirieieieieeiinereeeieseseeseseseeseseseseneseseeees 36

4.3.4 EtherCAT Network Status Initialization and Management.........ccoeereeereennenneeseeseeseieae 37

4.3.5 Servo Axis and 1/0O Port Control Data REfreShouvevieeieeeececeeeeeee e 39

4.4 Timing of MC Data TranSMISSION ...c.ecueirieirierieieirierirteesieesteiesee et tesee e seseebesesse e ssenessenens 40

4.5 Processing Mechanism for Executing MC FUNCEiON BLOCKScccovvieueiininieieiirieceeeene 40

4.5.1 Cyclic Synchronous Position Control Mode for Servo Motion Commands.........cccecevveerireceriennnnne 40

4.5.2 Data Structure Of the SEIVO AXIS......cvrerieueieueieieininirrctieieieietetsts sttt ettt benees 42

4.5.3 Servo Axis Status and Transition RULES.........cccceerriiiieeeiien et enens 43

4.5.4 Execution Logic of the MC FUNCLION BLOCKcucueuririririiicicieieieieirin et 44

4.5.5 Data Interaction Between POUs of Tasks of Different Prioritiesc.cooceceeererennnrncceccrcrenennns 45

5. Application Programming of USer Program........cccceeieeririenieenieenieenieenieeeseseeseeesenessenees 47

5.1. MC Programming For Single-axis MC POSItIONINGccceevirieireinieinieinieerieeneeseeiesneeeeeee 47

Contents

5.1.1 Notes for MC Application Programmingccccoeeeueueeinininieieieieeesesesie et e 47
5.1.2 MC Function Blocks Commonly Used for Single-Axis CONtrol........ccoeeevieeeirieinieeireeeeeeees 47
5.1.3 MC Commands and PDO/SDO CoNfigUrationcccceceiriririeueeeierinirisieieeeeneseeee e 48

5.2 Motion Control Programming for Multi-axis Cam Synchronizationc.cccceeeeveeneenieeenenn. 49
5.2.1 Main Function Blocks FOr Cam RUNNING......c.ccueuiirieirieiririetiet ettt 50
5.2.2 Master and Slave Axes in Relative POSItION MOAEc.cvuvriceiceieieieinirneccceieiereesneseecereeaen 53
5.2.3 Master Axis in Absolute Position Mode and Slave Axis in Relative Position Mode.........c.cccceuueeee. 53
5.2.4 Master Axis in Relative Position Mode and Slave Axis in Absolute Position Mode..........ccceueuue.... 54

5.3 Cyclic Mode Characteristics of the Cam Tablecoveeeieieiceceeceeeeee e 54
5.3.1 Offset for Camin OPeratioN........cccvcueivieiiiieiieeieteteste ettt s s bt eb e st ssebesesnns 55
5.3.2 Calculation of Master Axis Scaling During Cam RUNNINGceeueiirririeeieeeninereeie e 56
5.3.3 Calculation of Slave Axis Scaling During Cam RUNNING.........cceeriririririeiereeenirieeeere e 56
5.3.4 Characteristics of and Precautions for Using Offset and Scale in Cam RunNing.......ccccceevvevenenee. 57
5.3.5 MC_CamOut FB for Exiting Cam RUNNING STAtUSc.cueiiriririereieieeirisieiete e 57

5.4 MC_Phasing FB for Cam Master Axis Phase Adjustment.........cccoveeirneeennineeenrseeces 58
5.5 Cam Table Design and ItS Data STrUCTUIE.......cevveuirieiieeeeee et 58
5.5.1 Characteristics of the Cam Table.....c.cceiiieieieer ettt 58
5.5.2 Input Mode of the Cam Tableccuvueirieeieeeee ettt 59
5.5.3 Internal Data Structure and Arrays of the Cam Tablecooeeiiririnirieeece s 60
5.5.4 Reference and Dynamic Switchover of the Cam Table........cccevveiinieiniceiceeeee e 61

6. COMMON MC INSTIUCTIONS ..ottt 62
6.1 SINGLE-aXIS INSLIUCTIONSeuiviieiiieietet ettt ettt ettt enes 62
MC_ACCElEratioNPIOFilE. ..o 62

M H A ettt bbbt st h et b etk et h et h s bbb e ne et b et bbbttt aens 64
MC_HaltSUPEITMPOSE.....cuiieieeiieieieieiiriee ettt ettt ettt se st s e s b et essesesessesassesesssesersesansssess 66

M HOMIE ettt et e e e e e ae e e et e e sesaeesasteeaaseesanseeseseeesastesaseesenteesasteeestesaseesenaeesaseenan 68

MO _IMOVEADSOIUL ..ottt et e et et e e et e eea e e et esaee s seseaeeeseeeseesseesaeeeseseseesseeeneesnnesasessneenes 70

MO M OVEAGGITIVE ettt ettt e et e e et e e e eeeseseeeeaseesaneeeseneeeaeseesastesenseesaneeeeeseesanseeseneeesaseeean 76

MO _MOVEREIAEIVE .ottt ettt e et e et e e s eate e s st e saateeseateesastesaastesenteesasteesseesanseesenseesaseesan 79
MC_MOVESUPEITMPOSE.iuirieiiieiiieieiieieiirietets ettt ettt astesassesessesesessesesesassesesessesessesenssesersesensasenes 83
MC_MOVEVEIOCITY vttt ettt st b etk et b ettt b b et et e st st e b et e b et e b e e ebeneesenis 86
MC_MOVEFEEA ...ttt ettt ettt bbbttt bbbt 89

MC P OSTEIONP IO ..ottt e ettt et et e et e et e et e e e eeaeeeseesaeesaeeeseeaeeeeseeeanesaeeseesaneeeaes 98

MIC P OWE <.ttt et et e e et e et e s teeeaeeeaeesaeeeaseseeeeateesteeseesseesaseseseeaseeentenseesseesasesasessseenneenneens 100
MC_REAAACEUAIPOSITION .ttt et ettt et s e e aesaeeeteeeaeesaeesaeesasesaseeseesneesaeens 102

MC _REAAAKXISEITON ettt ettt et e et e et e et e et e s e et e e st eeseeeaeesaaesateeeseeeneenseesseesssesaseeaseenneenneens 103
MC_REAASTATUS. ...ttt ettt e s e es 106

Y (O (= Te L T r= a1 1L SRRSO 107

Contents

Y O Ty =] ST 109
IMC_SEOP c- ettt ettt ettt ettt ettt s e bt et b e ettt st R R bbbt ettt et bttt en 110
MC_VELOCIYPIOTIIE ..ttt ettt et s e bbb bess b ese s ebesene 112
MC_WIiteBOOIPArAMELENcucviiiiiiicitietetetete ettt e 114
MO WP AIAMELEL .ttt ettt e bt e et e e eeat e e sbeeesateeeesteesseeeenbeeeenteseesteesnes 115
MC_ADOIETIIZEET vttt ettt ettt b e n s e s 117
MC_REAAACTUAITONGUE ...ttt ettt sttt ettt sttt et et st se e b et ene e esene e 118
MC_REAAACEUAIVELIOCILY 1.ttt ettt tenne 119
MO _SEEPOSITION .ttt ettt ettt et e v e et e ese et e teetsenseseeteensenseessensenseeseensenseereensenseerean 120
MO _TOUCKHPIODE ...ttt ettt et ettt ettt e eteeabesbeeteesbebeessessenseeseeasenseerean 122
SMC_MOVECONTINUOUSADSOIULE......c.eeeiiiiiii ettt 124
SMC_MOVECONTINUOUSRELATIVE ...ttt ettt sttt e e aeesreesnaesanes 126
MC_JOB ittt et 128
SIMC_INCR ettt ettt ee ettt e e e et et e e e et et e eae et e et e sae et eeaesaeeateenesae st enaesaeenn 130
SMC3_PEISISEPOSITION 1.ttt ettt ettt et et e e et e e e eare e s et e esaeessaseesensessastessnseesasseesessessseessnseesas 132
SMC3_PersistPOSITIONSINGIETUIN .vviiiiiiireetec et 135
SMC_CheckAXiSCOMMUNICAION ..eeviiieieieii ettt ettt sttt e s ae e sraesraeenaeeeeesreesnaesnees 137
SMC_FOUOWPOSITION ...ttt ettt 140
SMC_FOllOWPOSItIONVEIOCILY ...ttt ettt ettt 144
SMC_FOUOWVELOCIEY ...ttt b bbb s nenn 146
SMC _FOLLOWSEEVAIUES. ...ttt et e et e e et e st esaae st e satesaseesstesseesanesanesneenns 147
SMC_SELCONTIOIEIMOAE ...ttt ettt e e e e st e s teeaeeereeenessnees 149
SMC_CRECKLIMIES ..ttt 152
SMC_GEEMAXSEEACCDIEC ...ttt ettt ettt ettt e et et et e sat et et e e et estesaesssessestesasenseneeses 153
SMC_GEEMAXSEEVEIOCITY ..vvvieiairirietetetei sttt ettt bbbttt b et bebesenenes 155
MC G EETIACKINEEITON c.tineteeeeeeeee ettt ettt bbbttt b et b et et et st e se st e be et ene e eseneee 157
SIMC_INPOSITION 1ttt ettt ettt s et e et e eaeeat et e eae e st e stsersessesasessessesseensensessesreansesreans 158
SIMC_REAASEIPOSITION ..ottt et a e et e e e et et eeaeeae et eeaesaeeeeeeaesae et eenesaeseeeeaesaeens 161
SMC _SEETONQUE .vteeeeteetetetettete ettt ettt et et e st esaeseesa s e seseesesbassesseseeseesessesseseesasassesseseasessessesessensensans 162
SMC_BacklashComMPENSAtIONc.cueueuiiriririeieiei ettt senn 163
SMC_ChangeGeariNGRALIO......cueveueeiiirieieteteieiirtet ettt ettt ettt b et s et be bt ases s ssesesesesannannes 166
SMC_REAAFBEITON ...ceeeiiiietereistsee ettt ettt ettt n st escsee 168
SMO _CLEAIFBEITON ..ttt ettt ettt ettt ettt eveete et e eaeeae e e eeteeteenseeseessenseeseessensenseessenseseereensenseeres 171
SMC3_PersiStPOSITIONLOGICAL ...coviveveuieiiiriricicicicieir ettt 171
SMC_HOMINE .ttt bbbt 173
MC_TOIrGQUECONTIOL.c.eietiitiieieeeete sttt ettt sa et e st e b eseesaese s b e s essesassessensesaesessesseneeseesessenes 178
MC_IMMEAIALESIOP ettt bbbttt sttt e et ebene 181
MC_RESETFOIOWINEEITON .ttt ettt bttt s b bese e e s senens 183

Contents

MO SEETONGUELIMIT. .ttt sttt bbbttt a bbb et eeetebne 186
MC_REAADIGITALINPUL .ttt sttt sttt 188

HMC _RESEE ... ettt et ettt ettt e e et et e st e e st e st e teea s est e e e sasessesaesasensessesaeensessesesensenseseean 189
SMC_SetSOftWArELIMILS ...vvviiiiicccicieieteer et 191

6.2 Axis Group Instructions (Master/Slave AXis INStrUCLIONS)......ccccveueveeririerericeicreeereeere e 192
SMC_CAMREGISTET ...ttt seas 192
SMC_GetCamSIaveSEtPOSITION ...oieieieieceeeeeeeceeeeet ettt ettt sa e st e st e st e eaeeaeesreesnaesanes 195
SMC_GELTAPPELVALUE. ...ttt sttt ettt ettt esesesanenen 197
MC_CaAMTADIESEIECT vttt ettt ettt ettt e bt e e eaeeteess e seeseessenseereeneenreerean 199

IMIC _CAIMIN ¢ttt ettt b et h et b ettt se bt b st e bt e b et s b e st b e b n et e st et e bt b n et b et b ene e 202
MC_CAMO ULttt 219

Y LG CT=T=Y PP RRRRRRTOE 222
MC_GATOUL. ...ttt ettt sttt 224

MO _PRASINE 1.ttt ettt ettt ettt st ea bbb e st sesebesesese e s s e b besesese et esesesesene s s esesesns 232

SIMC _CAMBOUNGS ..ttt ettt et et e et e ea e eeaeestee et eeseeeaeeestesaaesaeeseseeeseenstesasesasesseeeseeeseesseessnesanes 235
SMC_CAMBOUNGS_POS....vtiiiuiiirieieieietststseete ittt sttt ettt ettt b ettt b bttt stebesesenn 238
SMC_WIIEECAM L.ttt ettt sttt e bbb et e bt eb et et e st ese e b e benbe st ebenbebens 239

6.3 Other FuNctional SPeCIfiCatiONScocicuiciiieeeeeeceeeeee e 240

6.3. 1 INSEIUCTION CACNE 1.ttt sttt ettt b et se e b ee 241

6.3.2 HITEING LIMIT ottt ettt sttt b e bt ee 243

6.3.3 Defaults of Motion Control FUNCLION BIOCKS.ccviiiieirieiiieiecreecee et 244

6.3.4 CUIVE REVEISal PreVENTION ..c.couiiiiiiiiici ittt ettt sttt 245

7. Simulation and COMMISSIONING c..ecvivviieieiieieieeeeseee ettt st 247
7.1 SIMULAtION CONTIOLLET vttt 247

7.2 SIMUIALION SEIVO DIV ...eiiiiiieieeteteee ettt ettt ettt se s sesaesae e eseesessensenaenens 247
Appendix A Homing Modes Supported by IS620Ncccccuriririneneneieieeecseseseseeeeeeaeas 248
A.1 Description of HOMING MOGES:cveueuiiriieieiiirieieictrereie ettt 248
Appendix B: CiA402 Common Data Objects Supported by IS620N.........cccceveverenenieniennnens 261
APPENAIX C EITOr COUES.....ouviiieiiieirieieieetee ettt sttt 265

1. Overview of the PLCopen Specification

1 Overview of the PLCopen Specification

IEC 61131 is an international standard for general-purpose programmable logic controllers (PLCs). It
was initiated by several leading PLC technology companies in Europe as an industry standard. Part 3 of
this standard, IEC 61131-3, provides international specifications for PLC programming and has defined
standards for six programming languages.

PLCopen is a promotion group based in Europe for IEC 61131-3. It is a global membership organization
where several renowned PLC manufacturers have contributed to refining certain technical details. The
aim is to achieve programming standardization and eliminate technological differences and barriers
among different PLC manufacturers. This enables users to program different brands of PLCs without the
need to learn additional programming methods.

In China, the corresponding national standard, GBT15969.3, was released in 1995 and updated in
2005. It serves as the recommended design standard for PLC device manufacturers. Thereis also a
corresponding PLCopen promotion organization in China.

The PLCopen Specification not only provides recommendations for standardizing general logic control
instructions, program structures, and keywords in various languages, but also specifies technical
specifications for the motion control (MC) function blocks. This includes naming conventions, specific
functions, input and output variable definitions, and relevant timing logic, ensuring maximum
compatibility and interoperability in user programming technologies.

The medium-sized PLC adopts the CODESYS programming platform from 3S-Smart Software Solutions
GmbH, a German company. This platform fully supports the PLCopen Specification, allowing users to
refer to numerous standard function libraries. The programming flexibility of high-level languages makes
it easy for PLC manufacturers and users to develop proprietary function blocks and instruction libraries.
By utilizing existing control programs, they can create industry-specific process packages to improve
programming efficiency.

2. Composition of the Motion Control Application System

2 Composition of the Motion Control Application System

The medium-sized PLC is a general-purpose programmable logic controller with the SoftMotion motion
control function (CAM/CNC/ROBOT). It controls multiple motion axes through the EtherCAT bus. The
following figure shows the typical control bus network, where the IS620N servo is controlled through the
bus, and the I/O expansion rack is connected to the CPU module of the medium-sized PLC through the
EtherCAT bus.

In the typical motion control network shown below, AM600 is the control master and the servo axes and
remote I/O are slaves. The EtherCAT bus is a real-time bus, and the clock of its first slave is used as the
reference synchronization clock of the whole network. Therefore, the servo must be installed in the front
end of the EtherCAT bus network, that is, the 1# slave of the network must be the servo. The EtherCAT
remote module (RTU-ETC) has no internal clock unit, so it is typically installed in the middle or back end
of the network requiring motion control.

AMG600 Controller
L l l Local expansion 1/0
EtherCAT HSIO port
W o2# 3% on# EtherCAT
IS620N
servo drive

i | | Remote expansion 1/0
Servo motorrr;jj rrgjﬁ @ rr;j

Motion control (MC) means that the controller commands, through the EtherCAT real-time bus, the servo
to run based on software calculations and digital instructions. MC benefits from the high-speed (100
Mbps) and high-frequency (1 ms per communication cycle) interaction of the EtherCAT bus, providing
higher accuracy and promptness compared with the traditional pulse control. Correspondingly, MC
brings about some programming approaches different from conventional ladder diagram logic control,
requiring the use of function blocks that contain more underlying functions.

3. Composition of the Motion Control Program

3. Composition of the Motion Control Program

3.1 User Program Structure

The medium-sized PLC is developed based on a multi-tasking operating system, which runs function
modules in a multi-tasking mode. A user program can be divided into multiple tasks to be executed
separately based on the task priority set by the user.

When writing a user program for the medium-sized PLC, users can divide the program into multiple
program organization units based on the type of services processed in the application system and the
degree of urgency. In addition, they can specify the execution trigger conditions for each task or the
corresponding execution interval (also called execution period) to achieve the optimal control response
of the application system.

3.1.1 User Program Composition

As introduced earlier, the multi-tasking mode can be adopted for the medium-sized PLC, that is, several
tasks can be executed "at the same time", and each task can have several user program organization
units (POUs). The following figure shows the typical composition.

s - N
User project
Task 1 Task 2 o IEC library
— — O — ~ - — -_— ~ .
(\ / \ library
\ - POU2 J \) -~
NS N _
-
~ - —_— —
Task3__ — — FB
- —_
/ N Taskn/ —— — —
) \
\ (m) Cam curven
pat N .
N _ = CNCcurven
- J

A user project is composed of multiple POUs, which are classified into several task groups based on the
POU execution characteristics. Each task group is configured with its own execution characteristics.
POUs that are not included in task configuration will not be executed.

The user project also contains some objects supporting the user program, such as the library functions,
global variables (GVLs), function blocks (FBs), CAM curves for cam definition, and CNC curves for multi-
axis interpolation trajectory definition, as part of the user program.

3.1.2 Task Type

Task configuration enables users to divide the user program into several task groups based on the
execution requirements. Users can set different execution trigger conditions, execution intervals, and
priorities for the task groups.

Common tasks of the medium-sized PLC include the EtherCAT task, CANopen task, HSIO high-speed
interrupt task, and main cyclic task. The main body of the user program related to motion control is
executed under the EtherCAT task.

3. Composition of the Motion Control Program

@ @ o X L of r_
Ll L

\ \J

EtherCAT task CANopen task External interrupt task Common task

. - . - (Triggered by external [J (Execution period 3, priority 16)
(Bus period 1, priority 0) (Bus period 2, priority 1) signal, priority 2)

‘ | Global variable datb exchange 1 between tasks

=

Global variable data bxchange 2 between tasks

v

o Triggers the execution at a fixed time o Triggers the execution at a fixed time
interval o Triggers POU execution by external signal interval

© Triggers the execution at a fixed time
interval
° o - o Executes the POUs completely each time
o Executes the POUs completely each Executes the POUs completely each time Executes once per triggering
: o May be interrupted by a higher-priori
time o May be interrupted by an EtherCAT task o May be interrupted by a higher-priority tack pred by a higher-priority
task
o Executes multiple POUs by sequence o Executes multiple POUs by sequence

° Executes multiple POUs by sequence

The EtherCAT task is one of the most important tasks for the medium-sized PLC, responsible for
real-time processing of motion control functions. It operates as a clock interrupt task with a short
execution interval and the highest priority. Once specified time conditions are met, the EtherCAT task
unconditionally interrupts other tasks and initiates its execution. The interruption continues until all
POUs configured under the EtherCAT task have been executed.

Multiple POUs can be specified for a task and these POUs will be executed one by one in the order
specified in the task configuration.

The three POUs shown in the figure will be executed in the order of PLC_PRG, POU_ipo, and POU2. The
order should be arranged properly, especially when there are global variable update operations and
judgment.

There is also a POU named ETHERCAT.EtherCAT_Task, which is executed first by default. It can be
considered as a bus communication POU processed by the system by default once the EtherCAT task is
executed. It involves the PDO sending and receiving between the master and all slaves, as well as the
update to each servo axis data structure.

3.1.3 Benefits of a User Program Consisting of Multiple POUs

Processing programs with different execution periods should be compiled in different POUs. For
example, POUs executed based on the EtherCAT period, external interrupt program POUs, and POUs
processed based on a 20-ms time period must be written separately.

To improve the readability of a program, you may use different POUs and name them straightforward
based on the control process sections, operational objects, and physical structural components.

For example, in C programming, you may create an independent POU for a repeatedly called processing
program, so that the program can be easily called by your project and reused by other projects.

When multiple programmers collaborate on creating a program, they may write and commission the
POUs of their respective process sections, and finally combine the POUs into a user program project.

The programming software InoProShop supports six programming languages. You may choose the most
suitable language based on the type of processing logic. Generally, a POU can be written in only one
programming language. If multiple programming languages are needed in a project, you may divide the
program into multiple POUs.

3. Composition of the Motion Control Program

3.1.4 How to Achieve Both Logic Control and Motion Control in User Program

In an application system, synchronous control and trajectory control require higher timeliness compared
with logic control. In the AM600 user program, you may group motion control (MC) POUs into the
EtherCAT task group, and logic control POUs into general task groups. If specific program variables are
declared as global variables, coordinated actions with logic control can be achieved in motion control.

For single-axis MC applications, where the control objects are the servo drive and motor, servo enable,
homing, positioning control, velocity control, torque control, and stop and reset are required. For multi-
axis synchronous MC applications, such as cam control and trajectory interpolation control, the PLC
provides the corresponding MC function blocks to complete these operations. Therefore, function blocks
are commonly used control commands in motion control programming, just like the use of prefabricated
parts instead of gravel and cement in construction to improve construction efficiency.

A user program can control the execution trigger and termination of the function blocks based on the
control logic of the application system. In addition, the user program can determine the execution status
of the function blocks and determine whether there is an error. The PLCopen Specification defines the
axis state data structures. The controller system establishes a corresponding data structure for each
servo axis that has been configured by the user and automatically updates the status of the servo axes

in time in each EtherCAT period. The user program can monitor the operation status of the servo axes by
accessing the variables of the data structure and use the status variables as the basis for logic control,
making it easy to achieve logic control and motion control in a user program.

3.2 Writing and Commissioning a Simple User Program

Before explaining the principle of the programming system and the methods for developing motion
control programs, the following uses an example of a basic servo control program to give you a basic
understanding of the programming process. In the following example, the application system consists of
a CPU module, IS620N servo systems, and AM600-RTU-ECTA and 0016ERN expansion modules.

AM600 controller

CPU module

EtherCAT J

EtherCAT

| IS620N
| servo drive 2

@ RTU-ETC
@ 0016 ERN
@ 1600 ENN

Servo motor 1 Servo motor 2

Assume that we need to write a simple program to achieve the following functions on the AM600 CPU
controller:

Enable servo motor 1 to jog.

Every time the command flag is triggered, servo motor 2 runs for two revolutions and then stops, which
is used to test whether the system is functioning normally.

3. Composition of the Motion Control Program

Perform marquee output through the I/0 output port on the expansion rack, with the value bits
circularly shifted by 1 bit from low to high every 0.5 seconds within the range of 16 bits.

The programming example involves the following approach and steps:

Motion control of the servo needs to be processed in the EtherCAT task period with high timeliness. The
marquee control can be processed in the 20-ms task period as timeliness is not critical.

3.2.1 Creating a Project

Run InoProShop and create a user project. On the screen shown below, double-click "Network
Configuration" in the left pane to add the EtherCAT network bus.

According to the wiring sequence of the devices in the actual system, add two IS620N servos and one
AM600-RTU-ECTA remote module (expansion rack) to the network.

Double-click the RTU-ECT module to enter the expansion rack configuration screen. Add expansion I/O
modules according to the actual wiring order.

Now, we have completed the hardware configuration in the user project, which is consistent with the
wiring in the actual application of AM600.

3.2.2 Writing POUs for Function Processing

Let's take a look at the default task configuration in the InoProShop programming environment. There is
a MainTask task by default. Click on it and we can find that it contains a POU named EHERCAT.EtherCAT_
Task, indicating that it is an EtherCAT task. There is another POU named PLC_PRG under this task, which
was created when the project was created. We can write servo control program code in PLC_PRG.

Double-click PLC_PRG in the left pane to enter the POU editing screen.

The servo trial run code can make servo 1 jog and servo 2 run for two revolutions each time the RUNF1
flagis set.

To achieve this goal, we need to configure the EtherCAT master communication PDO based on the servo
drive.

Some items that only require AM600 to rewrite the servo function code are available in the SDO
configuration, such as the electronic gear ratio and homing mode. The communication operates function
codes of the servo, and only one rewrite operation is carried out after power-on.

If the servo operation mode is set to "Cyclic Synchronization Position Mode", the AM600 controller
calculates the position to reach in the next period (TargetPosition) in each EtherCAT task execution and
sends it to the servo drive. The servo will complete the movement to the next target point based on the
distance/time command.

3.2.3 Setting Motor Parameters

To accurately control the motion position, the controller must accurately calculate the position of the
servo motor. Based on the operating and stroke characteristics of the application system, set the "Axis
Type and Limitation" parameters for the controller to internally calculate the position based on feedback
from the motor encoder. In this way, the controller can get the accurate position and avoid errors caused
by the overflow of encoder pulses.

For a screw type reciprocating mechanism with a limited stroke, we often need to know its absolute
position within the range of the screw stroke. In this case, select "Linear Mode".

For a unidirectionally revolving axis, the linear mode is prone to position count overflow, resulting in

-11-

3. Composition of the Motion Control Program

position calculation errors. In this case, select "Cyclic Mode".

The encoder parameters (such as resolution) of the motor and the mechanical reduction ratio of the
application system may vary. We need to set them based on the actual situation during programming.

Motors used with the IS620N servo are available in two typical resolutions. For general incremental
encoders, the resolution is 20 bits, indicating 1,048,576 pulses per revolution. For absolute encoders, the
resolution is 23 bits, indicating 8,388,608 pulses per revolution. In actual operation, the controller sends
the number of pulses required for operation to the servo drive by EtherCAT communication to control
the servo operation. Therefore, the encoder resolution must be set according to the actual situation.

For example, for a 20-bit encoder without a reducer, when the servo is commanded to run for 1 unit, the
servo will select 1 revolution (axis motion for 360°).

If you set the "Applied Unit" parameter to 360, when the servo is commanded to run for 1 unit, the servo
will select 1/360 revolutions (axis motion for 1°). Similarly, after relevant parameters (commonly known
as electronic gear ratios) are set based on the actual mechanical structure, the distance command can
be input based on the physical travel distance unit of the application system. This makes the control
parameters easy to understand.

Note that the parameters can only be set to integers. The ratio of the parameters in the same row is a
valid ratio value, and you can input appropriate integer values on the left and right sides of a row. For
example, for a servo motor that drives a screw with a lead of 5.6 mm (that is, the screw slider moves for 5.6
mm when the screw rotates for 1 revolution) through a 4:1 mechanical reduction mechanism.

The servo drive and motor parameters explained above must be set and verified in the corresponding
items for both Axis and Axis_1. Otherwise, the desired operation characteristics cannot be achieved.

Example:
After the motor gear ratio is set, the statement
MC_MoveAbsolute(Axis1:=1, Distance:=80.00);//Command to move to the 80.00
mm position in the coordinates

in the user program can make the workpiece move to the 80.00 mm position in the
coordinates. The position command unit is the physical coordinate unit of the device,
which facilitates commissioning.

3.2.4 Writing Marquee Control Logic

The logic control program of marquees has a lower requirement on timeliness than the motion control
of servo axis. It only requires that the DO port changes twice per second. You can set a common task to
execute the corresponding POU once every 20 ms to update bit shift. Add a POU first.

As the POU is executed every 20 ms, we use variable A as the number of times of POU execution, and
multiply variable b by two every 25 times of execution (500/20 in the program), that is, shift the binary
value by one bit from low to high. Send variable b to the marquee output port, and we can achieve the
marquee effect.

3.2.5 Associating a Variable with the Hardware Output Port

According to the previous requirements, associate variable b in the POU program with the /0O module
port in the expansion RTU-ETC rack. Specifically, select the I/O module in the application system
network, select the 1/0 port, and specify the variable of the POU program in its I/O mapping. User-
written program variables are selected in the POU under "Application\".

Assign the marquee POU to the new task (Task) and configure task execution. Set the priority to a routine
priority (such as 15) and set the execution interval to 20 ms.

3. Composition of the Motion Control Program

3.2.6 Troubleshooting User Program Compilation

If there are compilation errors, the error type and reason will be displayed. After you double-click the
error description, the cursor will go to the program editing window for you to make corrections. After
dealing with the errors one by one, compile the program until all compilation errors are rectified.

Finally, download the user program to the AM600 CPU module.

3.2.7 Monitoring the Running of the User Program

In the monitoring screen, you can observe the execution of the program. For example, setting variable
JF1to 1 will make axis 1 jog, and resetting it to 0 will make axis 1 stop. Every time variable RUNF1 is
forcibly set to 1, axis 2 will rotate for 2 revolutions.

In the RTU-ETC expansion module screen, you can see the /O output port is in marquee switching state.

Now, the functions of servo jogging and rotating for 2 revolutions have been realized in programming. A
simple programming process is completed.

3.2.8 Summary of Typical Steps of Writing a Motion Control Project

According to the above example, writing a user program with MC function generally involves the
following aspects.

Application system hardware configuration: Configure network parameters based on the master
controller, expansion module, network type, servo slave, and so on.

User program writing: Based on the control functions to be achieved, write in a POU (such as POU 1) for
motion control and in another POU (such as POU 2) for general logic control.

Servo drive parameter configuration: Configure the SDOs and PDOs based on the servo name and
servo operation mode in the hardware configuration. Ensure that the required communication objects
between the MC function blocks of the user program and the servo are configured in the configuration
table.

Servo motor parameter configuration: Accurately configure the encoder resolution of the servo motor
and the transmission ratio and axis motion range of the mechanical structure, so that the control object
displacement instruction precisely matches the actual displacement.

Task arrangement: According to the timeliness requirement of the control, execute the motion control
function POU 1 in the EtherCAT task, and set the interval to 2 ms and the priority to 0. Execute the
general logic control POU 2 in a general task, and set the interval to 20 ms and the priority to 16.

Online commissioning: Connect the AM600 controller to the PC through the LAN. Then, power on the
device and download the user program for commissioning. If possible, connect the servo drive system
to the AM600 controller and then perform commissioning. If no servo system is available, you can set the
servo as a virtual axis. If no AM600 controller is available, you can simulate and debug the user program
on the PC. Eliminate possible errors in the user program until the expectation is reached.

-13-

-14-

3. Composition of the Motion Control Program

4, Execution Mechanism of the Motion Control Program

4.1 Task and Configuration in the User Project

1)

As shown in the preceding example, you can set the execution trigger conditions, execution interval, and
execution priority for each task group. The medium-sized PLC supports the following task types:

Task Execution

Execution Characteristics Task Example
Type

EtherCAT bus task

The POU is executed once at each configured CANopen bus task

Cycli
yele interval.

Common cyclic tasks

The corresponding POU is executed once when
External event the HSIO status changes or the high-speed
counter readings match.

HSIO port status interrupt response task

HSIO port counter interrupt response task

Inertial slide The task is executed circularly and continuously

L Common cyclic tasks
(flywheel) once the execution is started. y

Task execution is triggered once under the
preset state 0 1 of the Boolean variable, but not

Event Softint t handling POU
ven under other state combinations suchas 00,11, oftinterrupthandling

and 10.

The taski ted circularl derth t
State € task1s executed circu’arly underthe prese Conditional execution task POU

state 1 of the Boolean variable.

Task configuration notes

Set the task type to "Cyclic". "Task Period" refers to the interval for executing this type of task. For
general logic control with slow variable changes of the common 1/0 ports, the task period can be
relatively long, for example, 20 ms. For tasks that need to be processed in a timely manner, the task
period can be set to a smaller value.

EtherCAT bus communication is a special "cyclic" task and has the top priority. The setpoint of the
task period will also be the communication period of the EtherCAT bus, which generally ranges from 1
ms to 4 ms. A smaller setpoint indicates higher precision of motion control. When more axes are to be
controlled, a longer period is required. Otherwise, the CPU may be overloaded with calculation.

Similarly, CANopen bus communication is another special "cyclic" task and has the second highest
priority. The setpoint of the task period will also be the communication period of the CANopen bus,
which generally ranges from 4 ms to 8 ms. A smaller setpoint indicates higher precision of motion
control. When more axes are to be controlled, the communication duration is longer, and a longer period
is required.

Some tasks are executed only when certain statuses are met. For example, task execution is triggered by
a status change of the HSIO port, also known as the HSIO interrupt signal, rather than by interval.

For a task configuration, you can set only one execution type, interval, and priority. If you want different
execution characteristics, add multiple task configurations.

One task configuration can include multiple POUs, which will be executed at the same interval and in the
order that the POUs are added to the task.

There are 4 tasks under "Task Configuration” in InoProShop. Double-click an existing task. You can see
the configured parameters of the task in the right window.

You can add a task by selecting "Task Configuration" and right-clicking.

3. Composition of the Motion Control Program

Note that the task with the ETHERCAT.EtherCAT_Task project in the picture above will be an EtherCAT
bus task and its task priority should be set to 0.

2) Task prioritization

By default, the system software of the medium-sized PLC assigns different priorities for different types of
task configurations. This ensures that important tasks, such as motion control, are executed with priority
and the controller can be reasonably used in applications that require high-performance MC.

The task priority order is as follows (do not forcibly modify the priority order):

Default Priority Task Type Description

0 EtherCAT bus task Top priority. Only one EtherCAT task is allowed.

1 HSIO interrupt task Secon.d highest priority. One HSIO task is allowed for each
HSIO input port event.

2 CANopen interrupt task Third highest priority. Only one CANopen task is allowed.

3 ModbusTCP

4 ModbusRTU

16 MainPOU Lowest priority. Up to 4 tasks with different periods are
allowed.

A smaller priority setpoint indicates a higher priority. High-priority POUs can interrupt the execution of
low-priority POUs, as shown in the following figure, where ECT stands for EtherCAT.

ECT period (priority 0) ECT period ECT period ECT period ECT period
10 | UPRG | MC 10 | UPRG | MC 10 | UPRG | MC 10 | UPRG | MC 10 | UPRG | MC
| Execution | Execution - Execution Execution Execution
| completed A | completed A Task period completed A completed 4 | completed
v \M (priority 16) \ 4
Halt 10 | uPRrG. Halt UPRG Halt 10 | uPRrG.
Execution
completed
Task period (priority}17)
Y
Halt UPRG Halt -UPRG. Halt UPRG|[Execution
completed

From the preceding figure, we can find that:

When the controller executes tasks, there is a time alignment point that is invisible to users, as shown on
the left side of the preceding figure. From this time point, the tasks are executed from top priority to the
lowest priority.

The execution of a low-priority task may be interrupted by a high-priority task. After the high-priority
task has been executed, the low-priority task interrupted previously will be resumed.

An EtherCAT task has the top priority. When this task is started based on the EtherCAT period, all POUs
under the task will be executed once before low-priority tasks are executed.

3) Requirements of execution period setting in task configuration

The medium-sized PLC system software uses a multi-tasking approach to execute "tasks" of the user
program and assigns an execution period for each "task". Some global variables may be accessed and
modified for different POUs. Therefore, global variables must be synchronized, which can be performed
at the "time alignment point" of the task. The periods of cyclic tasks are set in integer multiples.

For example, set the EtherCAT period to 1 ms, 2 ms, or 4 ms, the period of a general cyclic task to 20 ms,
and the period of a lower-priority cyclic task to 100 ms. Do not set the EtherCAT period to 3 ms, 6 ms, 7
ms, or 9 ms, as this tends to result in a non-integral multiple relationship.

4.2 Dataflow Analysis of the EtherCAT Bus Network

-15-

-16-

3. Composition of the Motion Control Program

1)

Introduction to the EtherCAT bus network

Generally, the EtherCAT bus uses a RJ45 socket and a multi-core Ethernet cable. A Cat5e cable is
recommended as it can improve the antijamming ability of the network.

Similar to a general-purpose Ethernet network, the EtherCAT bus network features a communication
rate of 100 Mbps, and the cable length of each neighboring slave can be up to 100 meters. The following
figure shows the equivalent connection relationships within the network and the communication

dataflow.
Communication | Ethernet EtherCAT Slave 1 Slave 1 Slave 2 Slave 2 Slaven Slaven
frame structure header header output data| input data output data | input data output data | input data

4 4 LA

EsC | S
L1 o L2 o ! L3 Ln
et B e [o B (o [X flanii ol
o] _ [i SRS
mocer § o | | Rdemer 1 pc | R e -
-
The ESC of the last

-~
EtherCAT master EtherCAT slave 1 EtherCAT slave 2 EtherCAT slave n slave automatically
closes the loop and
returns the data.

Different from a general Ethernet, the EtherCAT network allows only one EtherCAT master. In addition,
the EtherCAT slave controller (ESC), which is a dedicated network control chip inside the slave, receives
communication data in real time in a communication frame and inserts response data into the data
frame. This enables the master to access multiple slaves in just one communication frame, which greatly
improves communication efficiency.

The communication data frame in the EtherCAT bus uses the UDP/IP frame structure of Ethernet data
and frame structure type 0x88A4, except that the data fields in the middle need to be prepared and
parsed according to the EtherCAT protocol, as shown in the following figure.

, Frame \
! Ethernet frame header ! check
I4 > | |<—}|
| 6bytes 6 bytes 2bytes | 2 bytes 44-1498 bytes | 4bytes |

Y | —

Destination Destination [Frame type EtherCAT
address address 0x88A4 header

EtherCAT data FCS

P

EtherCAT Reserved|

data length bit Type [Sub ge [Sub ge|Sub
10 bytes Up to 1486 bytes\\‘*lby‘tgs
Sub-message Data WKC
header

The EtherCAT data fields can be further defined and parsed by "EtherCAT frame" according to a certain
protocol. As long as the master and the slave comply with this protocol, data communication can be
achieved. Generally, the CANopen Over EtherCAT (CoE) and Sercos Over EtherCAT (SoE) protocols are
used, just like the transmission of Modbus protocol frame data (ModbusTCP) over a TCP/IP network.

The medium-sized PLC uses the CoE protocol, which is the DS402 industry standard (also known as
CiA402) whose application layer protocol is the CANopen protocol. It is a dedicated protocol for servo
motion control, with the following highlights:

1) For high communication efficiency, the master and slave do not use the request-response manner
for communication. Instead, in the initialization phase of the bus network, the master gives the slave
a list of data items to be sent, such as "PDOs", informing the slave of the data items the master will
send and their order (TPDO), as well as the data items the slave is required to send and their order
(RPDO). In this way, the slave knows how to parse the master's data frames when receiving them,
and can prepare the required response data.

3. Composition of the Motion Control Program

2)

When the master's data frames arrive, the network control chip (ESC) of each slave can obtain the
corresponding data segments for the slave's processor to parse according to the configuration table and
insert a response data block at the appropriate stage of the EtherCAT communication frame to return to
the master.

2) According to the timeliness requirements, the communication data is categorized into "process data
(PDO)", which is scheduled to be sent and received cyclically at a high frequency, and "service data
(SD0)", which is exchanged only when needed.

3) Aservodrive can have as many as hundreds of control command parameters, operation status
parameters, and function code setting parameters. The parameters are named in different ways
depending on servo drive brands. To ensure the interchangeability of different brands of masters
and slaves, the CiA402 protocol provides an "object dictionary (OD)", which defines all function
codes, operation commands and their setpoint meaning, as well as operation status parameters
and dimensions to be used in servo drives. The CiA402 protocol ensures the universality and
interchangeability of products developed by different suppliers so that the products can work with
the medium-sized PLC.

4) The configuration of communication objects between the master and slave is a prerequisite for
ensuring the successful execution of the MC function blocks. When executing the MC function
blocks in the user program, the controller needs to use specific "communication data objects" to
send commands to the servo slave and read the slave axis status. Programmers should configure
the required data objects in the TPDO and RPDO so that the master controller can control the servo
slave.

5) The slave device may not support all the item definitions in the "object dictionary (OD)", but the
"device description file (EDS)" from the device manufacturer defines the objects. Programmers
need to import the EDS of the slave device in InoProShop to know the supported objects before
configuring the device.

6) When writing a user project, users select and configure the TPDO and RPDO tables based on the
control needs. During operation, the master will automatically forward the data specified by the
data object tables to the corresponding slave through communication. Select only the necessary
configuration items to reduce the load of EtherCAT communication and improve the communication
efficiency.

7) The service data object (SDO) configuration items are typically used to initialize function codes of
the slave device at the beginning of system operation, and access parameters through function
blocks such as MC_SDOread during the operation process. SDO communication features relatively
low timeliness and takes up additional EtherCAT communication overhead, and even causes
synchronization timeout faults in applications with a high bus loading rate. Therefore, exercise
caution when using these configuration items.

After understanding the CiA402 OD and the slave parameter objects commonly used by MC function
blocks, you can reasonably configure the PDO and SDO tables.

Clock synchronization for the EtherCAT bus

Typically, a network for multi-axis motion control needs to make multiple slaves start or stop moving
synchronously. The EtherCAT network has a distributed clock (DC) mechanism, which allows all the
intelligent slaves (such as servo drives and intelligent high-speed expansion modules) to have a
consistent clock. Based on the configured synchronization trigger period, each slave will output the data
written by the master to the execution unit to achieve synchronization.

-17-

3. Composition of the Motion Control Program

o Localclock t2 o Localclockt3 o Localclock t5
o Localclocktm Localclocktl , Clock deviation1 o Clock deviation 2 o Clock deviation 5
o Clock deviation m (Reference clock) | Transmitdelayl o Transmit delay2 o Transmit delay 5

© O O O ©,

EtherCAT 2 2 2 = 5
master 3 3 3 Y 3
[N w 5 o
~
(__ EtherCAT "] T JAN JAN JAR)

As shown in the preceding figure, each intelligent slave has a high-resolution internal local clock (TLocal).
In the initialization phase of the EtherCAT bus, the master reads the current time of each slave and

takes the local time of the first slave as the "reference clock" of the network. In this way, the master

can calculate the "clock offset (Toffset)" of each slave relative to the reference clock and write the clock
offset to the corresponding slave for the slave to correct the clock and eliminate the static error.

In addition, in the process of transmitting communication data frames, there are transmission delays
due to the hardware network. To resolve this issue, the master sends a specific broadcast frame to

make each slave record the moment of data arrival. Then, the master reads the value of the moment
recorded by each slave and measures the total delay of returning data frames to accurately calculate the
"transmission delay (Tdelay)" of each slave. Afterwards, the master writes the transmission delay time of
each slave into the memory of the corresponding slave. With these clock correction values, the slave can
get the same clock as the reference clock t1 through calculation according to the formula of TLocal —

Toffset — Tdelay.

In an EtherCAT network, DC processing can be skipped for /O slaves that are not sensitive to the DC
clock. The EtherCAT master ignores the clock calibration for such 1/0 slaves during DC calibration.

Each slave ESC chip has a synchronization pulse width register. A synchronization unit, once activated,
regularly generates SYNC signals to validate the currently received data. For the servo drive, the received
position command is regarded as the target point to start execution.

The DC initialization and calibration of the EtherCAT network slave described above are performed
automatically by the EtherCAT master without user intervention. When the EtherCAT bus is ready, it
indicates that the DC initialization has been completed. Note that the slave with the internal clock
function should be arranged at the front end of the network if possible.

4.3 Data Process for Communication with Servo Slaves

As mentioned earlier, in the EtherCAT communication of the medium-sized PLC, the application layer
uses CoE. When the controller executes the MC user program, the communication data between the
controller system software and the servo is processed through multiple levels of functional units. The
process is shown in the following figure.

3. Composition of the Motion Control Program

AM600 controller

A\ 4

(CoE protocol, CiA402)

CANopen Over EtherCAT
—————————

EtherCAT physical

e — —_ ———_——_—_——_——— —— — — — r-—-—— """ "—"—"—"—"—"——— =
| Axis-2 slave MC data processing
User program
MC state machine Axis-2 MC data |
processing I
—P"Axis-B data structure | by the master | |
_______ e e — — — [
: yger - -~ ——~—~—~~—~—"—"=—+— Ky T - —--= .
pfr;(clz-sAsier\g gyattie conftwgglrgtmn EtherCAT master function module F+ Axis 2
master s ST A Axis-1 slave MC data stream
pf::'."p~ Ohne wt(ite (processed by servo drive firmware) %
ara peration o 3
Multi-axis MC < d so0data [:SDOsend SDOSEnd: || spo 4Specmcmdex; LN s
- < On- t Jreceive Jreceive parsin
M functionblock |« > na‘iig‘;”d rocessing : cache Gache. ||| fespore s > 2
< > 1 >
l«— mc € P Other indexes a &
state - 1= 3 [—»| &
4}—' ETC_CO_SdoRead |« i \ r | = T Servo motor
|- - 7 > 5
< »| | | H :RPDO RPDO § | cina — 128> £
M single-axisMC Y | 1 mk . — T A2 & __(
function block [I | RPDO v S| WRERO gl s M
N ca | f TPDO [7[|TPRO TPDO | [TPDO |G B :
— bject 1\ . bject = I
i Idl?ufncary X Fonfiguration—{# Send/ send/ +[] \dictionary; 2 [<| 3 Encader
| Axis-1 i (TAN R receive receive B | 2y 2
L Togicvariable | data P _I cache cache I— i 35 » 3
operation » | N 5 - 25 @
- - 5 & m = T L ET
S — T o Ol ! e — g Axis _1
Created and upda;ed\\ B fiaured b Parameters of servo
automatically by the system VST configuration table Configured by master operation status

v

1S620N servo drive

The figure shows the AM600 controller on the left side and the IS620N series servo drive and its
supporting servo motor on the right side. Network interfaces of the controller and the drive comply
with the PLCopen Specification so that both are compatible with third-party devices and can be used
interchangeably. In this way, the internal communication data process is applicable to third-party
devices complying with the CiA402 protocol. With an understanding of the function and usage of each
function block, we know the principle and approach of EtherCAT network-based motion control.

The source of MC instructions is the MC function block in the user program. The object of control
operation is the servo axis, and the status of the MC axis is stored in the content of the master controller
in the form of "axis data structure” for access by the user program.

4.3.1 Control Information Process

Step 1: Execute the MC function block of the user program and process the
command data to be sent.

When executing the user program, the controller executes the MC function block instance such as
MC_MoveRelative (Axis_1). Based on the state machine and data structure of the slave (Axis_1) in the
memory, the controller:

Checks the current state of the slave axis, and reports an MC execution error if the slave axis is not
enabled, is running in torque mode, is running in synchronization mode, is in homing operation, or is
generating an alarm.

Sends a command (ControlWord) to make the slave axis run if the slave axis is stopped, or is running in
non-synchronized position mode.

Analyzes the current running position (fActPosition), running velocity (fActVelocity), and constraints of
the slave axis such as target position, maximum allowable velocity, acceleration, and deceleration, and
calculates the required motion position instruction (TargetPosition) for the next operation period.

Waits for the data returned from the slave in the next communication period to analyze the instruction
execution of the MC function block. This enables users to know whether the instruction is being executed
(Busy), has been executed (Done), has an error (Error), is interrupted by other MC instructions (Aborted),
or is waiting for execution (Buffered).

Step 2: Place the control command data to be sent into the EtherCAT transmit
cache unit.

The command data (ControlWord and TargetPosition) to be sent to slave Axis_1 is stored in the PDO

-19-

4. Execution Mechanism of the Motion Control Program

transmit cache unit. This operation requires that these two parameters ("objects" in the CiA402) are
available in the PDO configuration table.

The PDO configuration table stores the "index number" (main index number: sub-index number) of each
control parameter to be sent and read by the master.

Purpose

This table contains a list of objects and attributes that need to be configured by the user during
programming based on the content that need to be sent cyclically for slave control.

This table is automatically sent by the controller to the slave ESC at the network initialization
TPDO

)) phase.
::;felguratlon The controller master determines the size of the transmit cache according to this table and stores
the command data to be sent into the transmit cache during operation.
The slave parses the received data frames according to this table during operation.
The TPDO configuration table can vary by slave.
This table contains a list of objects and attributes that need to be configured by the user during
programming based on the content to be responded automatically by the slave.
This table is automatically sent to the slave ESC at the network initialization phase.
RPDO During operation, the slave prepares data according to this table and returns the data to the
configuration | master by inserting the data into the time slot of the EtherCAT data frame when the master
table accesses the slave.

During operation, the master parses the slave's response data in the returned data frame
according to this table.

The RPDO configuration table can vary by slave.

The index number and data type of each control parameter are specified by CiA402. The "index number"
enables you to look up the parameter and its width type in the "object dictionary (OD)".

At the initialization phase, the master sends the "PDO configuration table" to the slave. The table
contains the TPDO, RPDO, and information such as data type and width of each object, providing the
basis for the slave to parse data frames.

The TPDO configuration table stores the index number and data width information of each object.

The object storage order in the table provides a basis for the system to put data to be sent through MC
instructions into the transmit cache unit. ControlWord is placed in the first transmit unit, TargetPosition
is placed in the second unit, and so on.

According to the RPDO configuration table (such as the nine "objects"), the slave stores the servo
operation status data in the response cache unit based on the index number and order of each object.
When the master communication frame accesses the slave, the ESC automatically inserts the data in the
cache unit to the appropriate time slot of the data frame and returns it to the master.

The RPDO table also provides a basis for the master to parse response data from the slave.

Step 3: The master control chip sends the data in the transmit cache unit to the
slave ESC regularly, and the slave simultaneously sends the response data.

As the master, the controller generates an EtherCAT interrupt command according to the EtherCAT
clock period set by the user. After entering the EtherCAT interrupt status, the master initiates EtherCAT
communication, sends the data from the PDO transmit cache unit to several slaves through one or
several frames, and retrieves response data from slaves in the same communication frame.

Chronologically, the data from the cache unit of the controller is the command data generated from the
previous EtherCAT interrupt POU execution.

The slave's response data is not a reply to the master's query, but the current value of the "object" based
on the cyclic reply required in the RPDO configuration.

4. Execution Mechanism of the Motion Control Program

Step 4: The slave receives and parses the data sent from the master.

When the network works normally, the slave ESC receives the communication data frames sent by the
master regularly, and automatically stores the data in the communication frames into the local cache.

A . xion ctio? vy
ord ot oCty raue £ oper@ e furt e Vel code ord
contro Targe®® xa(%ewe\ 1argeT O \odes O T chpr© Maw“’“\ 0t 0 s W
Master TPDO | Object || 6040: 607A: 60FF: 6071: | 6060: | 60BS: 607F: RPDO 603F: | 6041:
configuration table | Index No. 00 00 00 00 00 00 00 configuration 00 00
Type UINT DINT DINT INT SINT UINT UDINT table UINT | UINT
3 Data Width i 16bit 32bit 32bit 16bit 8bit 16bit 32bit 16bit 16bit
Slave 1 parsesthe == ————~— - — - oo o oo oo oo oo (Reﬁsﬁquggﬁwr”,””, i
receved datastring, | A4 5 BR0CT | O1F23201 | O1E2 08 104 A0 4 108 FAL G e face isom i

After receiving a string of PDO data, the processor of the slave extracts the received data string according
to the object data type (width) specified in the TPDO table, and stores it into the control command

unit based on the parameter attributes represented by the "object index" number for servo operation
control.

Based on the object attributes and sequence specified in the RPDO configuration table, the processor of
the slave refreshes the response cache unit in the local ESC cyclically with the current operation status
and parameters of the servo axis. At an appropriate time slot, the ESC inserts the cached data into the
EtherCAT communication frame through a high-speed hardware operation and "sends" it to the master.

Step 5: The master receives and parses the data returned by the slave, updates
the axis status parameters, and determines whether execution is complete.

The controller, as the master in the EtherCAT network, sends data frames and at the same time receives
communication frames sent back from the slave network in closed loop. From these frames, the
controller extracts data strings returned by the slaves, determines the communication status of the
network, and analyzes whether the communication operation is successful.

Based on the data received from the slaves, such as Error code, Status Word, and Position Actual Value,
the controller system can determine whether the required operation position of the MC function block
instance has been reached, and refresh the status of the output variables of the MC function block
instance.

In addition, the controller system software updates the data structure of the axis status parameterin
time for access by the user program. This is one of the most powerful intrinsic functions of the medium-
sized PLC software.

To summarize, this section describes the principle of sending, receiving, and parsing EtherCAT data array
packets for the medium-sized PLC. Most of the steps are automatically performed by the system, and
users only need to understand the concept of CiA402 objects, master the common "object” types of the
servo axis, and select objects for the TPDO and RPDO configuration tables.

4.3.2 CiA402 Data Object Dictionary and Common Objects for Servo Drives

The application layer on the EtherCAT bus of the medium-sized PLC adopts the CANopen Over EtherCAT
(CoE) protocol.

CANopen is a common protocol standard, which defines different series of "industry standards" for
communication control of different types of devices, as listed below:

CiA401 for I/O modules
CiA402 for servo and motion control
CiA403 for human-machine interfaces

CiA404 for measuring devices and closed-loop control

-21-

-22-

4. Execution Mechanism of the Motion Control Program

CiA406 for encoders
CiA408 for proportional hydraulics

The EtherCAT bus communication application layer of the medium-sized PLC adopts the CANopen
DS402 (CiA402) protocol, which is the "Servo and Motion Control" Industry Standard of the CANopen
protocol. CiA402 is widely used in the motion control based on the CAN bus and EtherCAT bus network.
Controllers and servo drives (slave devices) developed by different manufacturers in accordance with
CiA402 can work collaboratively or be used interchangeably. This provides users with more options in
line with the purpose of the PLCopen Specification.

The core of CiA402 includes the following parts:

Definition of the "object dictionary (OD)" and functional attributes of its "objects", which standardizes
the communication data parsing approaches.

Periodic process communication data. The process object configuration is sent first, and then the object
parameters are sent periodically according to the configured frame structure.

Occasional data communication, which uses additional communication fields for request-response
communication.

The network communication has several operation statuses, which is convenient for the master and
slave to perform initialization for communication, diagnose the causes of communication exceptions,
and restore network communication.

CiA402 summarizes representative setup parameters, control parameters, and status parameters into
"objects" with fixed numbers (index number+sub-index number). A complete object definition table is
an "object dictionary".

Similar definition methods are used for other devices, such as BFM area address definition for PLC
modules and function code definition for motor drives. All these methods specify different numbers for
function parameters, facilitating understanding.

CiA402 object types are divided into the following index number segments by attribute.

Main Index
Number Meaning Description
Segment
Protocol type description, manufacturer L
informatig: industrp ctandard tvpe Information is initialized by the manufacturer,
0x0000 to Ox1FFF 7 . y . yp and the configuration is done automatically by
description, configuration table
o the system software.
description, and so on.
The manufacturer can design the main index
0x2000 to OXSFFE Obj.ects and their functional attributes numbgr as the function code.of the servo drive,
defined by the manufacturer which is used to set the function code parameters
and static parameters.
Data objects defined by industry -
Communication data between the controller and
0x6000 to Ox9FFF | standard, used for device control and unicat W
. servo for control
monitoring
0xA000 to OXFFFF | Reserved

The preceding table shows that the objects required for motion control are in the index number segment
from 0x6000 to Ox9FFF. If you want to modify the servo function code in SDO configuration, pay attention
to the index number segment from 0x2000 to OX5FFF.

To facilitate understanding, we regard the object dictionary as a set of servo drive function code
definitions that can be accessed by EtherCAT bus communication.

Data objects commonly used in motion control applications:

4. Execution Mechanism of the Motion Control Program

Roughly, the controller controls the operation of the servo with the following types of commands:
Commands that control the servo operation status, such as enable, homing, start/stop, and alarm reset
Commands that set the server operation mode, such as position mode, velocity mode, and torque mode
Commands that set the target position, running velocity, and output torque for servo operation

Commands that read the operation information of the servo system, such as operation status, operation
mode, position, current velocity, and output torque

Commands that set or modify the function code parameters of the servo system, the operation
constraint parameters, and so on

To complete these control operations, users must set several commonly used data objects in the PDO or
SDO configuration table during programming. Some data objects can be added based on the functions
needed in the user program.

The values of the data objects introduced in this section are used for explaining the function definition
of the objects. During actual operation, controller automatically sends the value based on the required
control operation.

For the PDO configuration table, users only need to add the data objects required by the controller
during operation, and do not need to fill in the specific parameter values or variable names. During
compilation, InoProShop automatically associates the variables in the MC function block with the PDOs.

The SDO configuration table is generally used for the controller to initialize the servo function codes
(write operation). The write value is a defined constant value. Therefore, the constants must comply with
the DS402 specification. Some constants are defined based on the specific internal function codes of the
servo drive.

Control word 6040h

This object is a command word for the master controller unit to control the operation status of the servo,
such as enable, start/stop, and alarm reset. It is the most basic control command word. Therefore, 6040h
(control word) is a required item in the PDO configuration table.

Index 6040h
Object name Control word
Object code VAR
Access RW
Data type UNSIGNED16
Value range 0to 65535
Default value 0
Access RW
PDO mapping Yes
Related mode All

This object is a command word for the master controller unit to control the operation status of
the servo. Its setpoints are clearly defined.

Bit Name Description
0 Servo ready 1: Active, 0: Inactive
1 Enable voltage | 1:Active, O: Inactive
2 Quick stop 1: Inactive, 0: Active
3 Servo ON 1: Active, 0: Inactive

-23-

-24-

4. Execution Mechanism of the Motion Control Program

4t06 Mode-specific
Fault reset is applicable to faults and alarms
that can be reset.
7 Fault reset Bit 7 is rising edge-triggered.
If bit 7 is kept to 1, other control commands
are invalid.
8 Halt For the halt method in each control mode,
see 605Dh.
9to 10 N/A Reserved
Manufacturer-
11to 15 . Reserved and undefined
specific

Notes:

Assigning values to individual bits of a control word is meaningless. All bits in the control word must
work together to form a specific control command.

Bit 0 to bit 3 and bit 7 have the same meanings in different servo modes. Commands must be sent
in sequence to guide the servo drive into the expected state according to the CiA402 state machine
switching process. Each command corresponds to a specific state.

Meanings of bit 4 to bit 6 are mode-specific. For details, see control commands in different modes.
Target position 607Ah

This object is a target position command sent by the master controller for servo operation. The servo
runs in profile position (PP) mode in most cases. In MC applications with a medium-sized PLC, the servo
runs mostly in cyclic synchronous position (CSP) mode, where the controller commands the servo to run
to a target position in the next EtherCAT period. The target position is in the physical dimension set by
the user. The target position can be monitored through the axis data structure variable Axis.fSetPosition.

Therefore, the target position object 607Ah is a required item in the PDO configuration table.

Index 607Ah
Name Target position
Object code VAR
Data type INTER32
Access RW
PDO mapping Yes
Value range 0x80000000 to OX7FFFFFFF

Default value

0

Unit

Reference unit

Related mode

PP/CSP

Comment

This object sets the target position in PP mode and CSP mode.

Bit 6 in 6040h

Description

607A is the absolute target position of the current
segment.
After positioning of the current segment is

complete, the position feedback 6064 equals
607A.

4. Execution Mechanism of the Motion Control Program

3)

607A indicates the target increment displacement
of the current segment.

1 After positioning of the current segment is
complete, the position feedback increment
equals 607A.

Modes of operation 6060h
The master controller can set the servo operation mode through object 6060h.
Index 6060h

Name Modes of operation

Object code VAR

Access RW

PDO mapping Yes

Data type INTEGERS

Value range 0x00 to 0x0A

Default value 0

Related mode All

This object selects the operation mode of the servo drive.

Value Servo Mode Supported by AM600
0x00 N/A -
0x01 Profile position (PP) i
mode
0x02 N/A -
0x03 Profile velocity (PV) i
mode
0x04 Profile torque (PT) mode | Supported
0x05 N/A -
0x06 Homing (HM) mode Supported
0x07 Interpolated position (IP) i
mode Not supported
Cyclic synchronous
0x08 S ted; default mod
X position (CSP) mode upported; defautt mode
Cyclic synchronous
0x09 -
X velocity (CSV) mode
Cyclic synchronous
0x0A _
X torque (CST) mode

Precautions for servo operation mode switchover:

When the servo drive in any state switches over from the PP or CSP mode to another mode, the position
references not executed will be abandoned.

When the servo drive in any state switches over from the PV, PT, CSV, or CST mode to another mode, it
stops at ramp before entering into that mode.

When the servo drive is running in homing mode, the servo drive cannot switch to another mode. After
homing is complete or interrupted (fault or S-ON off), the servo drive can switch to another mode.

When the servo drive in running state switches over from a mode to the cyclic synchronous mode, send
the reference at an interval of at least 1 ms; otherwise, reference loss or error will occur.

-25-

4. Execution Mechanism of the Motion Control Program

4) Target velocity 60Ffh (profile velocity)

This velocity command must be set if the servo runs in velocity mode (PV or CSV).

Index 60FFh
Name Target velocity (profile velocity)
Object code VAR
Data type INTER32
Access RW
PDO mapping Yes
Value range 0x80000000 to Ox7FFFFFFF
Default value 0x64
Unit Reference unit/s
Related mode PV/CSV

5) Targettorque 6071h

This command must be set if the servo run in torque mode (PT or CST) in a dimension of a percentage
(0.1%) to the motor's rated torque.

Index 6071h
Name Target torque
Object code VAR
Data type INTER16
Access RW
PDO mapping Yes
Value range OxEC78 to 0x1388
Default value 0x0000
Unit 0.1%
Related mode PT/CST

In target torque settings, 100% (readout value being 1000) corresponds to 1x the rated motor torque.

6) Max profile velocity 607Fh

This object sets the maximum operation velocity of the servo and limits the maximum velocity in PV
mode.

In ST or PT mode, this object limits the maximum velocity to avoid motor overspeed that can cause
mechanical shock.

This object is invalid in CSP mode.

Index 607Fh
Name Max. profile velocity
Object code VAR
Data type UNSIGNED32
Access RW
PDO mapping Yes
Value range 0x00000000 to OXFFFFFFFF

-26-

4. Execution Mechanism of the Motion Control Program

7)

Default value 0x06400000
Unit Reference unit/s
Related mode All

This object sets the maximum running velocity of the servo, which is valid in PV, ST, and PT modes. It
limits the maximum running velocity of the servo motor.

For example, when the servo is running in torque mode, if the actual load torque of the motor is less
than the torque reference, the motor becomes faster and faster and will be eventually limited at the
maximum profile velocity (object 607Fh).

Touch probe function 60B8h

This object is used by the master controller to set the touch probe function mode and start/stop of the
servo. In the motion control system, the servo probe function detects the servo position signal when a
specific DI signal changes. The servo records the servo position in an interrupt mode when the DI signal
changes for the host controller to read. This improves the accuracy of system control.

Index 60B8h
Name Touch probe function
Object code VAR
Data type UINTER16
Access RW
PDO mapping Yes
Value range 0x0000 to OXFFFF
Default value 0x0000
Unit -
Related mode All

This object defines the functions of touch probe 1 and touch probe 2.

Bit Description

Touch probe 1 enable
0 0: Disable
1: Enable

Touch probe 1 trigger mode
1 0: Single trigger (trigger first event)

1: Continuous trigger

Touch probe 1 trigger signal selection

2 0: DI8 input signal
1: Z signal
3 N/A

Touch probe 1 rising edge
4 0: Switch off latching at rising edge
1: Enable latching at rising edge

Touch probe 1 falling edge
5 0: Switch off latching at falling edge

1: Enable latching at falling edge

-27-

4. Execution Mechanism of the Motion Control Program

6 N/A
7 N/A

Touch probe 2 enable
8 0: Disable

1:Enable

Touch probe 2 trigger mode
9 0: Single trigger (trigger first event)

1: Continuous trigger

Touch probe 2 trigger signal selection

10 0: DI9 input signal
1: Z signal
11 N/A

Touch probe 2 rising edge
12 0: Switch off latching at rising edge
1: Enable latching at rising edge

Touch probe 2 falling edge

13 0: Switch off latching at falling edge
1: Enable latching at falling edge

14 N/A

15 N/A

The IS620N drive only supports the falling edge of the Z signal.

For absolute encoders, Z signal refers to the zero point of the single-turn position feedback.
8) Servo status word 6041h

This object is used to read the operation status of the servo drive. It is one of the required items in the
PDO configuration table.

Index 6041h
Name Status word
Object code VAR
Data type UNSIGNED16
Value range 0to 65535

Default value -

Access RO
PDO mapping TPDO
Related mode All

The servo slave feeds the status back to the master through different bits.

Bit Name Description
0 Servo ready 1: Active, 0: Inactive
1 S-ON 1: Active, 0: Inactive
2 Servo ON 1: Active, 0: Inactive
3 Fault 1: Active, 0: Inactive
4 Voltage enabled | 1:Active, 0: Inactive
5 Quick stop 0: Active, 1: Inactive

4. Execution Mechanism of the Motion Control Program

Switch on

6 1: Active, 0: Inactive
disabled ’

7 Alarm 1: Active, 0: Inactive
Manufacturer- .

8 . Reserved and undefined
specific

0: Non-remote control mode. The IS620N
9 Remote control | series products only support the remote
control mode; 1: Remote control mode

0: The target position or velocity is not
10 Target reach reached.

1: The target position or velocity is reached.

0: The position reference or feedback does
not reach the software internal position
limit.

1: The position reference or feedback

11 Internal limit reaches the software internal position limit.
active After the software absolute position limit is
activated (see object dictionary 607Dh and
200A-02h), the servo runs with the position
limit value as the target position and stops
at the limit value.
12to
13 Mode-specific Dependent on servo modes
14 N/A Reserved
) 0: Homing is not performed or complete.
15 Homing L he ref
completed 1: Homing is complete and the reference

pointis found.

Notes:

Reading out a bit separately is meaningless. All bits in the status word constitute servo status feedback
together.

Bit 0 to bit 9 have the same meanings in different servo modes. After commands in 6040h are sentin
sequence, the servo drive feeds back an acknowledged state.

Meanings of bit 12 to bit 13 are mode-specific. For details, see control commands in different modes.

Bit 10, bit 11, and bit 15 have the same meanings in different servo modes and indicate the servo drive
status after a certain mode of operation is implemented.

Position actual value 6064h

In most cases, the servo operates in position mode. The controller must monitor the current position of
the servo in real time, and the master controller reads the actual current position of the servo through
this object. This object is one of the required items in the PDO configuration table.

Index 6064h
Name Position actual value
Object code VAR
Data type INTER32
Access RO
PDO mapping TPDO

-20-

4. Execution Mechanism of the Motion Control Program

Value range

Default value

Unit Reference unit

Related mode All

This object indicates user absolute position feedback in real time.

Position feedback 6064h (reference unit) x Position factor 6093h (gear ratio) = Actual position 6063h
(pulse unit)

10) Servo error code 603Fh

This object represents the most recent error code or alarm code of the drive. For error codes and their
meanings indicated by the low 12 bits, see the IS620N guide. The master controller determines the
latest fault code of the servo based on this object. This object is one of the required items in the PDO

-30-

configuration table.

Index 603Fh
Name Error code
Object code VAR
Data type UINT16
Value range 0to 65535
Default value -
Access RO
PDO mapping TPDO
Related mode All

11) Torque actual value 6077h

This object reflects the internal actual torque of the servo drive. The value is given per hundred (0.1%) of
rated torque. This object is one of the common items of the PDO configuration table.

Index 6077h
Name Torque actual value
Object code VAR
Data type INTER16
Access RO
PDO mapping TPDO
Value range -
Default value -
Unit 0.1%
Related mode All
Comment -

This object indicates the internal torque of the servo drive.

The value of 100% (readout value of 1000) corresponds to 1x the rated motor torque.

12) Following error actual value 60F4h

This object indicates the deviation, in reference unit, of the current position from the target position. It is

4. Execution Mechanism of the Motion Control Program

used to determine whether a position is reached.

Index 60F4h
Name Following error actual value
Object code VAR
Data type INTER32
Access RO
PDO mapping TPDO
Value range 0x80000000 to OXTFFFFFFF

Default value

Unit

Reference unit

Related mode

PP/HM/CSP

Comment

This object indicates the position deviation (in reference unit). Position deviation 60F4 = Position
deviation 200B-36h

13) Touch probe status 60B9h

This object indicates the setting status and trigger status of the servo probe trigger port to help the
master controller to read the probe position recording data and determine its validity.

Index 60BSh
Name Touch probe status
Object code VAR
Data type UINTER16
Access RO
PDO mapping TPDO
Value range
Default value
Unitt
Related mode All

This object indicates the status of touch probe 1 and touch probe 2.

Bit Description

Touch probe 1 enable

0 0: Disabled
1: Enabled

Touch probe 1 rising edge value

1 0: No rising edge value latched
1: Rising edge value latched

Touch probe 1 falling edge value

2 0: No falling edge value latched
1: Falling edge value latched
3 N/A
4 N/A
N/A
Touch probe 1 trigger signal selection
6 0: DI8 input signal

1: Z signal

4. Execution Mechanism of the Motion Control Program

Bit Description

Touch probe 1 triggering signal monitoring

7 0: DI8 is low level
1: DI8 is high level

Touch probe 2 enable

8 0: Disabled

1: Enabled

Touch probe 2 rising edge value
9 0: No rising edge value latched

1: Rising edge value latched

Touch probe 2 falling edge value

10 0: No falling edge value latched
1: Falling edge value latched

11 N/A

12 N/A

13 N/A

Touch probe 2 trigger signal selection

14 0: DI9 input signal
1: Z signal

Touch probe 2 triggering signal monitoring

15 0:DI9 is low level
1: DI9 is high level

14) Touch probe 1 position feedback 60BAh and 60Bbh (Touch Probe Pos1 Value)

Index 60BAh 60BBh

Touch 1risi
ouch probe 1 rising edge Touch probe 1 falling edge (Touch

Name i/:::j:;] Probe Pos1 Pos Probe Pos1 Neg Value)
Object code VAR VAR

Data type INTER32 INTER32

Access RO RO

PDO mapping | TPDO TPDO

Value range - -

Default value - -

Unit Reference unit Reference unit
Related mode | All All
Indicates the position value | Indicates the position value of
Comment of the touch probe 1 atrising | the touch probe 1 at falling edge
edge (reference unit). (reference unit).

15) Touch probe 2 position feedback 60BCh and 60BDh (Touch Probe Pos2 Value)

Index 60BCh 60BDh
Touch probe 2 rising edge Touch probe 2 falling edge
Name
(Touch Probe Pos2 Pos Value) | (Touch Probe Pos2 Neg Value)
Object code VAR VAR
Data type INTER32 INTER32
Access RO RO

PDO mapping | TPDO TPDO

4. Execution Mechanism of the Motion Control Program

Index 60BCh 60BDh

Value range - B,

Default value | - -

Unit Reference unit Reference unit
Related mode | All All
Indicates the position value Indicates the position value of
Comment of the touch probe 2 atrising | the touch probe 2 at falling edge
edge (reference unit). (reference unit).

16) Modes of operation display 6061h

Index 6061h

Name Modes of operation display
Object code VAR

Data type INTEGER8

Access RO

PDO mapping TPDO

Value range -

Default value -

Related mode All

The object 6061h indicates the current operation mode of the servo through the following val-

ues:
Value Description
0x00 N/A
0x01 Profile position (PP) mode
0x02 N/A
0x03 Profile velocity (PV) mode
0x04 Profile torque (PT) mode
0x05 N/A
0x06 Homing (HM) mode
0x07 Interpolated position (IP) mode
0x08 Cyclic synchronous position (CSP) mode
0x09 Cyclic synchronous velocity (CSV) mode
0x0A Cyclic synchronous torque (CST) mode

17) Homing method 6098h

For applications that use relative positioning, a homing operation is required first to allow the servo
drive and motion controller to determine the reference homing point for the position.

Index 6098h
Name Homing method

-34-

4. Execution Mechanism of the Motion Control Program

18)

Object code VAR

Data type INTERS
Access RW

PDO mapping Yes

Value range 0x00 to 0x23
Default value 0x00

Unit -

Related mode HM

Comment

The homing method must be set before servo homing can be commanded through EtherCAT

communication. This object is used by the master to set the homing method. For details, see the homing

method description in the Appendix.

Note: If the IS620N absolute position encoder method is selected, the 35th homing method can be used.

The result of the homing operation is that the current position is used as the homing point and the

motor does not rotate.

Homing speeds 609%h

This object can be used to set the speeds at which the servo drive runs while searching for the home

signal. This object has two sub-indexes.

Index 6099h

Name Homing speeds

Object code ARR

Data type UNSIGNED 32

Access RW

Mapping Yes

Value range OD data range

Default value OD default value

Related mode HM

The sub-indexes define two speeds used in the homing mode: speed during search for switch and speed

during search for zero.

Sub-index 0 1 2
Name Number of sub-indexes | Speed during search for Speed during search for
for homing speeds switch zero

Data type UNSIGNEDS8 UNSIGNED 32 INTER32
Access RO RW RW
PDO mapping No Yes Yes

0x00000000 to 0x00000000 to
Value range 2

OXFFFFFFFF OXFFFFFFFF
Default value 2 0x001AAAAB 0x0002AAAB
Unit Reference unit/s Reference unit/s

Notes:

The first sub-index defines the speed during search for switch. A large value helps prevent the homing

timeout fault Er.601.

After finding the switch, the slave decelerates and blocks all home signal changes during deceleration.
To prevent the slave from encountering the home signal during deceleration, set the switch position of
the deceleration point signal properly to leave sufficient deceleration distance or increase the homing

acceleration rate to shorten the deceleration time.

4. Execution Mechanism of the Motion Control Program

19)

The second sub-index defines the speed during search for zero. Set this sub-index to a small value to
avoid overshoot due to stop at a high speed, preventing excessive deviation between the stop position
and the preset mechanical home.

Homing acceleration 609Ah

This object sets the acceleration rate at which the servo drive runs while searching for the home signal.

Index 609Ah
Name Homing acceleration
Object code VAR
Data type UNSIGNED32
Access RW
PDO mapping Yes
Value range 0x00000000 to OXFFFFFFFF
Default value 0x682AAAAB
Unit Reference unit/s2
Related mode HOME

This object sets the acceleration during homing. The setpoint is activated after homing is started.

In homing mode, if 605Dh (Halt option code) is set to 2, the servo drive decelerates to stop according to
609Ah.

This object dictionary indicates the position reference (reference unit) increment per second. The
setpoint 0 will be forcibly changed to 1.

Example homing method:
6098h =1

This setting is suitable for applications with the following mechanical structure. There is a limit switch at
each end of the slider travel and no zero switch signal, as shown in the following figure.

@)

[
@ﬂﬂ?ﬂﬂﬂﬂ [aaad @

Motion profile (1

Motor Z signal

Negative limit signal

The mechanical home uses motor Z signal, and the deceleration point is the negative limit switch (N-OT).
Deceleration point signal inactive at start of homing

Note: In the figure, "H" represents 6099-1h (Velocity during search for switch), which is high speed, and
"L" represents 6099-2h (Speed during search for zero), which is low speed.

The N-OT signal is inactive initially, and the motor starts homing in negative direction at the high
velocity. After reaching the rising edge of the N-OT signal, the motor decelerates and changes to run in
positive direction at the low velocity. After reaching the falling edge of the N-OT signal, the motor stops

-35-

4. Execution Mechanism of the Motion Control Program

at the first motor Z signal.

€ Deceleration point signal active at start of homing
Negative limit Positive limit

0]

@i ([Td@qd@@a@dadaadaaad dao

Motion profile |

\j

Motor Z signal

Negative limit signal

The N-OT signal is active initially, and the motor directly starts homing in positive direction at the low
velocity. After reaching the falling edge of the N-OT signal, the motor stops at the first motor Z signal.

According to the functions of the objects above, we can regard the object dictionary as a set of servo
drive function code definitions that can be accessed by EtherCAT bus communication, which facilitating
understanding.

4.3.3 Configuration of Servo Axis Motor Parameters

The motion control action is ultimately achieved through the operation of the servo motor. To

make the servo motor run as expected, the controller needs to know the servo motor parameters,
characteristic parameters of the mechanical transmission mechanism of the application system, and
the operation characteristics desired by the user so that the controller can send appropriate operation
position commands. This requires users to set these characteristic parameters for the controller during
programming.

Double-click the servo drive under the servo motor. Then, you can set the motor parameters in the right
window.

1) Onthe "Basic Parameters" tab, set the axis location counter mode value. If the servo motor is
characterized by round-trip operation, such as the reciprocating operation of the screw, you can
select "Linear Mode" (also called multi-turn mode or finite-length mode), which enables the
positioning in the absolute position mode when the servo motor rotates for multiple revolutions.

2) Ifthe servo motor runs infinitely in one direction, such as the operation of a flying shear roller, you
can select "Cyclic Mode". The position counter starts counting from 0 during each operation period,
which avoids the overflow of the position counter.

Note that the above setting rules are applicable to both incremental encoder servo motors and absolute
encoder servo motors. The above values are not sent to the servo drive. The current position of the
motor is accumulated and the span is calculated automatically by AM600 based on the position signal
returned from the motor. Therefore, to retain the servo position upon power failure, you need to back
up the current position of the axis to the power failure retentive variable in the user program and then
restore it to the relevant parameter in time after power-on.

The "Software Limitation" refers to the travel overlimit protection of the servo motor through the AM600
software, which prevents AM600 from sending overlimit positioning instructions. This is very useful in
MC application systems with the absolute position encoder and absolute positioning instructions. Select
an option as needed during commissioning to make the mechanical system run smoothly.

3) Asthe operation position command of the controller is to make the servo run a certain number of

4. Execution Mechanism of the Motion Control Program

*

pulses, the controller must know the pulse value per revolution of the servo motor encoder, as well
as the mechanical parameters such as the reduction ratio of the operating mechanism, screw lead,
and pulley circumference. You can configure these parameters on the "Zoom/Mapping" tab page.

If you use a flying shear roller, the rotation angle is regarded as the physical distance.
the execution result of instruction MC_MoveRelative(,distance:=1,) is that the mechanism rotates by 1°;

the execution result of instruction MC_MoveRelative(,distance:=360,) is that the mechanism rotates by
360°.

If you use a screw with a lead of 5 mm, that is, for every 1 revolution of the screw, the slider on the screw
moves for 5 mm.

the execution result of instruction MC_MoveRelative(,distance:=1,) is that the slider mechanism travels 1
mm.

If you use a synchronous gear with a diameter of 63.7 mm, the synchronous belt moves a distance of
63.7 mm x 3.14 = 200 mm for every 1 revolution.

the execution result of instruction MC_MoveRelative(,distance:=100,) is that the belt mechanism travels
100 mm.

The examples show that we can make the physical unit of the application system be consistent with the
unit of the MC operation instruction by configuring items 1 to 3 accurately. This makes the user program
instructions clearer, which facilitates variable configuration and reduces errors.

Note that the motor parameters are set for the conversion of electronic gear ratios when AM600 sends
the final (number of pulses) position instruction. The parameters are not downloaded to the servo drive.
The electronic gear ratios set by the function codes in the servo will likewise attenuate the operation
instructions. In this way, the actual effect on the servo motor is calculated as Rc x Rd, as shown below:

(AM600 A\ | IS620N |

Electronic gear | Electronic
| MC program |— c(::ttll?oﬁfer EtherCAT | gs?é:ie:/t;o Drive Servo
| Rc | | | Rd | motor
N / L 1

Therefore, to ensure that the user program has the same performance in all application devices, you
need to initialize the function code of the servo electronic gear ratio to the specified parameter value
through the SDO operation; otherwise, differences in the operation response will be caused by different
settings of the servo function code.

OINote that, for MC programming, the first step of commissioning is to ensure consistency between the physical
unit of the application system and the unit of the MC operation instructions. Otherwise, the programmer cannot
determine whether the expected operation effect is achieved, and device damage or personal injury may be
caused due to overlimit positions.

4.3.4 EtherCAT Network Status Initialization and Management

1)

Initialization and status determination of the EtherCAT network

The AM600 controller starts automatically upon power-on and finishes loading the operating system and
user program in about 10 seconds. If the EtherCAT bus is not used in the user program, the controller
starts executing the user program after initialization of the bus used by the user program.

If the EtherCAT network is used in the user program, AM600, as the EtherCAT master, initializes the
EtherCAT bus in the following steps:

1) Configure the master according to the user's EtherCAT configuration. This takes about 3 seconds.

-37-

4. Execution Mechanism of the Motion Control Program

2) Send a network initialization command to allow the ESC chips of all slaves to start the initialization
operation, read the information of slaves in the EtherCAT network one by one, compare the
information with the EtherCAT network configuration in the user program, and report an error if
there is a discrepancy in the number and order of slaves.

3) Sendthe SDOs and PDOs to the ESC chip of each slave one by one if the network configuration is
normal.

4) Make the network enter the Pro-OP, Safe-OP, and finally OP status.

The above operations are completed automatically by AM600 without user intervention. It takes about 2
seconds to configure each slave. More slaves mean longer network initialization time.

The simplest and most reliable way for the user program to determine whether the network status of the
application system is normal is to detect whether MC_Power.status of each servo axis is true. If yes, the

network and the servo are ready for normal operation.

Communication disconnection and recovery

As we know, the prerequisite for an EtherCAT slave to communicate with the master is that the slave
ESC enters the Pro-OP, Safe-OP, and finally OP network status after being configured by the master. The
typical internal configuration of the ESC includes the PDO configuration table, which can be obtained by
the slave ESC only when the master sends the network configuration. Once the master network enters
the OP status, no more configuration information can be sent. Therefore, if the slave is powered up after
the EtherCAT network master enters the operation status or is powered up again after it has a power
failure during operation, the slave cannot enter the network OP status.

Currently, only restarting the master can restore network operation after an EtherCAT slave has a
power failure. For example, toggle the RUN/STOP switch to restart the master. However, this will affect
the operation of other slaves.

Slave addressing and address settings

During programming, by default, the AM600 master controller automatically performs addressing based
on the connection order of network cables for EtherCAT slaves. This addressing method frees users
from naming and renaming devices and only requires users to follow the bus network configuration in
the user program, making it easy for the master controller to check the network configuration and find
hardware connection errors. The following figure shows the rules for AM600 to automatically name the
slaves added in the user program.

= [Device (AME00-CPU1608TP)
@ Device Diagnosis
= % |Network Confiquration
£ EthercaT Config
!;F LocalBus Config
=Bl rc
+.1C} Application
"3 SoftMotion General Axis Pool
=8 Embedded Function
B HiGH_SPEED_I0 (High Speed 1q
& serial Port 0
3 Serial Port 1
‘2 CANOpen Field Bus
3 CANLink Field Bus
=& EtherCAT Field Bus
= [W] ETHERCAT (EtherCAT Master)
e P | L OO 3 gooooooog gRocooog
B asxis_23 (Axis) : 1001 :
= [%EIFERR (1S620N_ECAT_v2.
B asis_FI (Axis)
= [#1EE51AR (IS620N_ECAT v]
B9 Axis CONVERY (Asxis)

1S620M 1S620M

? I
@
o
o

a ;x\s Fl a
IR {
0 0

MC_P1: MC_Power;//Declare the instance MC_P1 of MC_Power.

MC_P1(Axis:= Axis1,

Enable:=1,
bRegulatorOn:=1,

4. Execution Mechanism of the Motion Control Program

bDriveStart:=1,
Status=>,)//Execute the instance MC_P1 to enable the servo axis Axis1.

The slave serial number starts from 1001 and increases by 1 upon addition. During operation, the
servos are named based on the connection order of network cables of the servo, and the servo directly
connected to AM600 is named 1001. The axis control function in the user program is assigned to the
servo with the corresponding serial number. The key point of this addressing method is that the
connection order of the EtherCAT network cables must follow the network configuration order in the
user program.

However, in some applications where the functions and names of some axes have been clearly defined,
the user program of the AM600 master controller must perform addressing based on the pre-defined
names. In this case, users must set the addressing method of the network slave to addressing by "slave
alias" during programming and set the corresponding "slave alias" in the servo.

For example, for IS620N, we can set its "slave alias" function code HOC.05 to 11.

After the user program is configured in this way, regardless of the access position or order of the servo
with the alias "11", it is possible to find the servo and assign the servo axis operation function in the user
program to the axis.

dNotes:
€ Intheuser program, one or more axes can be named in this way, as long as the names are not duplicate.
@ Currently, the ECT remote expansion module does not support slave setup for addressing by "slave
alias".
€ If some of the servo axes in the application system are automatically named, the system will first

identify the slave with an "alias" and process the rest of the slaves according to the automatic naming
rules.

4.3.5 Servo Axis and 1/0 Port Control Data Refresh

There are three types of I/0s for AM600: HSIO built into the master module, 1/0 of the main rack
expansion module, and I/O of the expansion rack module. The expansion rack is connected to the AM600
master module as an EtherCAT slave, just like the servo axis. The access refresh time of these peripherals
has the following characteristics.

External interrupt task

Co- As HSIO

N\
L[/ processor[As common 1/0

Maintask task Logic control section \

High-speed .
—I l— 1/0 instruction |/ Immediate refresh
HC_xxFB A

Refresh per Maintask period

Local I/O expansion
rack/module

Hi-

Logic control
instruction

ayded sness o/

9)qenien weiSoid Jasn

EtherCAT task Motion control section

MC state EtherCAT ECT expansion rack/module
=) machine |=——) master
_I function
MCinstruction jE module Refresh per EtherCAT clock period

Axis variable {

(—=)/and axis state =) Servo axis slave
data structure

The AM600 controller has a built-in HSIO with 16 inputs and 8 outputs, and it is equipped with an
internal co-processor for processing high-speed applications, such as interrupt signals, pulse counting,

4. Execution Mechanism of the Motion Control Program

pulse characteristic measurement and other input signals. It can also carry out control outputs with real-
time requirements, such as PTO, PWM, and pulse positioning. When executing Inovance's proprietary
high-speed processing function block, it will immediately trigger the execution of the co-processor to
update the output timely.

When the HSIO port is configured as a general port, the refresh period of its output refresh port can be
set to the general task period.

The AM600 main CPU module is connected to the 1/0 expansion module on the rack through the "local
bus", and the refresh of 1/0 status is controlled by the CPU module. Its refresh interval is the same as that
of the general task period, which can be set in InoProShop.

The AM600 controller is based on the remote I/0 of the EtherCAT bus expansion rack. Its /0
communication data is transmitted in the same frame with the servo axis communication, for example,
data is transmitted every 1 ms, 2 ms, or 4 ms. However, the logic control POU is generally executed in the
general task, and the actual update period of the I/O status is the task period, for example, every 20 ms.

4.4 Timing of MC Data Transmission

The AM600 enters the EtherCAT interrupt according to the EtherCAT period set by the user and executes
an entire EtherCAT task. Firstly, the communication operations between the master controller and each
EtherCAT slave are executed, and then all the user-configured POUs under the task are executed. The
execution order is the same as the order of POUs in the task configuration table.

The communication operations between the master controller and each EtherCAT slave are as follows.

1) The EtherCAT bus transmit operation is initiated. The data in the TPDO transmit buffer prepared by
the system in the previous EtherCAT period is sent to the corresponding slave in order. According
to the RPDO configuration, several bytes of slots that are required by the slaves' response data are
reserved in the communication frame to fetch the data from each slave.

The data in the TPDO transmit buffer is transmitted in the order of slave connection. The transmitted
data contains the data of the general I/Os and the control data of the MC axes.

When there are many slaves and the data length exceeds the allowable length of one communication
frame, multiple communication frames will be used.

If the user program performs an SDO read/write operation, an SDO send request is sent at the end.

2) The master controller parses the returned frames, takes out the response data of each slave, and
analyzes the response data for the MC slave axes. The master also updates the axis status and data
structures such as position, velocity, and torque, and determines and updates the execution status
indication of the MC function block for access by the user program. At each EtherCAT interruption,
the axis parameters read by the user program are the data that has been automatically processed

and updated in this section.

4.5 Processing Mechanism for Executing MC Function Blocks

4.5.1 Cyclic Synchronous Position Control Mode for Servo Motion Commands

The "cyclic synchronous position mode" allows the AM600 controller to calculate the required position
(TargetPosition) for the next period point by the relevant MC function block during each EtherCAT task
execution based on conditions such as the desired position of the slave axis, allowable running velocity,
acceleration, and EtherCAT bus period and send it to the servo drive. The servo will move to the next
target point according to this distance/time command. In this operation mode, AM600 is responsible for
planning and calculating the servo operation position and velocity at each point of time, while the servo
only knows the target point to be reached and the running velocity for the next EtherCAT moment.

4. Execution Mechanism of the Motion Control Program

Distance
A

User target position

|

| Themaster sends the

| targetinstruction only for
| thenext period at a time
|
|
1

(TargetPosition)

\/
—

O t (t+1)
A
Current position

Note that when the servo is running in the "position mode" or "velocity mode", AM600 adopts the "cyclic
synchronous position mode" to command the servo to run.

On the other hand, for a running servo axis, there must be an effectively triggered MC function block that
continuously monitors the running of the servo axis. If no MC block is running for this axis due to the
logic jump of the user program, the servo will stop after this state lasts for several EtherCAT periods, and
the controller will generate an alarm for the error.

41-

4. Execution Mechanism of the Motion Control Program

4.,5.2 Data Structure of the Servo Axis

In AM600, the servo slave is managed as a special "axis", and an axis is an important object. In the system
software of AM600, the system automatically declares a data structure for each servo axis configured by
the user and automatically updates and maintains it in real time during the execution of each EtherCAT
interrupt. The user program can access the data structure to learn about the current command value,
operation status, operation position, velocity, acceleration rate, torque, and other parameters of the
servo axis. There are more than 100 data structure variables in total, which provide a comprehensive
description of the axis status.

Note the following characteristics of the axis data structure:

€ When the user configures a servo axis for the application network, the system automatically declares
the data structure, the name of which is the same as the axis name. The variable names and data types
in the data structure are defined by the system.

€ Inthe user project shown above, there are three servo axes (Axis, Axis_1, Axis_2), and each axis has the
corresponding data structure.

€ Ifthe user program uses virtual axes, including encoder axes, the system also declares and maintains an
axis data structure for them, only some of the structure variables may change.

€ The axis data structure variables are global, that is, they are accessible in all POUs of the user project.

€ Thereis no explicit limit to the number of axes allowed by the system as long as the controller
computing power meets the requirements of the application. There is a corresponding number of axis
data structures.

€ Once the controller has started running, the servo feedback values are automatically updated into this
data structure after the controller gets the slave response data during each EtherCAT task operation
phase. The variables of this data structure are accessible during the execution of user POUs.

EtherCAT task execution time

1/0 refresh : 1/O refresh
3
Lo ® |
I oo £ S
£c 0 £ c
Output] Input |1 @ . 2 £
1 da?a Data refresh dapta 2 8 | Execution of the S (28
| @8 user program a |#8
e 8 I
L = S
‘ A -
A » ¢

..

|
;" Update of the axis % i " The user program can
“o..datastuctue s) i querythecurrent i
””””””””””” . axis datastructure. ¢

€ Axis data variables are specified in the format of "Data structure name.Structure variable name".
Generally, the following parameters are used in the data structure:

Axis.nAxisState: Current running state of the axis, which is the state parameter that the servo feeds back
to the controller

Axis.fSetPostion: Axis set position, which is sent by the controller to the servo axis

Axis.fActPostion: Actual position of the axis, a status parameter returned by the servo to the controller, in
the dimension the same as the command unit set by the user program

Axis.fActVelocity: Actual velocity of the axis, a status parameter returned by the servo to the controller, in
the dimension the same as the command unit set by the user program

In the user program, these variables can be used as the basis for motion control calculation and
judgment. Some of the variables in the axis structure are command data sent from the controller to the
servo axis. In the user program, you can assign values to these variables to control the servo axis. The
following ST statement is an example:

4. Execution Mechanism of the Motion Control Program

Axis.fSetPostion = 500;//The unit of this parameter is the same as the command unit of the command

4.5.3 Servo Axis Status and Transition Rules

AM600 complies with the PLCopen Specification. In a motion control system, the operation status of an
axis is divided into several logical statuses. The direct transition of each logical status requires a specific
condition or a specified MC instruction. The division enables the axes to be controlled according to the
motion modes. The axes can only be in one logical status at one time, and the transition of the logical
status must follow the rules. In this way, it avoids operation chaos due to the false triggering of different
MCs.

The axis data structure variable (Axis.nAxisState) indicates the current operation status of the axis. Axis.
nAxisState is an enumerated variable, with 8 possible statuses:

0: Power_off (Disabled): The axis is not powered on or enabled. You need to execute the MC_Power
instruction.

1: Errorstop;------------------- First execute the MC_Reset/MC_Power instruction.

2: Stopping;-------------------- Wait for the stopping operation to be completed.

3: Standstill;------------------- The axis has stopped running and is out of synchronization.
4: Discrete_Motion;--------- The axis is in the state of discrete motion.

5: Continuous_Motion;----- The axis is in continuous motion.
6: Synchronized_Motion;--- The axis is in synchronous motion.

7: Homing;---------------------- The axis is in homing operation. Wait for the homing operation to be
completed.

The following is an axis status transition diagram. The transition of statuses requires specific conditions
such as running the MC instruction, or external faults for which the user cannot reset the status. During
programming, users must run the relevant instructions according to the logic requirements.

MC_Gearln (Slave)
MC_GearlnPos (Slave)
MC_Camin(Slave)
MC_CombineAxes (Slave)

Synchronized
Motion

MC_MoveAbsolute
MC_MoveRelative
MC_MoveAdditive
MC_PositionProfile
MC_Halt
(MC_MoveSuperimposed

MC_MoveVelocity
MC_VelocityProfile
MC_AccelerationProfile
MC_TorqueControl
MC_MoveContinuousAbsolute
MC_MoveContinuousRelative

Continuous
Motion

Discrete Motion

Note 1
~~~~~

Note 3

Disabled
Note 1: From any state. An error in the axis occurred.

Note 2: From any state. MC_Power.Enable = FALSE and there is no error in the axis.
Note 3: MC_Reset AND MC_Power.Status = FALSE

Note 4: MC_Reset AND MC_Power.Status = TRUE AND MC_Power.Enable = TRUE
Note 5: MC_Power.Enable = TRUE AND MC_Power.Status = TRUE

Note 6: MC_Stop.Done = TRUE AND MC_Stop.Execute = FALSE

Note 2
Standstill i

The MC function block in the figure enables the axis status to transition to the specified status, as shown

-43-



4. Execution Mechanism of the Motion Control Program

in the figure:

€ Inthe axis stop state (Standstill, that is, Axis.nAxisState = 3), it is possible to transition to various
operation statuses.

€ Itis possible to transition from multiple statuses to the stop state (Standstill, that is, Axis.nAxisState = 3).

€ Ifthe servo axis has an alarm (Errorstop, that is, Axis.nAxisState = 1), you need to run the MC_Reset and
MC_Power instructions to make the axis enter the Standstill status before the axis can run again.

€ Ifyou do not use the MC instruction to command the axis to move according to the above transition
diagram, the axis will not respond, and an alarm message will be generated for the MC function block.

In the user program, sometimes you need to start the subsequent control logic according to the axis
status. In this case, the judgment based on Axis.nAxisState is more accurate and reliable than the
judgment for the done signal of the MC function block.

Familiarize yourself with the transition conditions shown in the axis status diagram and pay attention
to the logic and sequence of MC instructions during programming to make the application stable and
reliable.

4.5.4 Execution Logic of the MC Function Block

Axis control commands related to servo slaves are mostly in the form of MC function blocks (also called
instructions). Since MC function blocks need to be executed continuously in short intervals and the servo
operation response must be monitored in time, MC function blocks for axis motion can only be called for
execution in an EtherCAT task. The internal processing of the system is as follows:

1) Only MC function blocks that have been effectively triggered will be executed. For multiple instances
of the same MC function block (for the same axis object), the one that is triggered later will be
prioritized.

2) For MC commands for servo axes, the system first checks the validity of the operations in accordance
with the axis status transition rule. Then, the system performs operations including the axis status
transition and update of the axis target parameters and prepares the axis control command data.

3) The system software for EtherCAT bus control makes the axis control command parameters into
PDO transmit buffer data according to the TPDO configuration table and object dictionary of each
servo slave axis set by the user.

4) The system software for EtherCAT bus control will, according to the RPDO configuration table and
object dictionary of each servo slave axis set by the user, reserve several bytes of slots required by
the slave response data in the EtherCAT frame receive section. Finally, it "assembles" the axis status
parameters to be read by the master to the EtherCAT frame transmit buffer and sends them to the
slave at the next EtherCAT period.

5) The results of the EtherCAT remote I/O operation are stored in the buffer according to the connection
order of the slave racks and are sent together with the servo slaves. However, the status of the data
in the transmit buffer is updated after the completion of a general task period (task priority of 15 or
lower, such as a 20-ms period).

6) The following figure shows the timing for the master controller to execute the user program and
send/receive data via EtherCAT:



4. Execution Mechanism of the Motion Control Program

Task period = EtherCAT period Task period = EtherCAT period
Actual time required for task execution Actual time required for task execution
1/0 refresh 1/0 refresh 1/0 refresh 1/0 refresh
o I3

- 5 o — g ~
£? 7 =¥ eg 72 =2

2 : 2 )
;lpul Data refresh ‘39“‘ £ 8 | Execution of the g &9 (‘;‘P“ Data refresh '(;‘P"l g 2 | Execution of the g g g
ata ata (38 | user program g F3 ata ata | 228 | user program s [
s g s B g 8

U F remporarily stored f Takingeffect U " remporarily stored ‘A
|
|

Axis control Data from the Axis motion Sentin th ¢ EtherCAT period ‘ Data from the Axis motion
instruction sent servo slave control instruction| _ Sentin the next EtherCAT period | servo slave takes ontrol instruction|__ S€NtIN the next EtherCAT period |

to the slave takes effect. and data effect. and data

7) Inthe MC user program, if the servo system is in operation, an MC function block that has been
triggered for execution must be monitoring the servo axis, to avoid the absence of MC monitoring of
arunning servo axis due to the program logic jump. Using MC_Stop to make it stop is also a kind of

monitoring.

It can be found that the axis control commands involved in an EtherCAT task are not sent out during the
current POU execution period, and there is a delay of one EtherCAT period. The error caused by such
delay must be taken into account in applications requiring precise position and length control, such as
the triggering of MC_Camln for multi-axis synchronous control, as shown in the following figure.

EtherCAT bus send/receive .~ MC program operation
EtherCAT interrupt
POU execution t
A A
'
> E Reference e="®s
. . . >
Digital discrete deviation i Error E position Fi -
P Offset e’ )
Calculation control instruction - "—---.-.o' Position required by process Ma}ster
= %! » axis
H .
<« )E position
-------- [
Delay
clay E Actual position
i Position control
Motion control 1§ instruction
. . . instruction triggereds actuall t
Position instruction actually sent in advance ,_i,ac il Master
2 4 » axis
»

EdNotes:
Measures can be taken during programming to deal with the error caused by the above delay:

Trigger the MC instruction 1 EtherCAT period in advance.

The MC start required by the control process is not necessarily at the beginning of the EtherCAT period,

and it can be in the middle of the period. The elimination of this discretization error should be taken into

account during programming. The Offset parameter provided by the MC function block can be used for

compensation.

8) To eliminate the discretization error, estimate the error caused by this kind of communication
mechanism based on parameters such as the current object's operation position, velocity, and
acceleration rate. A smaller EtherCAT bus period is conducive to reducing uncontrollable errors.

4.,5.5 Data Interaction Between POUs of Tasks of Different Priorities

To support variable interaction between multiple POUs, it is necessary to use global variables, that is,
you need to declare them in the global variable list (GVL). However, if the POUs are in tasks with different
priorities, the data interaction is not in real time, and the result of the data update depends on the task
priority, task period, and type of variable access. Pay attention to the following mechanism:

When the user program is executed, for tasks with different priorities and different periods, AM600

internally adopts the rule of start time alignment, that is, there is a common point for calculating the
start time of the task period. If the period of one task is an integral multiple of another task, then the
tasks will have a regular coincident time point (alignment point), which is often used as the GVL data

interaction point.

-45-



4. Execution Mechanism of the Motion Control Program

€ Only after a task has been executed, the modifications made by its POU to variables are written to the
GVL buffer. Modifications made by low-priority tasks to GVL parameters only take effect at the end of

their task period.
Rewrite operations performed by high-priority POUs to the GVL take effect immediately.

Low-priority tasks will copy the GVL value from the GVL buffer once before the execution of the first
task from the alignment point, as a basis for use during the POU execution of this task. The GVL buffer
variables will not be read again during the execution of this task.

Iy ECT task period

ECT task period

ECT task period ECT ta

sk period o ECT task period
> <

\/

< <

»

ECT task

ECT task

ECT task | ECT task

ECT task

¢ Write
[GVLvariabie]

¢ Write

GVL variable

¢ Write

GVL variable

|

|

| “, Taking effect
| 4

|

“XNot read

"X Not read
\ 4

Write
[GVivariabie]

[Givariabie]

"X Not read / ", Taking effect
4 4

| Main task |

1%

Main task

Main
task

Main
task

|
|
| <
<

+ Write

Task period
alignment point

Main task period

'
Task period
alignment point

The servo axis data structure is a global variable automatically defined by the system. The system will
automatically refresh the data structure every time the ECT task is executed. If the variables of this data
structure are to be read in the Main task POU, the readings will be the data updated by the first ECT task
after each "task period alignment point". Similarly, if the variables in the data structure needs to modify
in the Main task POU, they will be sent to the servo axis in the first ECT task after the next "task period
alignment point", with a delay of about one Main task period.

For event-triggered execution of tasks, such as interrupt task POU execution triggered by HSIO, the
latest variable values in the GVL will be used. As shown in the following figure, the updated GVL values
between the EtherCAT task and the HSIO interrupt task can be interacted in a timely manner. When the
execution of a lower-priority HSIO task is interrupted by an EtherCAT task, the GVL value modified by the
HSIO task is valid only when the next EtherCAT task is executed after the HSIO task has been executed.

ECT task period iy ECT task period iy ECT task period ECT task period
| ECT task | ECT task ECT task ECT task | | ECT task
*Write A ¢ Write ¢ Write \ Write A Write
(6. arbie]. o] arble] 7oking | [iverie]

“Taking effect; “effect “XNotread }
I 4 B i v i
| enternal | HsiO | HSIo |
Lnterpt || task | fTakingeffect ___________________ L N I I

Write WWritef .
[ GVL variable [ Taking effect

LNotes:

It can be found that, in the user program, the period of a general main cyclic task must be an integer
multiple of the period of an EtherCAT task. For example, set the period of an EtherCAT task to 2 ms
or 4 ms and that of a general main cyclic task to 20 ms; otherwise, an exception will occur during the
interaction of GVL parameters.

In tasks with different priorities, if there are modification operations on the same GVL variable, the
values may overwrite each other. During programming, it is recommended that only one POU is allowed
to perform rewrite or reset operations on a global variable, and the other POUs can only read and refer
to it or reset the operation; otherwise, unanticipated errors will occur.



4. Execution Mechanism of the Motion Control Program

5. Application Programming of User Program

5.1. MC Programming For Single-axis MC Positioning

5.1.1 Notes for MC Application Programming

The motion control is achieved based on the EtherCAT bus network with the cooperation of the AM600
controller and servo axis such as IS620N. Different from the previous method of hardware output pulse,
it uses only software, that is, servo control is achieved by carrying out a calculation and issuing a control
command once in each short EtherCAT bus period. Therefore, pay attention to the following points:

€ The MC user program is executed based on the EtherCAT task period. MC-related POUs must be
configured so that the POUs will be executed under EtherCAT tasks. Most MC function blocks cannot run
normally if they are placed in the POUs of low-priority Main tasks.

€ The execution of MC function blocks requires the transmission of data objects in communication.
Therefore, there must be required configuration items in the PDO configuration table. If the
configuration-related data objects are omitted, the servo may not run normally and there will be no
error alarm.

€ The controller can initialize the settings of the servo function code through the SDO configuration and
determine the servo operation mode (generally CSP mode), servo motor encoder mode, and electronic
gear ratio, to ensure that the control commands correspond to the physical operation position. The
initialization of the servo improves the commissioning efficiency of the device and reduces errors in
parts replacement.

€ The servo axis control must follow the rules and logic of axis status transition. Use the appropriate MC
function block for control based on the current status of the axis and the desired motion.

€ Theuser program uses an instance of the MC function block. An MC instance can only be used for the
control of one servo axis. If it is used for the control of several servo axes at the same time, the control
will be out of order.

€ Forarunning servo axis, there must be an MC function block that continuously monitors the running of
the servo axis. Even using MC_Stop is a kind of monitoring. If the servo axis is not monitored by an MC
function block due to the logic jump of the user program, the system will stop and generate an error,
which is not easy to detect.

€ Pay attention to the safety during commissioning. If the servo system uses an incremental encoder,
there must be a homing operation before normal operation. The DI signal input port of the servo drive
can access the home position signal. For motion in a limited range (such as a screw), there should be a
limit and safety protection signals before commissioning.

5.1.2 MC Function Blocks Commonly Used for Single-Axis Control

An MC function block (FB) is also known as an MC instruction. To be precise, what is used in the user
program is the object instance of the MC FB, and the servo axes are controlled through MC object
instances. Example:

MC_Powerl:MC_Power;//Declare the instance MC_Powerl
MC_Powerl (Axis=Axis1)

Single-axis control is generally used for positioning control, that is, the servo motor drives the external
mechanism to move to the specified position. Sometimes the servo must run at the specified velocity or



4. Execution Mechanism of the Motion Control Program

torque. In the single-axis control, the following MC function blocks are usually used:

Control Operation Required MC Command Description

Servo enabling

MC_Power

Run this instruction to enable the servo axis for
subsequent operation control.

Servo jog

MC_Jog

Jogging of the servo motor, commonly used in low-speed
test runs to check the device or adjust the position of
servo motor.

Relative positioning

MC_MoveRelative

Take the current position as the reference and run for the
specified distance.

Relative superposition
positioning

MC_MoveAdditive

Move for the specified distance based on the current
operation instruction of the servo.

Absolute positioning

MC_MoveAbsolute

Command the servo to move to the specified coordinate
point.

Velocity control

MC_MoveVelocity

Command the servo to run at the specified velocity.

Torque control

SMC_SetTorque

Command the servo to run at the specified torque.

Servo halt MC_Halt Command the servo to halt. If MC_Movexxx is triggered
again, the servo can run again.

Emergency stop MC_Stop Command the servo to stop urgently. Only after the stop
command is reset and MC_Movexxx is triggered, the servo
can run again.

Alarm reset MC_Reset When the servo stops with an alarm, run this instruction

to reset.

Servo operation mode
switchover

MC_ControlMode

Command the servo to select the "Position", "Velocity" or
"Torque" mode.

Servo homing MC_Home Command the servo to start the homing operation. The
home signal of the application system and the limit
signals of both sides are connected to the DI port of the
Sservo.

Controller homing SMC_Homing The control system starts the homing operation. The

home signal of the application system and the limit
signals of both sides are connected to the DI port of the
controller.

5.1.3 MC Commands and PDO/SDO Configuration

When AM600 executes the servo axis MC commands of the user program, it is necessary to add the
information items required for interaction with the servo to the communication PDO/SDO configuration
table to achieve the control function.

MC Command Required TPDO Required RPDO
MC_Power
MC_Halt
MC_Stop StatusWord (status word)
ControlWord (control word)
MC_Reset Errorcode (error code)
MC_Home
SMC_Homing
MC_Jog Position actual value (current axis
MC_MoveRelative position)
TargetPosition (target position) )
MC_MoveAdditive Following error actual value (current
MC_MoveAbsolute following error)




4. Execution Mechanism of the Motion Control Program

Target velocity (target velocity)
MC_MoveVelocity
Max profile velocity (max. Profile velocity)

SMC_SetTorque Target torque (target torque) Torque actual value (current torque)

16#6060=8: Cyclic Synchronous
Position (CSP) mode
16#6060=9: Velocity mode
16#6060=10: Torque mode

MC_ControlMode Modes of operation (operation mode)

The above TPDO and RPDO are basic configuration items required to perform single-axis con-
trol.

In MC control, the servo usually runs in position mode. In EtherCAT bus-based applications, the servo
runs in Cyclic Synchronous Position mode. Therefore, set the servo operation mode to CSP in the SDO
configuration during programming. For example, the following items are generally initialized in SDO for

[S620N:
Initialization O tion fi
nitialization Operation for Required SDO Description
Servo
Set to Cyclic Synch
ettotyclic synchronous Modes of operation (16#6060) Setto 8.

Position mode.

L1i .
16#6091-1: is recommended

Setting electronic gear ratio F i ingi
g g 1646091-2: (Function code setting is not
recommended.)

0: Incremental; 1: Absolute finite
Setting motor encoder type | 16#0201 (IS620N function code) length;
2: Absolute infinite length

Setting maximum allowable Applicable to velocity mode and

Max profile velocity (16#607F)

velocity torque mode.

fct)ert:Seg maximum allowable Max torque (1646072) f\opr[;lli;a:ﬁlls;:velocity mode and
Setting homing mode Homing method (16#6098)

Setting homing velocity Homing speeds (16#6099)

Touch probe function Touchprobe function (16#60B8)

5.2 Motion Control Programming for Multi-axis Cam Synchronization

Cam motion adopts the concept of relative motion between the mechanical cam and the tappet.
Based on the specific nonlinear relationship for the relative position, the controller makes the servo
slave axis follow the master axis for continuous and synchronous motion to meet the required

motion characteristics of the device. Cam motion is extensively used in applications requiring the
synchronization function, such as fixed-length cutting, chasing shear control, flying shear control, and
multi-color overprint.

The master-slave axis position relationship of the electronic cam curve is shown below. The horizontal
axis indicates the position of the master axis, and the vertical axis indicates the position of the slave axis.

Paostion

Slave axis l
Cam curve

Slave axis

= Pasition
Master axis

AM600 adopts software to achieve cam motion control, that is, it uses the digital "cam table" to replace

-49-



-50-

4. Execution Mechanism of the Motion Control Program

* o

® 6 6 o o

the mechanical cam, which is also called electronic cam control. Compared to the mechanical cam, cam
motion control has the following features:

Easy creation of cam shapes: Cam tables, cam curves, or arrays are used to describe cams.

Diverse cam shapes: Multiple cam tables are available and can be switched dynamically during
operation.

Easy modification of cam shapes: Cam table key points can be modified dynamically during operation.
Multiple cam slave axes: Multiple cam slave axes are supported.

Cam tappet: Multiple cam tappets and multiple setting intervals are supported.

Cam clutch: During cam operation, the user program can make it enter and exit the cam operation.
Features of electronic cam: Support for virtual master axis, phase shift, and output superposition

The cam operation of AM600 is carried out by software only. In cam running status, the next target point
of the slave axis is calculated every time the EtherCAT task is executed, thus providing higher functional
flexibility than hardware cam operation.

Three elements of electronic cam control are as follows:
1) Master axis: A reference axis used for synchronous control

2) Slave axis: A servo axis that follows the master axis according to the desired non-linear
characteristics based on the position of the master axis

3) Camtable: Adata table or cam curve that describes the relative position, range, and periodicity of
the master axis and slave axis

During programming, users need to design the cam table to specify the master axis and slave axis.
Then, trigger the cam at an appropriate moment during running so that the slave axis can enter the cam
running status.

The basic instruction function blocks of electronic cam control are as follows:

Control Operation

Required MC Command

Description

Select cam table

MC_CamTableSelect

Run this command to associate the master axis, slave
axis, and cam table.

Enter cam running | MC_Camln Make the slave axis enter cam running
Exit cam running MC_CamOut Make the slave axis exit cam running
Correct cam . . . .

MC_Phasing Modify master axis phasing

phasing

5.2.1 Main Function Blocks For Cam Running

1)

MC_CamTableSelect FB for Cam Table Selection

This function block is used to associate the master axis, slave axis, and cam table, and to set the period
of cam running as well as the position mode (absolute position or relative position) of the master and
slave axes. This command is a management-type command, that is, once this command is triggered and
executed once, the relevant master and slave axes can run according to this characteristic. To modify
the cam table or change the master or slave axis, you need to trigger the execution of this function block
again.



4. Execution Mechanism of the Motion Control Program

MC CamTableSelect 0

Master —=Master
slave —Zslave
Cam —=CamTable

—Execute

MC CamTableSelect

Done ———
Busy —
Error —

ErrorID

—Pericdic CamTableID — CamID
false —MasterAbsolute
false —{SlaveRbsolute
MC_CamTableSelect( MC_Camin(

Master:=, //Cam master axis
Slave:=, //Cam slave axis
CamTable:=, //Cam table
Execute:=, //Command-triggered

variable, rising edge-triggered

mode

mode

Periodic:=, //Set the cam periodicity
MasterAbsolute:=,//Master axis position

SlaveAbsolute:=, //Slave axis position

Done=>,//
Busy=>,
Error=>,
ErrorlD=>,
CamTablelD=>);

Master:=, //Cam master axis

Slave:=, //Cam slave axis

Execute:=,//Execution-triggered,
rising edge-triggered

MasterOffset:=,//Master axis position

offset

SlaveOffset:=, //Slave axis position
offset

MasterScaling:=,//Master axis scaling
ratio

SlaveScaling:=, //Slave axis scaling
ratio

StartMode:=, //Slave axis trigger
position mode

CamTablelD:=, //Cam table pointer

VelocityDiff:=, //Velocity deviation

Acceleration:=, //Acceleration rate

Deceleration:=, //Deceleration rate

Jerk:=, //Jerk

TappetHysteresis:=, //Tappet
hysteresis

InSync=>, //Synchronization
indication

Busy=>,//Running

CommandAborted=>, //Command
aborted

Error=>, //Error

ErrorlD=>, // Error ID

EndOfProfile=>, //Executed at end of
cam

Tappets=>,// Tappet active

);

The input and output variables of this function block are as follows:

-51-



-52-

4. Execution Mechanism of the Motion Control Program

VAR_IN_OUT

Master AXIS_REF

Slave AXIS_REF

CamTable MC_CAM_REF
VAR_INPUT

Execute BOOL FALSE
Periodic BOOL TRUE
MasterAbsolute BOOL TRUE
SlaveAbsolute BOOL TRUE

VAR_OUTPUT

Done BOOL FALSE
Busy BOOL FALSE
Error BOOL FALSE
ErroriD SMC_ERROR o
CamTablelD MC_CAM_ID

2) MC_Camin function block for cam running

After the MC_CamTableSelect function block is run, users can run this function block to make the
slave axis enter the cam running status (Synchronized_Motion, that is, Axis.nAxisState = 6). The system
executes this function block once every time it enters an EtherCAT task to calculate the next target
point of the slave axis based on the current position of the master axis and the cam table. If the MC_
CamTableSelect function block is not run beforehand, an error will be reported if this function block is

triggered.
MC_CamIn 0
MC_CamIn
Master —SMaster InSync ——
slave —Hslave Busy —
—|Execute CommandAborted —
—MasterOffset Error —
—SlaveOffset ErrorID
—{MasterScaling EndOfProfile —
—{8laveScaling Tappets —

—StartMode

CamID —CamTableID
—VelocityDiff
—{Acceleration
—|Deceleration
—dJerk
—TappetHysteresis

MC_CamOut(

Slave:=, //Cam slave axis

Execute:= ,//Trigger variable, rising
edge-triggered

Done=>, //Execution completed

Busy=>, //Execution in progress

Error=>, //Error

ErrorID=> //Error ID

);

This instruction makes the cam slave axis enter into the state of synchronous operation with the cam
master axis. It controls the cam slave axis to adjust to the corresponding target point according to the
current position in the master axis and the position correspondence of the cam table. The execution of
this instruction has no impact on the master axis.



4. Execution Mechanism of the Motion Control Program

Slave axis position

Cam curve
e e T,
. A
Trigger MC_Camln to
enter cam running
P Master axis position
—|—|—H—H—FH—H4—H45|(L|—FH—FFFFH—H+H—H—FFFFH—FH—H—H4ETEFFH4—H—|—>
400 A 800

1al master axis position
iMaster. fActPosition MC _Camin .Execute =1

Once MC_Camln is triggered, the slave axis moves by following the position of the master axis based on
the position correspondence in the cam table. Note that the position correspondence, not the velocity
correspondence, must be followed.

After entering cam running, the system will parse the CAM cam table for every EtherCAT interrupt,
calculate the next target point of the slave axis based on the current position of the master axis, and
send the next target position to the slave axis to make it run.

5.2.2 Master and Slave Axes in Relative Position Mode

Slave axis position

Master axis in relative position mode
MC _CamTableSelect. MasterAbsolute:= False

| Master axis position

|> ________________ }
0 360
--+++++++++++t+++++-++++++-++++++-+++++++++++++t+t++t++t+t+ ¢
0 A

Actual master axis position
AxisMaster. fActPosition

MC _Camln. Execute =1

When the master axis is in relative position mode, the cam operation module will use the current
position as the start point X=0 of the master axis when entering the cam status.

When the slave axis is in relative position mode, the cam operation module will use the current position
as the start point YO of the slave axis when entering the cam status, based on which the cam output
results thereafter will be superimposed.

5.2.3 Master Axis in Absolute Position Mode and Slave Axis in Relative Position

Mode
Slave axis position
Master axis in absolute position mode
MC _CamTableSelect . MasterAbsolute:= True
Slave axis may have velocity jump
I | Master axis position
| o — - ——— —————————— = >
0 360
—4—%++4—F++4—F++4—F+44—F++4—F++4—F+++4—%++4—%++4—F++4—F++4—F++4—F+++4—F—.’t
0 A
Actual master axis position MC _Camln. Execute =1

AxisMaster . fActPosition

When the master axis is in absolute position mode, the cam operation module will calculate the slave

-53-



5. Application Programming of User Program

axis position based on the current position of the master axis when entering the cam status. Therefore,
pay attention to the following points:

€ High-speed rotation during slave axis position adjustment in cam running will cause impact or damage
to the device.

€ Ifthe current position is beyond the value range of the cam table, the slave axis will not move and an
alarm will be generated.

€ Ifthe cam tableisin cyclic mode, the next cam period starts when the execution of the current period is
completed.

5.2.4 Master Axis in Relative Position Mode and Slave Axis in Absolute Position

Mode
Slave axis position
Slave axis may rotate at high velocity
— /
/ Slave axis in absolute position mode
l‘ / MC _CamTableSelect. Slave Absolute:= True
(4
‘ \ Master axis position

>

0 360

t

MC _Camin. Execute =1

When the slave axis is in absolute position mode, it will move to the position required by the cam when
entering cam running. If the deviation is large, automatic adjustment of high-speed motion will occur.

Take measures according to the application characteristics:

€ Fordevices requiring the alignment operation, such as the revolving knife for fixed-length cutting, the
absolute position must be adopted for the cam slave axis. During programming, perform the homing
operation for the revolving knife before its first rotary cutting action.

€ Reasonably set the master axis position range for the cam table to avoid reverse cam position
adjustment at the beginning of the next period.

€ Run SMC_GetCamSlaveSetPosition to set the slave axis position of the cam entry point to the current
coordinates of the slave axis.

€ Forapplications supporting relative position mode, use relative position mode:

MC_CamTableSelect.SlaveAbsolute = False; or MC_Camln.StartMode = 1; (relative mode)

Notes:

When the slave axis is set to absolute mode of "finite length", the controller will choose a closer direction
when making homing adjustment if it is possible to turn left or right for the homing operation. When
designing the range of the cam table, make sure that it does not exceed the actual range of operation
required; otherwise, instantaneous high-speed rotation adjustment of the servo slave axis will occur,
resulting in @ mechanical shock.

5.3 Cyclic Mode Characteristics of the Cam Table

The following figure shows the result of single-period cam running. When the cam table is set to single-
period mode (Periodic = 0), the slave axis exits the cam running status after one cam table period is

-54-



5. Application Programming of User Program

completed.
MC _CamTableSelect . Priodic=0

Slave axis position

|

| -

| Slave axis position
|

|

|

Master axis position ? 360 360 360
—++++ e
0 A

MC _Camin .Execute =1

When the cam table is set to cyclic mode (Periodic = 1), the slave axis starts to run the next cam period
after running for one cam table period, until a user program commands it to exit the cam running status,
as shown below:

Slave axis in relative position mode
MC _CamTableSelect. Slave Absolute:= False

Slave axis position Slave axi
1

| Slave axis position

Master axis posmon? 360 360 360
—++ e
0 A

MC _Camin. Execute =1

The preceding figure shows the result of cyclic cam running. Once the master axis position range in
the cam table is completed, the motion of the next cam period starts automatically.

5.3.1 Offset for CamIn Operation

Slave axis position

Master axis in absolute position mode
MC _CamTableSelect . MasterAbsolute:= True
—
|
|
: P Master axis position
0 360
—H—|4—H444—H4444—I—FFFFFFFH—FFFFFFH—FFH—H4—FFFFFFFH—FFFFFH—> t
0 A

Actual master axis position

AxisMaster . fActPosition

MC _Camin.Execute =1

Slave axis position

A

Master axis in absolute position mode
MC _CamTableSelect. MasterAbsolute:= True
MC _Camln. MasterOffset

f ’ /]

= il

P Master axis position

0 360
-++++++++++++++++++t+++++++++++++++t++++t+t+t+t+t++t++++» ¢
0 A
Actual master axis position MC Camin.Execute =1

By setting an offset for the cam master axis, you can modify the start point of the cam slave axis. Based
on the current actual position of the master axis, calculate the offset value, which can start at point 0 of

-55-



5. Application Programming of User Program

the cam table:

MasterOffset = 0 - AxisMaster.fActPosition

5.3.2 Calculation of Master Axis Scaling During Cam Running

By default, MasterScaling is set to 1 in the system. If the user program modifies this variable:

Slave axis position

Cam table
¢ P Master axis position
360

Master axis in relative position mode Equivalent cam table |

MC _CamTableSelect . MasterAbsolute:= True I

B

|

MasterOffset I
[ X = MasterPosition "MasterScaling (n) + MasterOffset | P Master axis position

0 s == m—T T 360
—H%—H%%—l—FFFFFFH—FH—FFFFF!—FFFFFFFFFFFFH—FFFFFFFFFFFFFFFF» t
oA 180 360

MC _Camin. Execute =1

After setting MasterScaling for the cam master axis, you can perform linear scaling of the master axis
position so that the position correspondence with the cam table meets the requirement.

If the offset value of the master axis is considered, the calculated position of the master axis (X) in the
cam tableis:

X = MasterPosition x MasterScaling(n) + MasterOffset

This parameter can be used for dimensional fine-tuning of processing workpieces.

5.3.3 Calculation of Slave Axis Scaling During Cam Running

By default, SlaveScaling is set to 1 in the system. If the user program modifies this variable:

Slave axis position

Camtable

P Master axis position
0 360

Slave axis position

Slave axis in relative position mode
MC _CamTableSelect .Slave Absolute:=True

Equivalent cam table

B 4 —
SlaveOffset l Y = CAM ( X )*SlaveScaling (n) + SlaveOffset
P Master axis position
0 360
-+++++++-++-+++++++++ -+t

After setting SlaveScaling for the cam slave axis, you can perform linear scaling of the slave axis position
so that the output of cam control meets the requirement on the slave axis motion position.

-56-



5. Application Programming of User Program

If the offset value of the slave axis is considered, the output position of the cam slave axis (Y) is:
Y = CAM(X) x SlaveScaling(n) + SlaveOffset

This parameter can be used for dimensional fine-tuning of processing workpieces.

5.3.4 Characteristics of and Precautions for Using Offset and Scale in Cam Running

It is recommended to adopt the relative mode for the master axis position mode and the slave axis
position mode, unless otherwise required by the application system. This can make the programming
simple and lower the possibility of a mechanical shock.

The master axis start and stop ranges, offset, scale and other values of the cam table can make up
for the design deviation of the cam table. It is recommended to use the default settings to facilitate
commissioning and maintenance and reduce possible running errors.

When the cam table period is executed/aborted or after the cam table is switched, the system will clear
the values of the offset and scale in the memory and restore the default values when MC_Camin is

executed again.

5.3.5 MC_CamOut FB for Exiting Cam Running Status

When the slave axis is in cam running status, triggering the execution of this function block can make the
slave axis exit the cam running status and enter the continuous running status (Continuios_Motion, that
is, Axis.nAxisState = 5). The execution of this instruction has no impact on the master axis.

MC_CamOut_0

MC CamOut
Slave —“slave Done ——
—Execute Busy —
Error —
ErrorID—

VAR : INT;

CAM: MC_CAM_REF:= (
byType:=2, (* non-equidistant *)
byVarType:=2, (* UINT *)
nElements:=128,

xStart:=0,
XEnd:=360);

Table: SMC_CAMTable_UINT_128_2:=(
fEditorMasterMin:= 0, fEditorMasterMax:= 360,
fTableMasterMin:= 0, fTableMasterMax:= 6000,
fEditorSlaveMin:= 0, fEditorSlaveMax:= 360,
fTableSlaveMin:=0, fTableSlaveMax:= 6000);

END_VAR

Note: When you execute this instruction, the slave axis exits the cam running status. However, it will
continue to run at the velocity the same as that when it exited the cam status, just as the driven gear
continues to run by inertia even after being disconnected from the mechanical clutch. In this case,
another MC function block is required to take over the motion control of the slave axis, such as MC_
Movexxx, MC_Halt, and MC_Stop.

-57-



5. Application Programming of User Program

5.4 MC_Phasing FB for Cam Master Axis Phase Adjustment

In the cam synchronous operation of some devices, sometimes it is necessary to correct the relative
phase between the cam master axis and the slave axis. In this case, you can use the MC_Phasing
instruction.

This instruction modifies the calculation result of the cam slave axis position. You can set the velocity
and acceleration constraints generated by the phase adjustment. During the adjustment, the running
velocity and position of the slave axis remain continuous. After the adjustment, the phase difference is
kept in continuous operation.

Example of l[o8 2 EH - itiming
O Phase shift Position of the slave axis
Position following the master axis
ContinL(/’
adjustment
/ntewat
D Ll
A Physical mast t
. _ ysical master
. MC_Phasing, Execute=1 axls position

l Phase velocity

0 -
t

Velocity . 3
Master axis velocity

This instruction can be used to adjust the position of the color mark in the sheared workpiece
segment in synchronous control.

5.5 Cam Table Design and Its Data Structure

The cam table is one of the items for writing a user program for cam running. It determines the
characteristics of cam running and can adopt the graphical or tabular form.

5.5.1 Characteristics of the Cam Table

The following figure shows the cam table in graphical form. The horizontal axis indicates the master
axis position, and the axis length is the travel of cam running. There are four coordinate curves, and
the vertical axes indicate the slave axis position, the slave axis velocity, the slave axis acceleration
rate, and the slave axis jerk, respectively. We tend to focus on the position curve and velocity curve
during programming commissioning, and also the acceleration rate curve during the smoothness
commissioning.

-58-



5. Application Programming of User Program

fcam £ | BIAT | TR

=

1n] uom_sm
At
i
O

(-B

S
S 2 f_,é)/
T,

Tz =S

100

i)H*
B

(%] e

[=} SET

N

(=)

o

L=}

o

(=}

=]

(=]

.

=]

(=]

L=}

160 180 200 220 240 260 280 300 320 340

! i B Lo-aeel Yasierogsiiogi

ra
[run] Apoojas aaes
=
4t
=
X

i L
o Hﬂhﬂ“‘“———___h_ — master positicnul
5 1
TL 20 40 80 80 100 120 140 160 150 260 220 240 260 280 360 320 340
R e
73
=
0.05 I%;
0 MRS et S R /- master position [u}
d 20 40 &0 a0 1ﬁ"0—r 160 1§0 200 220 240 260 280 340 3)0\ 340
00515
=
N o H
0.015 & ]
0.01 38 M FANAERE
3
D.Dgﬁjg g}aster position [ul

= o a0 & g 100 120 140 180 130 280 290 240 260 280 300 325 340
0.0
e = 1 T

The cam curves have the following characteristics:

€ Inthe master-slave position curve coordinates, the vertical axis indicates the allowable motion range
of the slave axis. For the other three curves, the vertical axes indicate the velocity ratio and acceleration
ratio between the slave axis and the master axis.

€ The cam curve is monotonic in the vertical direction, that is, each coordinate of the master axis can
only correspond to a unique coordinate of the slave axis. During cam execution, the coordinates of the
master axis move in the ascending direction.

€ The cam curve can have several key points. The line type between two key points can be set as a
straight line or a quintic curve. The system will make the best optimization for each quintic curve to
minimize the abrupt changes in velocity and acceleration rate.

€ Thestart and end coordinates of the horizontal axis (master axis) start from 0 and end at 360 by default.
Users can modify them based on the actual physical travel.

5.5.2 Input Mode of the Cam Table

1) When users want to create a cam table, the system will automatically set up the simplest cam curve,
based on which users can make modifications as required.

2) Users can increase or decrease the number of key points and modify the coordinates of the key
points of the cam curve.

3) Users can modify the line type between any two neighboring key points, which can be quintic curve
or straight line.

4) By default, the system uses a quintic curve to link two neighboring key points in the cam curve,
ensuring the continuity of the velocity during operation and reducing the mechanical shock.

The key points in the cam curve are related to the mechanical motion requirements of the control
object. Example:

5) Forchasing shear applications, it is recommended that the coordinate range of the master axis

-50-



-60-

5. Application Programming of User Program

correspond to the physical travel of the running interval for easy analysis.

6) The key pointsinclude the start and end points of the round trip of the slave axis, the start position
point of the synchronous operation interval, and the position point for out of synchronization.

7) For proportional synchronization intervals, the line segments of the cam curve should be straight
lines. The line type for other intervals should be quintic curve.

5.5.3 Internal Data Structure and Arrays of the Cam Table

For each cam table in InoPro, there is a data structure describing the characteristic data of the cam table.
The following figure shows the data structure describing the cam table "CAM0". Pay attention to the
names of variables in the structure:

Expression Application Type Value Pr!?glzr:d Executionpaint f
= ca_n:lg “““““““““““““““ Device.Application MC_CAM_REF Cyclic Monitoring
-".;® wiCamStructID .."._ WORD 56372 Cyclic Monitoring
4% byType . BYTE 3 Cyclic Monitoring
*% byVarType é BYTE 0 Cyclic Monitoring
.’.@x'start .......................... _. B R S Fooa000 : B
E é % xEnd é LREAL 360 E Cyclic Monitoring
: ‘ *% nElements ' INT 5 : Cyclic Monitoring
"é'ﬁ’r%b'p'e't's ....................... é ......................Iﬂ% ............................. g Cyclic Monitoring
§+ % pee E POINTER TO BYTE 16#B43B... Cyclic Monitoring
E+ % pt é POINTER TO SMC_CAMTappet 16+0000... Cyclic Monitoring
: *% dwTappetActiveBits E DWORD 0 Cyclic Monitoring
*% strCAMName é STRING ‘Cam0’ Cyclic Monitoring
% bylnterpolationQuality E BYTE 1 Cyclic Monitoring
% byCompatibilityMode é BYTE 0 Cyclic Monitoring
) *% hChangedOnline _: BOOL FALSE Cyclic Monitoring
‘._"@ xPartofLM ._.-'- BOOL TRUE Cyclic Manitoring

InoPro has an internal data structure that describes the characteristics of the cam table. Users can also
write a cam table manually, as shown below:

Although it is not necessary to manually write a cam table, we can modify the desired cam characteristic
data by accessing the data structure.

Note: When declaring the cam table CAMO, the system automatically declares the CAMO data structure of
the global variable type by default, along with the CAMO_A[i] array.

For example, to modify the number or coordinates of key points of the cam table CAMO in the user
program:

CAMO. nElements:=20; //Change the number of key points to 20
CAMO. xEnd:=500; //Change the end point of the master axis to 500. //For example, modify the coordinates of
2 key points in the user program:
CAMO_A[3].dx:=30;
CAMO_A[3].dy:=45;
CAMO_A[3].dv:=1;
CAMO_A[3].da:=0;

CAMO_A
CAMO_A
CAMO_A
CAMO_A

4].dx:=60;
4].dy:=75;
4].dv:=1;
4].da:=0;

Method of modifying the cam table online

"Online modification of the cam curve" refers to the modification of the key point coordinates of the
cam curve based on the control characteristics during the execution of the program written by the user.

The modification generally involves the key point coordinates. Users can also modify the number of key



5. Application Programming of User Program

points, the distance range of the master axis, and so on.

Note: Modify the cam table before entering cam running instead of during running; otherwise,
unanticipated movement results may be caused.

Applications requiring modification of the cam table:
1) Ingeneral, OEM customers use cam tables that have been verified by commissioning.

2) Ifthere are several processing objects or modes, multiple cam tables can be preset for automatic
switchover according to users' needs.

3) Some devices may require a wider range of adaptability. For example, if the packaging device
requires an applicable packaging length in the range of 10 cm to 25 cm, and the corresponding
running velocity must be automatically changed, it may be necessary to modify the cam table
online.

5.5.4 Reference and Dynamic Switchover of the Cam Table
The cam table is stored in an array within the controller. It can be pointed to by a specific MC_CAM_REF
variable type, such as the following declaration:
Cam table p: MC_CAM_REF;

Users can assign a value to this variable, which can also be regarded as making it point to a specific cam
table:

Cam table p:=Cam0; //Point to the required cam table

Cam table p: MC_CAM_REF; //Cam table pointer;

TablelD: uint; //Cam table selection command, which can be set by HMI;
Case TablelD of

0: Cam table p: =Cam table A;

1: Cam table p: = Cam table B;

2: Cam table p: = Cam table C;

End_case
MC_CamTableSelect_0( //Cam relationship
Master:= Virtual master axis,
Slave:= Cam slave axis,
CamTable:= Cam table p,
Execute:= ReSelect, //Cam table selection, rising edge-triggered
Periodic:= TRUE,

MasterAbsolute:=FALSE,
SlaveAbsolute:= FALSE);

In the above programming example, users can use the value of the MC_CAM_REF variable to achieve the
switchover of multiple cam tables.

-61-



5. Application Programming of User Program

6. Common MC Instructions

6.1 Single-axis Instructions

MC_AccelerationProfile

1)

Instruction Format

Instruction Name Graphic Expression ST Expression
MC _AccelerationProfile(
MC AccelerationProfile Rxis:=,
L= - - | Timelcceleration:= ,
—Lkxis Dcne
. i Execute:= ,
Acceleration || TimeRAcceleration Busv — LrraySize:= ,
MC_ profile —Execute CommandAborted — Recelerationicale:= ,
. . - o | Offset:= ,
AccelerationProfile instruction | |RrraySize Error R
—AceelerationScale ErrorID — Busy=> ,
—0Offaet Commandiborted=> ,
Error=> ,
ErrorID=> };
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
Name Data Type Description
Variable yp Range | Value P
Reference to the axis, that is, an instance
Axi Axi AXIS_REF_SM3 |- ’ ’
XIS XS —E- of AXIS_REF_SM3
Axis
acceleration Axis acceleration time and acceleration
TimeAcceleration | time and MC_TA_REF - data description; acceleration data
acceleration consists of multiple sets of data
description
€ InputVariable
. Initial .
Input Variable Name Data Type | Value Range Value Description
Execution
Execute L BOOL TRUE, FALSE |FALSE | Start the motion at the rising edge
condition
The number of arrays used in the
ArraySize Dynamic array |INT Value Range |0 . . y
operation profile
. Integration "Positive" + Scale factor of the acceleration or
AccelerationScale LREAL - 1 o
! factor 0 deceleration in MC_TA_REF
Overall offset of the acceleration or
Offset Offset LREAL - 0 .
deceleration
€ Output Variable
. Initial —
Output Variable Name Data Type | Value Range value Description
Instruction
Set to TRUE when the execution of
Done execution BOOL TRUE, FALSE | FALSE L whe Xecut
axis instruction is completed
completed

-62-




5. Application Programming of User Program

4)

Instruction
Set to TRUE when the current
Busy executionin | BOOL TRUE, FALSE |FALSE | nYEwhe !
instruction is being executed
progress
Instructi Set to TRUE when th t
CommandAbort | - cton BOOL TRUE, FALSE |FALSE | ¢ 0 'RUEwhen the curren
aborted instruction is aborted
Error Error BOOL TRUE, FALSE | FALSE Set to TRUE when an error occurs
See SMC Output de wh
ErrorlD Error code SMC_ERROR | 255> g utputan erfor code when an error
ERROR occurs

Function Description

This function block is a profile motion model of time period and acceleration/deceleration. The
operation mode is Discrete Motion. It runs based on the data set by the user for the TimeAcceleration

variable.

This function block can run in Standstill, Continuous Motion, Synchronized Motion, or Discrete Motion
status. The status during instruction running is Discrete Motion. It cannot run in other statuses.

The function block is started at the rising edge of Execute. The velocity of this instruction is
superimposed based on the previous one when it is run repeatedly in Discrete Motion, which tends to
cause system failure.

TimeAcceleration is of the MC_TA_REF data type.

MC_TA_REF description:

Member Type Initial Value Description
Number_of_pairs INT 0 Number of profile path segments
Absolut; tion (TRUE) and relati
IsAbsolute BOOL TRUE Sc.) ute m.o lon (TRUE) and relative
motion option
MC_TA_Array ARRAY[1..N] OF SMC_TA - Array of time and acceleration values
SMC_TA description:
Member Type Initial Value Description
delta_time TIME TIME#0ms Time of acceleration segment
Acceleration LREAL 0 Current acceleration value

Note: The set acceleration is reflected in the change of velocity. All the acceleration changes are

reflected in an S-curve. Therefore,

the acceleration data for the final result of (A+B)/2 (A: Start acceleration; B: End acceleration) is
reflected in the final velocity.

Timing Diagram

The condition MC_TA_Array has been set by other means.

The instruction can run only when the axis is in Standstill status.

Execute of the function block must have a rising edge condition.

Done of the function block indicates that the execution of the instruction is completed.

Busy of the function block indicates that the execution of the instruction is in progress.

-63-



5. Application Programming of User Program

CommandAborted

Execute

Done

Busy

Error

ErrorlD

Error code

5) Error Description

The error occurs as the instruction is not started in the axis status of Standstill or there is a parameter
error in the instruction system. An axis error must be cleared before the start of the operation.

MC_Halt

1) Instruction Format

Instruction Name Graphic Expression ST Expression
MC_Halt(
MC_Halt Lxiz:= ,
MC Halt Execute:= ,
—nxis Done Deceleraticn:= ,
MC_Halt .AXiS StOP —Execute Busy Jerk:= ,
instruction —{Deceleraticn Commandiborted Done=>r
—Jerk Error Busy=> ,
Commandiborted=> ,
ErrorID
Error=> ,
ErrorID=> );
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
Name Data Type Description
Variable yp Range Value P
Reference to the axis, that is, an instance
Axi Axi AXIS_REF_SM3 |- - ’ ’
XS XS —REr- of AXIS_REF_SM3
€ InputVariable
. Initial —
Input Variable Name Data Type | Value Range Value Description
Execution
Execute L BOOL TRUE, FALSE | FALSE Start the motion at the rising edge
condition
"Positive" + Decelerati f the function block
Deceleration Deceleration LREAL "O?mlve Ssceera|ono e function block {u/
"Positive" +
Jerk Jerk LREAL "o Specify the jerk [reference unit/s?]

€ Output Variable

-64-




5. Application Programming of User Program

4)

) Initial _
Output Variable Name Data Type | Value Range value Description
Instruction
Set to TRUE when th ti
Done execution BOOL TRUE, FALSE |FALSE | ~or o 'RUEwhen the execution
of axis instruction is completed
completed
Instruction
Set to TRUE when the current
Busy executionin | BOOL TRUE, FALSE | FALSE | nYEwhe !
instruction is being executed
progress
Instructi Set to TRUE when th t
CommandAborted | oo ucHon BOOL TRUE, FALSE |FALSE | >0 10 'RUEwhenthecurren
aborted instruction is aborted
Error Error BOOL TRUE, FALSE | FALSE Set to TRUE when an error occurs
See SMC Output de wh
ErrorlD Error code SMC_ERROR | 2" 1 utput an erfor code when an
ERROR error occurs

Function Description

This function block stops the motion of one axis under normal operation. The execution of this

instruction can be terminated when another axis instruction is run again.

This function block can run only in the Motion status and cannot run in any other status.

The function block starts at the rising edge of Execute.

The function block is in the Discrete Motion status during instruction execution and in the Standstill
status after the completion of the instruction.

When the motion instruction is aborted by MC_Halt and MC_Stop, users can adjust the acceleration

by setting the axis variable bAvoidReversalOnHaltStop to TRUE. This avoids the negative direction of
velocity during the stopping process. When the instruction is halted or stopped, if the velocity value at
the breakpoint is small, the acceleration rate is large, and the jerk is small, the velocity may not be able
to reduce to 0 directly, but reduces to 0, reversely accelerates, and finally reversely decelerates to 0. As
the acceleration rate is large and the jerk is small, the velocity value at which the acceleration is reduced
to 0 by the current maximum jerk is greater than the velocity value at the breakpoint. Therefore, the
velocity direction must be reversed so that the velocity can be reduced to 0 at the same time as the
acceleration. This phenomenon occurs in quadratic_ramp and quadratic_smooth_ramp.

Timing Diagram

The instruction can be run only when the axis is in the Motion status.

Execute of the function block must have a rising edge condition.

Done of the function block indicates that the execution of the instruction is completed.
Busy of the function block indicates that the execution of the instruction is in progress.

CommandAborted of the function block indicates that the instruction is aborted by other motion control
instructions, in which case the flag bit is TRUE;

Programming example: Changes in the flag bits of the MC_MoveVelocity instruction and MC_Halt
instruction in different timing operations;

The processing of CommandAborted is described in the following timing diagram.

-65-



5. Application Programming of User Program

5)

EB1 FB2
MC_MoveVelocity MC_Halt
Axis_1 - Axis Invelocty |- Invel_1  Axis_1 - Axis Done | Done_2
Exe_1 - Execute Busy Exe_2 - Execute Busy
50 - Welacity Active | 5 - Deceleration Active|-
10 q Acceleration CommandAbortedl Abort_1 0 —Jerk CommandAborted |- Abort_2
10 - Deceleration Errarf- —| Buffertdode Error |-
0 - Jerk ErorlDf- ErrarlD |-
1 - Direction
— Buffertode
FB1 1
Execute 1 t
InVelocityl
Yo t
CommandAborted !
0 t
FB2 1
Execut
xecute 0 | t
Done 1
0 l—l t
ommandAborted!
0 t
50
Velocity
0 t

Error Description

The error occurs as the instruction is not started in the axis status of Standstill or there is a parameter
error in the instruction system. An axis error must be cleared before the start of the operation.

MC_HaltSuperimposed

This function requires all superimposed motions of an axis to be halted, and the basic motion will not be

interrupted.
1) Instruction Format
Instruction Name Graphic Expression ST Expression
MC_HaltSuperlmposed_0 MC Halt3uperImposed 0f
I d Exis:= Axis,
MC_HaltSuperlmpose Fxecute:= |
MC Halt ] Eh! ENO — Deceleraticn:= ,
- q Superimposed = Awais Done — Jerk:= ,
superimposed | tion halted — Execute Busy - Done=>
—{ Deceleration CommandAborted Busy=> ,
— lerk Error Commandiborted=> |,
ErrorlD Error=> .
ErrorID==> ) ;
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial L
Variable Name Data Type E— Value Description
. . Reference to the axis, that is, an instance
Axis Axis AXIS_REF - - of AXIS_REF
€ InputVariable

-66-




5. Application Programming of User Program

*

¢ o

¢ o

4)

. Initial -
Input Variable Name Data Type | Value Range value Description
Execute Start BOOL TRUE, FALSE | FALSE Start the motion at the rising edge
Deceleration rate in the deceleration
Deceleration Deceleration | LREAL - 0 )
phase [u/s?]
h fthe axi i
Jerk Jerk LREAL i 0 Slope c ange_o the a;as acceleration
and deceleration [u/s”]
Output Variable
. Initial _—
Output Variable Name Data Type | Value Range value Description
Set to TRUE when the instruction
Done Completed BOOL TRUE, FALSE | FALSE .
is completed
Set to TRUE after the instruction is
Busy Executing BOOL TRUE, FALSE | FALSE .
received
| i TRUE wh h
CommandAborted | ouHetion BOOL TRUE, FALSE | FALSE | -ct t TRUE when the current
aborted instruction is aborted
Error Error BOOL TRUE, FALSE | FALSE Set to TRUE when an error occurs
h
ErrorlD Error code DWORD - 0 Output an error code when an
error occurs

Function Description

This instruction suspends all superimposed motions of an axis without interrupting the basic motion.
This instruction can be triggered repeatedly.

This instruction supports multi-trigger, which must be after the basic motion. If the multi-trigger occurs
before the basic motion instruction, the basic motion instruction will report an error and cause the axis
to be disconnected.

This instruction must be triggered after the superimposed instruction. If it is triggered before the
superimposed instruction, this instruction will report an error. If there is no superimposed instruction
being executed in the system, triggering this instruction will result in an error. If the superimposed
instruction runs separately, that is, if it runs as a relative motion instruction, triggering this instruction
will directly setitto “done” without affecting the superimposed instruction.

This instruction cannot be triggered separately.

If the superimposed instruction is triggered during the operation of this instruction, the superimposed
instruction will be aborted directly.

This instruction does not allow multiple instructions to share the instance name; otherwise, the abrupt
change of position will cause the axis to be disconnected.

Timing Diagram

After the MC_Move instruction is activated, the superimposed instruction is triggered. The timing
diagram when this instruction is activated in the superimposed state is shown below.

-67-



-68-

5. Application Programming of User Program

MC_Move instruction

Execute ]
Done | E
Busy ] i
. \. |
Active ‘| |
CommandAborted
Error
MC_MoveSuperlmposed
instruction
Execute
Done
Busy |
CommandAborted i
MC_HaltSuperimposed
instruction
Execute H
Dane I——
Busy k i
CommandAborted
Paosition
Time
Velocity » | I
i ’ i .
Time
MC_Home
1)  Instruction Format
Instruction Name Graphic Expression ST Expression
MC Home MC Home (
MC_Home ;:xls:: Il-‘u_r.ls,
. —nxis Done EECHEREE
Axis Position:= ,
MC_Home homing EKELT:UFE Busy Done=> ,
instruction —Poc3sition CommandAborted Buay=> ,
Error CommandAborted=> ,
ErrorID Error=r ,
Erroril=> }:

2) Related Variables

€ Input/Output Variable




6. Common MC Instructions

*

*

3)

Input/Output Value Initial _—
N DataT D t
Variable ame ata fype Range Value escription
Reference to the axis, that is, an instance
AXi AXi AXIS_REF_SM3 - - ’ ’
XS XS —REr- of AXIS_REF_SM3
Input Variable
. Initial o
Input Variable Name Data Type | Value Range value Description
Execution
Execute xecut BOOL TRUE, FALSE |FALSE | Start the motion at the rising edge
condition
Axi hed Indicate the homi iti fth
Position X|s.r.eac e LREAL Value Range 0 n.|ca e. . e homing position of the
position axis position
Output Variable
) Initial —
Output Variable Name Data Type | Value Range value Description
Instruction
Set to TRUE when th ti f
Done execution BOOL TRUE, FALSE |FALSE |~ when the execution o
axis instruction is completed
completed
Instruction
Set to TRUE when the current
Busy executionin | BOOL TRUE, FALSE | FALSE | roEwhe !
instruction is being executed
progress
Instructi Set to TRUE when th t
CommandAbort | orueton BOOL TRUE, FALSE | FALSE | >°' ' IRUEWhen the curren
aborted instruction is aborted
Error Error BOOL TRUE, FALSE | FALSE Set to TRUE when an error occurs
See SMC Output an error code when an
ErroriD Error code SMC_ERROR - 0 P
ERROR error occurs

Function Description

This function block performs a homing operation. The position data is the zero point position of the

axis.

The operation status of this function block is Standstill, and the status during instruction running is
Homing. It cannot run in other statuses.

The function block starts at the rising edge of Execute.

Instructions for setting Inovance servo: When performing the homing operation for each servo axis, users

must set the homing mode of servo parameters. The setting mode allows manual setting of the servo
function code. The corresponding function code can also be configured through the startup parameter
of the AM600 slave. The following indexes and sub-indexes must be set if the communication mode is

adopted.
Sub- o
Iltem Index index Description
Homing mode 0x6098 Sel.ect the specific parameters to be set according to the servo
guide.
Velocity during 0x6099 | 0x01 Qenerally, the defined velocity is high to reduce the homing
search for home time
speed during 0x6099 | 0x02 Generally, the defined velocity is low
search for zero
Homing
accelerationand | 0x609A Acceleration/deceleration change during homing
deceleration

-69-



6. Common MC Instructions

If the homing time exceeds the set time, the system reports

Homing timeout | 0x2005 | 0x24 Err.601

4) Timing Diagram

Execute

Done —|

Busy

CommandAborted

Error

ErroriD 0 >< Error code

MC_MoveAbsolute

Specify the target position in absolute coordinates for positioning.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
MC_Mowvelbsolute_0(
MC_Movedbsolute_0 Bxis:= Bxis,
MC MoveAbsolute Exe'f—'m_:e: "
Positicn:= |,
— EN ENO (— . .
. Velocity:= ,
= Axis Done (— .
. Loceleration:=
Instruction N Exe,C'fItE BLIISY _ Deceleration:= ,
MC_ for absolute . EDISItI'Ctm . dAbALr:NZ — Jerk:i= |
MoveAbsolute | axis position T emmangfberted — Direction:= ,
—| Acceleration Error — BufferMode:=
control Deceleratian ErrorD uiferMode:= |
— Decelera — Done=s |
] Jelrk . Busy=> ,
—| Direction RBotive=s ,
— BufferMode CommandRborted=> |
Error=> ,
ErrorID=> ) :
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable yp Range Value P
Reference to the axis, that is, an instance
Axis Axis AXIS_REF_SM3 | - - ’ ’
- - of AXIS_REF_SM3
€ InputVariable
. Initial A
Input Variable Name Data Type Value Range value Description




6. Common MC Instructions

Execution
Execute xecut BOOL TRUE, FALSE FALSE | Start the motion at the rising edge
condition
Axi hed Thi ition is the absolut iti
Position XIS. r.eac e LREAL Value Range 0 is p05|. ion is the absolute position
position of the axis
Runnin Maximum velocity of the axis to the
Velocity N I & LREAL Value Range 0 ximu .V, 4 X
velocity target position
Acceleration Acceleration | LREAL Value Range 0 Acceleration rate for velocity increase
Deceleration rate for velocit
Deceleration Deceleration |LREAL Value Range 0 ! velodlty
decrease
Slope change of the curve
Jerk Jerk LREAL Value Range 0 P . & u. v
acceleration/deceleration
Negative: Move in negative direction.
Shortest: Select direction based on
shortest path.
MC Negative, shortest Positive: Move in positive direction.
Direction Polarity DIRECTION Positive, current, |shortest |Current: Move in current direction.
fastest Fastest: Automatically select the
fastest direction.
(This function axis is effective in
rotation mode.)
Specify the action to be taken when
0: Aborting multiple instances initiate a motion
1: Buffered instruction.
MC_ 2: BlendinglLow 0: Aborting
BufferMode Buffer Mode |BUFFER_ 3: 0 1: Buffered
MODE BlendingPrevious 2: Blend at the low velocity
4: BlendingNext 3:Blend at the previous velocity
5: BlendingHigh 4: Blend at the next velocity
5: Blend at the high velocity

€ Output Variable

3)

Data Initial
Output Variable Name Value Range Description
Type Value
Instruction
TRUE wh h i f
Done execution BOOL |TRUE FALSE | FALSE |- ctto TRUEwhenthe executiono
axis instruction is completed
completed
Instruction
Set to TRUE when the current
Busy execution in BOOL TRUE, FALSE FALSE . L .
instruction is being executed
progress
Set to TRUE when the function block
Active Control BOOL |TRUE,FALSE  |FALSE |25 when the function bloc
has control on the axis
| i TRUE wh h
CommandAbort | orruction BOOL  |TRUE FALSE  |FALSE | >ctto TRUEwhenthe current
aborted instruction is aborted
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
SMC See SMC Output an error code when an error
E ID E N -
ror fror code ERROR | ERROR 0 occurs

Function Description

This function block is an instruction for absolute axis positioning. The position data is the absolute
position of the axis.

The operation status of this function block is Standstill, and the status during instruction running is
Discrete Motion. A complete running process must control the different motion statuses of the axis.

The motion is started at the rising edge of Execute. This instruction can be rising edge-triggered

-71-



6. Common MC Instructions

repeatedly in Discrete Motion to refresh the latest position data each time.

@ If Acceleration or Deceleration is zero, the instruction execution will be abnormal. However, the state of
the axis is Discrete Motion.

€ Trapezoid acceleration/deceleration action

There is data for Velocity, Acceleration and Deceleration. Jerk is 0.

A Velocity
Target velocity
Acceleration Deceleration
Time
-
Start absolute position Target absolute position
€ S-curve acceleration/deceleration action
There is data for Velocity, Acceleration, Deceleration and Jerk.
A Velocity
Target velocity
Acceleration Deceleration
Time
>
Start absolute position Target absolute position

€ Absolute positioning of axis in cyclic mode
4) The axis rotation period is set to 360 and the direction is set to Positive.

When the modulus value of Position to 360 (taking the remainder of Position/360, for example, if Position
is 380, then the modulus value to 360 is 20; if Position is 350, then the modulus value to 360 is 350) is
greater than the start absolute position, then the axis moves in positive direction for such distance:
Modulus value of Position to 360 - Start absolute position.



6. Common MC Instructions

0/360

Start point

Modulus of target

position to 360 180

When the modulus value of Position to 360 (taking the remainder of Position/360, for example, if Position
is 380, then the modulus value to 360 is 20) is smaller than the start absolute position, then the axis
moves in positive direction for such a distance: 360 - Start absolute position + Modulus value of Position
to 360.

5) The axis rotation period is set to 360, and the direction is set to Shortest or Fastest. The modulus of
Position to 360 is XPosition.

If 0 =< Xposition - Start absolute position < 180, then the axis moves in positive direction for such a
distance: Xposition - Start absolute position.

Start point

Modulus of target
position to 360 180

If 180 < XPosition - Start absolute position, then the axis moves in negative direction for such a distance: 360 -
XPosition + Start absolute position.

-73-



-74-

6. Common MC Instructions

0/360

Start point

Modulus of target
positionto360 [~ """ 7~—

180

If XPosition < Start absolute position, then the axis moves in negative direction for such a distance: Start
absolute position - XPosition.
Modulus of target
0/360 position to 360
Start point

6) The axis rotation period is set to 360, and the direction is set to Shortest or Negative. The modulus
of Position to 360 is XPosition.

The axis moves in negative direction for such a distance: Start absolute position + 360 - XPosition.

-~

Start point

Modulus of target
position to 360

180



6. Common MC Instructions

€ Absolute positioning of axis in linear mode

4)

5)

If Target absolute position > Start position, then the axis moves in positive for such a distance: Target
absolute position - Start position. If Target position < Start position,

then the axis moves in negative direction for such a distance: Start position - Target position. The
running direction set in linear mode does not determine the running direction of the axis.

Target absolute Start absolute Target absolute
position position position
[
? |
-
_> :

| :
OGO EE (R g S

Precautions

*

When Direction is setto “2: Current” , motion is performed in the direction of the instruction of
the previous motion. Therefore, depending on the combination of instructions, the direction of the
instruction may be different from that of the input of the previous motion instruction.

If the relative displacement (difference between the input absolute displacement and the current
displacement) is not 0 but Velocity (target velocity) is 0, the instruction cannot run normally.

If both the relative displacement (difference between the input absolute displacement and the
current displacement) and Velocity (target velocity) are not 0, if the input variable Acceleration,
Deceleration, or Jerk is 0, the default initial value is assigned.

When both the relative displacement (difference between the input absolute displacement and the
current displacement) and Velocity (target velocity) are 0, the instruction is set to Done.

Timing Diagram

The value of Busy changes to TRUE when Execute is started. The value of Active changes to TRUE in the
next period.

The value of Done changes to TRUE when the positioning is completed at Position.

When this instruction is aborted by another instruction, the value of CommandAborted changes to
TRUE and those of Busy and Active change to FALSE.

Execute ||_| ! li
I | I
Done : rl 1 1
[ 1 I
I
Busy 4 I_!—‘ :
Active i | | I |
| ' ' I S
CommandAborted I : : |
[ I [ I
Error . : | ]
ErrorlD 1640000 Error code ]
[
' R Aborted by other
Velocity : ~_ _ _instructions
1
I
I

Time

-75-



-76-

6. Common MC Instructions

€ Motion re-execution instruction

The motion of this instruction can be changed by changing the input variables in the positioning motion

and setting Execute to TRUE again.

The input variables that can be changed for the motion re-execution instruction include Position,

Velocity, Acceleration, and Deceleration.

€ Start of this instruction during the execution of other instructions

When this instruction is started for the currently executing instruction, it will be switched or cached to
this instruction.

The action when multiple instances of this instruction are started is determined by BufferMode.

Buffer Mode

Description

Aborting

Immediately aborts the currently executing instruction and switches
to this instruction.

If the direction of axis motion is reversed due to instruction switching,
reverse running is performed after the velocity is decelerated to zero.

Buffered

The function block is started immediately after the last instruction
motion is terminated. No blending is performed here. When the end
conditions (such as Done, InVelocity, InEndVelocity, InGear, InSync,
EndOfProfile) are reached, the new motion starts at the velocity of
the previous motion. If the previous motion was MC_MoveAbsolute or
MC_MoveRelative, the new motion will start in static state.

Blending

Starts at the velocity (relay velocity) at which the currently executing
instruction reaches the target position, and continuously makes the

cached instruction take motions. Change the motion of the currently
executing instruction, ensuring that the target position is reached at
the relay velocity. There are four ways to specify the relay velocity:

Blend at the low velocity

(BlendingLow)

The function block is started immediately after the last instruction
motion is terminated. The axis does not stop between motions but
passes through the end position of the first motion at the lower
velocity of the two motion instructions.

Blend at the previous velocity

(BlendingPrevious)

The function block is started immediately after the last instruction
motion is terminated. The axis does not stop between motions but
passes through the end position of the first motion at the velocity of
the first motion instruction.

Blend at the next velocity
(BlendingNext)

The function block is started immediately after the last instruction
motion is terminated. The axis does not stop between motions but
passes through the end position of the first motion at the velocity of
the second motion instructions.

Blend at the high velocity
(BlendingHigh)

The function block is started immediately after the last instruction
motion is terminated. The axis does stop between motions but passes
through the end position of the first motion at the higher velocity of
the two motion instructions.

€ Motion re-execution instruction

When starting motion instructions for multiple instances by using this instruction, users can choose the

aborting, buffered, or blending mode.

MC_MoveAdditive

The axis is superimposed with the data specified by Distance based on the original instruction position,
which is used for online position superimposition for the motion axis control process. In Discrete Motion
status, this instruction can add the MC_MoveAddtive execution process at any time. In Continuous
Motion status, it can only be in a certain section of the instruction execution. In Standstill state, it is




6. Common MC Instructions

equivalent to the MC_MoveRelative instruction.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
MC_ Moveldditiwve(
MC_ MoveAdditive Rxis:=,
MC MoveAdditive Execute:= ,
—Hnxis Done [— Rlitar}GE:= .
. Superimposed | —Jesecane ity
— - absolute motion —Dlstar.]ce CommandAborted — Decelerationi= ,
MoveAdditive . X —{Velocity Error— Jerk:= ,
instruction —Acceleration ErrorID[— Done=> ,
—Deceleration Busy=> ,
—Jerk Commandiborted=> ,
Error=» ,
ErrorID=> };:
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
Name Data Type Description
Variable B Range Value .
Reference to the axis, that is, an instance
AXi AXi AXIS_REF_SM - ’ ’
XS XS S-REF_SM3 of AXIS_REF_SM3
€ InputVariable
. Initial A
Input Variable Name Data Type Value Range Value Description
Execution . .
Execute . BOOL TRUE, FALSE FALSE Start the motion at the rising edge
condition
. Axis reached This data is the superimposed
Distance . LREAL Value Range 0 . P P
position position data.
. Runnin Maximum velocity of the axis to the
Velocity . & LREAL Value Range 0 . y
velocity target position
Acceleration | Acceleration | LREAL Value Range Acceleration rate for velocity increase
Deceleration | Deceleration | LREAL Value Range Deceleration rate for velocity decrease
Slope change of the curve
Jerk Jerk LREAL Value Range 0 P . g .
acceleration/deceleration
€ Output Variable
) Initial _—
Output Variable Name Data Type | Value Range Value Description
Instruction
Set to TRUE when the execution of
Done execution BOOL TRUE, FALSE | FALSE h whe XeCUt
axis instruction is completed
completed
Instruction
Set to TRUE when the current
Busy execution in BOOL TRUE, FALSE | FALSE . L .
instruction is being executed
progress
Instruction Set to TRUE when the current
CommandAbort uet BOOL TRUE, FALSE | FALSE | roEw .
aborted instruction is aborted
Error Error BOOL TRUE, FALSE | FALSE Set to TRUE when an error occurs
SMC See SMC Output an error code when an error
ErrorID Error code N - 0
ERROR ERROR occurs

3) Function Description

€ This function block commands a controlled motion over a specified relative distance in addition to the

-77-



-78-

6. Common MC Instructions

most recent commanded position.

€ When this function block is in Discrete Motion status, it causes CommandAbort of other instructions to
be set.

€ In Standstill state, it can run independently to achieve relative positioning.

@ If Acceleration or Deceleration is zero, the instruction execution will be abnormal. However, the state of
the axis is Discrete Motion.

€ Thefunction block starts at the rising edge of Execute.

Trapezoid acceleration/deceleration action
There is data for Velocity, Acceleration and Deceleration. Jerk is 0.

A Velocity

Target velocity

Acceleration Deceleration

Time
L
Target absolute position

Start absolute position

S-curve acceleration/deceleration action
There is data for Velocity, Acceleration, Deceleration and Jerk.

A Velocity

Target velocity

Deceleration

)

Start absolute position Target absolute position

Acceleration

Time
|

4) Timing Diagram
The instruction can run only when the axis is in Standstill status.
Execute of the function block must have a rising edge condition.
Done of the function block indicates that the execution of the instruction is completed.
Busy of the function block indicates that the execution of the instruction is in progress.

€ Example



6. Common MC Instructions

FB2
MC MoveAdditive
Lxis —Hnxis Done———m
FB1 Busy —Busy2
MC MoveAbsclute OR Commandiborted — Commandiborted2
Lxiz —Hixis Done >1 —|Execute Error —Errori
Execute —|Execute Busy —Busyl - ErrorID—ErrcrID2
6000 —{Position Commandiborted — CommandAbortedl
3000 —Velocity Error [~ Errorl
100 —jAcceleration ErrorID—ErreorIDl
100 —Deceleration
0 —Jerk
0 —Direction
Teat —
4000 —Distance
2000 —{Velocity
100 —jAcceleration
100 —Deceleration
0 —Jderk
€ Timing operation description:
FB1 1
——  Execute 0
1
Done 0
CommandAborted !
0 t
FB2
P2 Execute !
0
Done !
O _]
CommandAborted !
0 t
3000 / \ /
Velocity 2000
0 t
10000
Position 6000
0 t

MC_MoveRelative

This function block specifies the motion distance from the current position to perform positioning.

1) Instruction Format

‘ Instruction ‘ Name ‘ Graphic Expression ST Expression




-80-

6. Common MC Instructions

2)
.

*

*

MC MoveRelative_0(
Lxisz:= Rxis=s,
MEC_MoveRelative_0 Execute:= ,
MC_MoveRelative Distance:= ,
_en ENO Velccity:i= ,
A Axis Done Leceleration:= |
MC AXiS' r.elaicive | Execute Ty | Deceleraticon:= ,
M - Relati positioning —| Distance Active | Jerk:=
oveRelative instruction —{ Velocity CommandAborted | BufferMode:= ,
— Acceleration Error — Done=x>
— Deceleration ErrorlD |- Busy=> ,
— Jerk Lotive=>
— BufferMode Commandiborted=> ,
Error==> ,
ErrorID=> ) ;
Related Variables
Input/Output Variable
Input/Output Value Initial L
Name Data Type Description
Variable P Range Value P
Reference to the axis, that is, an instance
Axi AXi AXIS_REF_SM3 |- - ’ ’
XS XS - of AXIS_REF_SM3
Input Variable
. Initial _
Input Variable Name Data Type Value Range Value Description
Execution Start the motion at the risin
Execute " BOOL TRUE, FALSE FALSE &
condition edge
Relative This data is the relative position
Distance position of LREAL Value Range 0 . P
. of the motion.
the motion
Runnin Maximum velocity of the axis to
Velocity . & LREAL Value Range 0 L y
velocity the target position
) . Acceleration rate for velocity
Acceleration Acceleration | LREAL Value Range 0 )
increase
. . Deceleration rate for velocit
Deceleration Deceleration | LREAL Value Range 0 y
decrease
Sl h fth
Jerk Jerk LREAL Value Range 0 opec énge orthe cu.rve
acceleration/deceleration
Specify the action to be taken
. when multiple instances initiate
0: Aborting a motion instruction.
MC 1: Buffered 0: Aborting
- 2: BlendingLow .
BufferMode | Buffer Mode | BUFFER_ nexow 0 1: Buffered
MODE 3: BlendingPrevious 2: Blend at the low velocity
4: BlendingNext 3: Blend at the previous velocity
5: BlendingHigh 4: Blend at the next velocity
5: Blend at the high velocity
Output Variable
. Initial —
Output Variable Name Data Type | Value Range value Description
Instruction
. Set to TRUE when th ti f axi
Done execution BOOL  |TRUE,FALSE |FALSE | ¢ 0 'NVEWwhentheexecution ofaxis
instruction is completed
completed




6. Common MC Instructions

. Initial —
Output Variable Name Data Type | Value Range value Description
Instruction
Set to TRUE when the current
Busy executionin  |BOOL | TRUE,FALSE  |FALSE | noEwhe !
instruction is being executed
progress
Set to TRUE when the function block
Active Control BOOL  |TRUE,FALSE |FALSE | when the function bloc
has control on the axis
CommandAbort Instruction BOOL TRUE, FALSE EALSE §et to TRUFWhen the current
aborted instruction is aborted
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
SMC_ See SMC_ Output an error code when an error
ErrorlD Error code ERROR ERROR 0 occurs

3) Function Description

€ This function block specifies the motion distance from the current position of the instruction to perform
positioning.

€ The operation status of this function block is Standstill, and the status during instruction running is
Discrete Motion.

€ The motion is started at the rising edge of Execute. This instruction can be rising edge-triggered
repeatedly to refresh the latest position data each time.

€ You can specify input variables Velocity, Acceleration, Deceleration and Jerk.
€ Trapezoid acceleration/deceleration action

There is data for Velocity, Acceleration and Deceleration. Jerk is 0.

A velocity
Target velocity
Acceleration Deceleration
Time
>
Start absolute position Target absolute position
€ S-curve acceleration/deceleration action
There is data for Velocity, Acceleration, Deceleration and Jerk.
A Velocity
Target velocity
Acceleration Deceleration
Time
| -
Lol
Start absolute position Target absolute position

4) Precautions

*

If the input variable Distance (relative displacement) is not 0 but Velocity (target velocity) is 0, the
instruction cannot run normally.



-82-

6. Common MC Instructions

*

If both the input variable Distance (relative displacement) and Velocity (target velocity) are not 0,
and the input variable Acceleration, Deceleration, or Jerk is 0, the default initial value is assigned.

*

If the input variables Distance and Velocity are 0, the instruction is set to Done.

Timing Diagram

The value of Busy changes to TRUE when Execute is started. The value of Active changes to TRUE in the
next period.

When the Distance is reached and positioning is completed, the value of Done changes to TRUE.

When this instruction is aborted by another instruction, the value of CommandAborted changes to TRUE
and those of Busy and Active change to FALSE.

Execute

I | |
Done ! ‘rl } }
I
oo — L1
Active { 1 | !
| | | I_
CommandAborted } : J‘ 1
Error ! : : }
ErrorlD | 1640000 > Error code \
] I I |
! ! I < Aborted by other
Velocity | } } \\_ _ Anstructions
1 | |
1 I I
1 | 1
i B

€ Motion re-execution instruction

The motion of this instruction can be changed by changing the input variables in the positioning motion
and setting Execute to TRUE again.

The input variables that can be changed for the motion re-execution instruction include Distance,
Velocity, Acceleration, and Deceleration.

The start point of Distance for re-execution is the current position of the instruction.
Start of this instruction during the execution of other instructions

When this instruction is started for the currently executing instruction, it will be switched or cached to
this instruction.

The action when multiple instances of this instruction are started is determined by BufferMode.

Buffer Mode Description

Immediately aborts the currently executing instruction and switches
to this instruction.

Aborting L ) o ) ) o
If the direction of axis motion is reversed due to instruction switching,
reverse running is performed after the velocity is decelerated to zero.
The function block is started immediately after the last instruction
motion is terminated. No blending is performed here. When the end
conditions (such as Done, InVelocity, InEndVelocity, InGear, InSync,
Buffered

EndOfProfile) are reached, the new motion starts at the velocity of
the previous motion. If the previous motion was MC_MoveAbsolute or
MC_MoveRelative, the new motion will start in static state.




6. Common MC Instructions

Starts at the velocity (relay velocity) at which the currently executing
instruction reaches the target position, and continuously makes the

Blending cached instruction take motions. Change the motion of the currently
executing instruction, ensuring that the target position is reached at
the relay velocity. There are four ways to specify the relay velocity:

The function block is started immediately after the last instruction
Blend at the low velocity motion is terminated. The axis does not stop between motions but
(BlendingLow) passes through the end position of the first motion at the lower
velocity of the two motion instructions.

The function block is started immediately after the last instruction
Blend at the previous velocity | motion is terminated. The axis does not stop between motions but
(BlendingPrevious) passes through the end position of the first motion at the velocity of
the first motion instruction.

The function block is started immediately after the last instruction
Blend at the next velocity motion is terminated. The axis does not stop between motions but
(BlendingNext) passes through the end position of the first motion at the velocity of
the second motion instructions.

The function block is started immediately after the last instruction
Blend at the high velocity motion is terminated. The axis does stop between motions but passes
(BlendingHigh) through the end position of the first motion at the higher velocity of
the two motion instructions.

€ Startof other instructions during the execution of this instruction

When starting motion instructions for multiple instances by using this instruction, users can choose the
aborting, buffered, or blending mode.

MC_MoveSuperimposed

This function block commands a controlled motion of a specified velocity and position in addition to the
existing velocity and position. It has no impact on the original instruction execution time model.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
MC MoveSuperimposed 0(
MC_MoveSuperlmposed_0 Lxisi— Axis,
MC_MoveSuperimposed Execute:= ,
_1EN ENO — Bborti= ,
4 Axis Done |— Distance:= ,
MC Superimposed | Execute Busy | ;Zi:;;:;iin: '
- relative motion —| Abort Commandiborted [— Decel X :_ ’
MoveSuperlmposed |. . —| Distance Error ecelerationi= ,
instruction — VelocityDiff ErrorlD [— Jerki=
Y Done=3> ,
— Acceleration Buay=> ,
— Deceleration Cormandiborted=»
— Jerk Error=» ,
ErrorIl=> )
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial
. Name Data Type Description
Variable yp Range Value P
. . Reference to the axis, that is, an instance
Axis Axis AXIS_REF_SM3 |- - ’
of AXIS_REF_SM3

€ InputVariable




-84-

6. Common MC Instructions

*

. Initial .
Input Variable Name Data Type Value Range Value Description
Execution
Execute xecut BOOL TRUE,FALSE | FALSE | Start the motion at the rising edge
condition
Abort Abort th i ti d t
Abort ot BOOL TRUE, FALSE | FALSE ortthe ongoing motion and rese
condition all outputs
Axi hed This datais th i d
Distance XIS, r?ac € LREAL Value Range 0 Is, .a 2 15 the superimpose
position position data.
Superimposed Superimposed velocity for axis
Velocitypiff | >uPeMMP LREAL ValueRange |0 upenmposed veloclly for axi
velocity running
Acceleration | Acceleration LREAL Value Range 0 Acceleration rate for velocity increase
Deceleration rate for velocit
Deceleration | Deceleration LREAL Value Range 0 ! velodty
decrease
Slope change of the curve
Jerk Jerk LREAL Value Range 0 P ) & u. v
acceleration/deceleration
Output Variable
) Initial .
Output Variable Name Data Type | Value Range value Description
Instruction
Set to TRUE when th ti f axi
Done execution BOOL  |TRUE,FALSE |FALSE | o .o n"-tWhentneexecutionotaxis
instruction is completed
completed
Instruction
Set to TRUE when th t
Busy executionin  |BOOL  |TRUE,FALSE |FALSE |>c- .0 'RUEwnentnecurren
instruction is being executed
progress
Instructi Set to TRUE when th t
CommandAbort | o VMO TB00L | TRUE, FALSE | FALSE | oc- o VR Wnenecurren
aborted instruction is aborted
Error Error BOOL TRUE, FALSE | FALSE Set to TRUE when an error occurs
SMC See SMC Output an error code when an error
E 1D E N -
ror rror code ERROR  |ERROR 0 occurs




6. Common MC Instructions

® & 6 6 & o

*

Function Description

This function block superimposes the position (Distance) and velocity (VelocityDiff) on other
instructions.

In motion mode, MC_MoveSuperimposed can be superimposed on any other instruction.
MC_MoveSuperimposed can be aborted by another MC_MoveSuperimposed.

In the Standstill status, the MC_MoveSuperimposed function block acts like MC_MoveRelative.
The function block starts at the rising edge of Execute.

This function block is an instruction for absolute axis positioning. The position data is the absolute
position of the axis.

The function block starts at the rising edge of Execute.
Precautions

If an instance of MC_MoveSuperimposed is active and another instance of the MC_MoveSuperimposed
type is called, the second instance reports an error. If an instance of MC_MoveSuperlmposed is

active and is started again at a new rising edge of Execute (possibly with a different input), the active
superimposed motion will be aborted and replaced by a new superimposed motion, while the original
motion control function block remains active.

The Abort pin functions to abort the superimposed motion. Triggering Abort clears the superimposed
motion that has been executed. If the superimposed position is large, it will cause a sudden change in

the desired position, which leads to a servo error. Therefore, exercise with caution.
Timing Diagram
Execute of the function block must have a rising edge condition.

Done of the function block indicates that the execution of the instruction is completed.

Busy of the function block indicates that the execution of the instruction is in progress.

€ Example

FB2

MC MoveSuperImposed
Rxis —Saxis Done

FB1 Busy —Buay2
MC MowveRelatiwve OR Commandiborted — CommandAbortedz
Zxis —SHaxis - Done >1 —Execute Error —Errori
Execute —|Execute Busy — Buayl - ErrorID—ErrorID2

5000 —Distance Commandiborted — CommandAbortedl

300 —|Velocity Error —Errorl

100 —|Rcceleration ErrorID—ErrorIDl

100 —Deceleration

0 —Jderk

Teat —

1000 —Distance
100 —VelocityDiff
50 —Acceleration
50 —Deceleration
0 — Jerk

€ Timing operation description:

-85-



6. Common MC Instructions

FBI Execute é | ]
Done é m
CommandAborted !
0 t
FB2 Execute(l) ] ] ]
1
Done 0 [
ommandAborted!
0 t
400 N N
Velocity 300 \
0 t
6000
o 5000 i
Position ’_/
0 t

MC_MoveVelocity

This function block can achieve axis velocity control in the drive CSV mode and CSP mode. After the axis
is enabled, the running velocity can be set through the input pin Velocity, and this instruction will run
when triggered by the rising edge.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
MC_MoveVelocity 0(
MC_MoveVelocity 0 Exisi= Rxis,
N Execute:= ,
MC_MoveVelocity Velocityi= ,
1 EN EMO [— Leceleration:= |
= fds InVelocity [— Deceleration:= ,
H — Execute Busy — Jerk:= ,
Velocity control b e
MC_MoveVelocity |. y. — Velocity Active [ Direction:=,
instruction —| Acceleration CommandAborted [~ Bu:_:er}{§:1e:= 4
c InVelocity=» ,
— Deceleration Error —
Buay=> ,
— Jerk ErrorlD [ Activess |
—| Direction Commandiborted=» |
— BufferMode Error=» ,
ErrorID=> };
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial L
. Name Data Type Description
Variable yP Range Value P
Reference to the axis, that is, an instance
Axis Axis AXIS_REF_SM3 | - -
of AXIS_REF_SM3
€ InputVariable
. Initial .
Input Variable Name Data Type Value Range value Description
Execution Start the motion at the risin
Execute . BOOL TRUE, FALSE FALSE &
condition edge




6. Common MC Instructions

Initi
Input Variable Name Data Type Value Range \Zﬂi Description
Velocity Velocity LREAL Value Range 0 Th.|s.data is Fhe velocity value for
reference this instruction.
Acceleration Acceleration | LREAL Value Range 0 Acceleratlon rate for velocity
increase
Deceleration Deceleration | LREAL Value Range 0 Deceleration rate for velocity
decrease
Jerk Jerk LREAL Value Range 0 Slope chénge of the cu_rve
acceleration/deceleration
Direction R_unnl_ng MC._ Direction Positive, negative, current IrTstru.ctlon operation in running
direction current direction
Specify the action to be taken
0: Aborting when multiple instances initiate
1: Buffered a motion instruction.
MC BUFFER 2: BlendingLow 0: Aborting
BufferMode Buffer Mode MOI_)EU - 0 1: Buffered
BlendingPrevious 2: Blend at the low velocity
4: BlendingNext 3: Blend at the previous velocity
5: BlendingHigh 4: Blend at the next velocity
5: Blend at the high velocity
€ Output Variable
. Initial A
Output Variable Name Data Type | Value Range value Description
Flag of Set to true when the set velocit
InVelocity reaching the |BOOL TRUE, FALSE | FALSE | y
. is reached
set velocity
Instruction
Busy executionin | BOOL TRUE, FALSE |FALSE | S€t [0 TRUE when the current
instruction is being executed
progress
Active Control BOOL TRUE, FALSE | FALSE setto TRUE when the funct'lon
block has control on the axis
CommandAbort | MU0 a6 I TRUE, FALSE |FALSE | oSt t0 TRUE when the current
aborted instruction is aborted
Error Error BOOL TRUE, FALSE | FALSE | Set to TRUE when an error occurs
SMC_ See SMC_ Output an error code when an error
ErrorID Error code ERROR ERROR 0 occurs

Function Description

€ This function block performs analog velocity control based on position control.
€ Thevelocity control action starts at the rising edge of Execute.

€ The motion direction is specified by Direction. When Direction is set to “Positive” , it moves in positive
direction. When Directionissetto “Negative” , it moves in negative direction. When Direction is set to

“Current” , the motion differs depending on whether the axis is stopped. When the axis is stopped, the

axis moves in the direction of the last motion. When the power is turned on or restarted, the axis moves

in positive direction. When this instruction is started during the process of axis motion by activating the

motion instruction in multiple instances, the axis moves in the direction of the current motion.
4) Precautions

When Direction is setto “MC_Direction” , the axis moves in the direction of the previous instruction.
Therefore, depending on the combination of instructions, the direction of the instruction may be

-87-



6. Common MC Instructions

different from that of the input of the previous motion instruction.

When the input variable Velocity is 0, the default initial value will be assigned if Acceleration,
Deceleration or Jerk is 0.

5) Timing Diagram
The value of Busy changes to TRUE when Execute is started. The value of Active changes to TRUE in the
next period.
InVelocity changes to TRUE when Velocity is reached.

When this instruction is aborted by another instruction, the value of CommandAborted changes to TRUE
and those of Busy, Active, and InVelocity change to FALSE.

€ Example
Execute _4 I— ]_
[ I ! : [
InVelocity J : !
L N
| I
Busy —{ : _1___J [
| ]
Active 4[_:—]_:—” |
P! L
CommandAborted ; |I ﬂ ; :
Error : ll Il : |
ErrorlD | 16#0000 > ' Error code |
] I o
. I |
Targetvelocity A~ - — | S R
.r Sen Q‘theerror. De«feleratesto stop.
.' “—
| \ |
i ]

>

€ Start of this instruction during the execution of other instructions

When this instruction is started for the currently executing instruction, it will be switched or cached to
this instruction.

The action when multiple instances of this instruction are started is determined by BufferMode.

Buffer Mode Description

Immediately aborts the currently executing instruction and switches
Aborting to this instruction.

If the direction of axis motion is reversed due to instruction switching,
reverse running is performed after the velocity is decelerated to zero.

The function block is started immediately after the last instruction
motion is terminated. No blending is performed here. When the end
Buffered conditions (such as Done, InVelocity, InEndVelocity, InGear, InSync,
EndOfProfile) are reached, the new motion starts at the velocity of
the previous motion. If the previous motion was MC_MoveAbsolute or
MC_MoveRelative, the new motion will start in static state.

Starts at the velocity (relay velocity) at which the currently executing
instruction reaches the target position, and continuously makes the

Blending cached instruction take motions. Change the motion of the currently
executing instruction, ensuring that the target position is reached at
the relay velocity. There are four ways to specify the relay velocity:




6. Common MC Instructions

Blend at the low velocity

(BlendinglLow)

The function block is started immediately after the last instruction
motion is terminated. The axis does not stop between motions but
passes through the end position of the first motion at the lower
velocity of the two motion instructions.

Blend at the previous velocity

(BlendingPrevious)

The function block is started immediately after the last instruction
motion is terminated. The axis does not stop between motions but
passes through the end position of the first motion at the velocity of
the first motion instruction.

Blend at the next velocity
(BlendingNext)

The function block is started immediately after the last instruction
motion is terminated. The axis does not stop between motions but
passes through the end position of the first motion at the velocity of
the second motion instructions.

Blend at the high velocity
(BlendingHigh)

The function block is started immediately after the last instruction
motion is terminated. The axis does stop between motions but passes
through the end position of the first motion at the higher velocity of
the two motion instructions.

€ Startof otherinstructions during the execution of this instruction

Only when Aborting or Buffered is selected for BufferMode of other instructions, the MC instruction can
be started by using multiple instances of other instructions during the execution of this instruction.

When Buffered is selected, if the output variable InVelocity of this instruction changes to TRUE, the
motion of starting the instruction for multiple instances is executed.

MC_MoveFeed

This function block executes the specified distance positioning from the position where the external
device triggers the interrupt input. The interrupt feed can be used for absolute positioning, relative

positioning a

1) Instructio

nd velocity control.

n Format

Instruction Name Graphic Expression ST Expression
MC_MoveFeed_ 0 v overeed 0
MC_MoveFeed Byis:= Rxis,
TriggerInput:= Trigger,
] EN ENO - Execute:= ,
= Axis Done WindowOnly:= ,
2 Triggerlnput InFeed | FirstPositioni= ,
LastPFeositicn:= ,
—| Execute Busy |- -
. . ReferenceTlype:= ,
— WindowOnly Active — Bositioni= |
—| FirstPosition  CommandAborted | Velocity:= ,
— LastPosition Error — ic‘:eieraz?m: .
eceleration:= ,
Interrupt — ReferenceType ErrorlD — Jerki= |
MC_MoveFeed positioning 1 (IEasitioan Directionie |
instruction — Velocity MoveMode:=

FeedDistance:

Acceleration FeedVelocity:= ,

Deceleration BufferMode:= ,

Jerk ErrorDetect:= ,
i 1 Done=> ,

Direction Tnremas |

MoveMode Busy—> ,

FeedDistance Letive=> |,
FeedVelocity
BufferMaode

ErrorDetect

Commandiborted=> ,
Error=> ,
ErrorID=> ) ;

2) Related Variables

€ Input/Outpu

t Variable

-890-



-90-

6. Common MC Instructions

*

Input/Output Value Initial .
. Name Data Type Description
Variable yp Range Value 'PH
Reference to the axis, that is, an instance
AXi AXi AXIS_REF - ’ ’
XS XS - of AXIS_REF
Trigger Associated attributes such as trigger
Triggerinput r'eg TRIGGER_REF - ssociated attributes su '88
signal signal or trigger attribute
Input Variable
. Initial .
Input Variable Name Data Type Value Range value Description
Start th ti t the risi
Execute Start BOOL TRUE, FALSE FALSE artthemotion atthe nising
edge
WindowOnly Window valid | BOOL TRUE, FALSE FALSE Enable or disable the window
Specify the latch enable position
FirstPosition Start position | LREAL Value Range 0 [UF] y P
Specify the latch disable position
LastPosition End position | LREAL Value Range 0 [UF] y P
Me By default, the latch ition i
- efault, the latch position is
ReferenceType | Position type |REFERENCE 1: FeedBack 1 y . P
- the actual position.
TYPE
When MoveMode is [0: Absolute
value positioning], specify the
target position in absolute
coordinates.
. When MoveMode is [1: Relative
Position Targe't LREAL POS't'Ye number, value positioning], specify the
position negative number, 0 movement distance.
When MoveMode is [2: Velocity
control], itis not required to
specify the position.
Unit: [u]
. Target . . .
Velocity . LREAL Positive number |0 Specify the target velocity [u/s]
velocity
Specify the acceleration rate
Acceleration Acceleration | LREAL Positive number 0 st]) "y ! [u/
Specify the decelerati t
Deceleration Deceleration |LREAL Positive number 0 52F]>6C| y the deceleration rate [u/
Jerk Jerk LREAL Positive number |0 Specify the jerk [u/?]
-1: Negative
vC 0: Shortest
Direction Direction - 1: Positive Positive | Select the direction
DIRECTION
2: Current
3: Fastest
0: Absolute
MC_MOVE
MoveMode Motion mode MOI_)E - 1: Relative 0 Select the motion mode
2: Velocity
Movement distance after the
input interrupt feed Specify a
. positive value to feed in the same
. . Positive number, . . .
FeedDistance Feed distance | LREAL . 0 direction as axis movement
negative number, 0 . .
before the interrupt input,
and a negative value to feed in
opposite direction [u].




6. Common MC Instructions

Initial

Input Variable Name Data Type Value Range value Description
M t velocity after th
FeedVelocity Feedrate LREAL Positive number 0 . ovemen vetocity atter the
input interrupt feed [u/s]
MC_BUFFER_ | 0: Aborting Specify the action to. be takel.w
BufferMode Buffer mode 0 when there are multiple motion

MODE 1: Buffered instructions

Specify whether to detect an
error when there is no interrupt
source input.

TRUE: The Error signal is set
Error to TRUE if no interrupt signal
ErrorDecect . BOOL TRUE, FALSE FALSE is detected after the position
detection e L
specified by Position is reached.

FALSE: The Done signal is set if
no interrupt signal is detected
after the position specified by
Position is reached.

€ Output Variable

Initial
Output Variable Name Data Type | Value Range value Description
Set to TRUE when the instruction is
Done Completed BOOL TRUE, FALSE | FALSE
completed
Setto TRUE in standard t fer aft
InFeed Latchinput | BOOL TRUE, FALSE | FALSE | o' '@ IRVE N standardtransieratter
latch input is received
Set to TRUE after the instruction is
Busy Executing BOOL TRUE, FALSE | FALSE .
received
TRUE when the fi i k
Active Control BOOL TRUE, FALSE | FALSE | ¢t to TRUEwhen the function bloc
has control on the axis
| i TRUE wh h
CommanAborted | "orietoOn aaoL TRUE, FALSE | FALSE | >ctto TRUEwhenthe current
aborted instruction is aborted
Error Error BOOL TRUE, FALSE | FALSE Set to TRUE when an error occurs
h
ErroriD Error code DWORD ) 0 Output an error code when an error
occurs
€ TRIGGER_REF Description
Structure Element Data Type Default Description
Set to TRUE when the instruction is
iTriggerNumber INT 0
completed
TRIGGER_REF bFastLaching BOOL TRUE -
bInput BOOL FALSE -

[Note]: The specification of the servo touch probe must be distinguished from that of the instruction
touch probe. Take IS620N as an example.

As the external DI trigger signals, DI8 with function 38 and DI9 with function 39 must be respectively
used for touch probe 1 and touch probe 2. The following part takes DI8 as an example to describe how to
perform the setting.

[Requirement]: Touch probe 1 rising edge, continuous latching

7) Set the DI8 function: set 0x2003-11 to 38.



-92-

6. Common MC Instructions

* o

8) Setthe DI8 logic in 0x2003-12.

DI8 Logic 2003-12h Setpoint Description
0: Active low The drive forcibly changes it to falling edge active.
1: Active high The drive forcibly changes it to rising edge-triggered.
2: Rising edge-triggered Rising edge-triggered
3: Falling edge-triggered Falling edge-triggered
4: Edge change-triggered Rising/Falling edge-triggered

Set 0x2003-12 to 1 or 2 in this example.

For details, see the IS620N Series Servo Design and Maintenance User Guide.
Function Description

Movement is performed at the rising edge of Execute according to MoveMode (move by absolute value,
move by relative value, or velocity control).

When move by absolute value is selected, set the target position through Position. When move by
relative value is selected, set the target distance through Position.

Regardless of the movement mode, the movement is performed at Velocity (target velocity).

During movement, relative positioning is performed at the rising edge of external input (interrupt
input). The movement distance is specified by FeedDistance, starting from the feedback position at
FeedVelocity.

Interrupt standard transfer is performed by using the instruction of move by absolute value or relative
value. The motion will be stopped at the target position if an interrupt signal is not input before the
target position is reached.

When an interrupt mask is used, set WindowOnly (window valid) to TRUE and specify FirstPosition (start
position) and LastPosition (end position). Interrupt standard positioning is performed by feeding back
theinitial interrupt signal that occurs from FirstPosition to LastPosition.

A brief description of the three motion modes is given. The MoveFeed parameter is used to filter the
first segment of motion. There are three motion modes: absolute positioning, relative positioning,
and target velocity motion. Absolute positioning and relative positioning can be done by lowering the
Done setting of the instruction without triggering the instruction. In velocity mode, movement will be
performed at the target velocity.

The values of the motion parameters of the instruction, that is, the shared acceleration rate,
deceleration rate, and jerk, must be clearly described. These parameters are shared by the first segment
of motion and the feed motion, and the target velocity cannot be 0.

When the window function WindowsOnly of the probe is not set, and FirstPosition and LastPosition

are set arbitrarily, the instruction is not affected. Touch probe triggering will not be restricted by
position. Triggering the touch probe anywhere will enable the instruction to enter the feed motion.
When WindowOnly is set, the instruction will determine the value of FirstPosition and LastPosition. In
linear mode, FirstPosition should be less than or equal to LastPosition. The final judgment of the touch
probe position is FirstPosition < Touch probe position < LastPosition. If FirstPosition > LastPosition,
the instruction is processed in the same way as an error reported for an abnormal parameter. In rotary
axis mode, if FirstPosition < LastPosition, the judgment position of the window is the clockwise
interval from FirstPosition to LastPosition of the same period (including LastPosition and FirstPosition).
If FirstPosition > LastPosition, the judgment position of the window is the clockwise interval from
FirstPosition to LastPosition of the same period (excluding LastPosition and FirstPosition). In particular,
when LastPosition and FirstPosition exceed the position of one rotation period, an error is reported.



6. Common MC Instructions

*

*

*

A. FirstPosition < LastPosition

- +
-
0

LastP a=ition

FirstPo=ition

B. FirstPosition > LastPosition

FirstPosition

FirstP o=ition La=tP osition

La=tPosition

For absolute positioning in rotation mode, check whether the direction belongs to 5 directions that are
set. For the velocity mode, check whether 3 directions are set: Positive, Negative, and Current. If not, the
Direction parameter reports an error.

The error detection function determines whether to report an error if the touch probe interrupt has not
been triggered after the movement has reached the target position. If not triggered, the FB reports an
error without affecting the execution of subsequent buf instructions.

This instruction cannot be triggered repeatedly. Otherwise, the instruction reports an error, and
the error of occupied touch probe caused by repeated triggering can only be canceled by the MC_
AbortTrigger instruction.

The channel of the current instruction is occupied by TouchProbe, which triggers the instruction. The
MoveFeed instruction does not occupy the probe channel when it is in the buffer.

If it is detected during MoveFeed execution that the touch probe is occupied, the error of touch probe
occupied will be reported.

For the ECAT axis, if 60b8/60b9/60ba/60bc PDO is not configured, then an error is reported.
For drive mode, operation is not allowed in virtual axis mode.
The axis cannot be executed in error status.

Simultaneous triggering of different interrupt positioning instances in the same touch probe channel
will invalidate the touch probe (including different triggering schemes for the same touch probe
channel).

-03-



6. Common MC Instructions

€ Note: If the velocity at the moment of triggering the feed motion is large and the feed distance is small,
the desired feed distance may be smaller than the current set position, that is, reverse running will
occur when the desired feed position is reached.

4) Timing Diagram
€ When WindowOnly is set to Enable

The trigger input is detected only within the window to obtain the axis position.

i Trigger validity range
4

TriggerInput | |
Execute |_| : i '

Windoulnly |

= —
RecordedPosition ‘ : §>< PUSitimE
Commandibor ted i .

Axis position A i

LaStPUSitiDﬂ __________________g'__:_ ______

Position 4

FirstPosition

Time

€ When WindowOnly is set to Disable

The axis position at the time of the initial trigger after Execute changes to TRUE is used as the refer-
ence position for the standard distance.

-94-



6. Common MC Instructions

TriggerInput

Execute —]

Tindoulnly : .

Dorne : I H

Busy i E

RecordedPosition

CommandAbor ted

Axis position A

LE.E__PCEi.__iCﬂ e

FirstPosition p=—=—===—===========

Positlon pf=—m—=—=—=—=—===

€ When MoveMode is set to Absolute or Relative

Time

-05-



-06-

6. Common MC Instructions

Execute
Dore _!
Infeed 5
4
Busy f{ ;
[ |
Active : [
ConrzndAbor ted /
Interruptinput
Velocity A

—— o — — —

Time

€ When MoveMode is set to Velocity



6. Common MC Instructions

Execute
Done Al
Infeed
4 s
Busy ‘{ |
[ =
Active ; / : :
CotmndAbor ted /
Interrupt input
Velocity A

€ When the standard position is reversed after an interruption

-97-



6. Common MC Instructions

Execute
Done

Infeed
Busy

Active

CommandAbor ted

Interrupt input

Velocity

MC_PositionProfile

1) Instruction Format

Time

Errcr=» ,
ErrorID=> };

Instruction Name Graphic Expression ST Expression
MC PositionProfile(
Lyi=z:= ,
MC_ PositionProfile TimePosition:=
=
MC PositionProfile Execute:=
. & - ' f
Position Hd%ls . Jene ArraySize:= ,
MC_ ‘ —TimePoc3aiticn Busy PositionScale:= |,
. . |profile —Execute Commandiborted Offaeti=
PositionProfile |. . i Off 1=,
instruction —ArraySize Error Done=>
r
—BPositionScale ErrorID Buay=>
r
—|Pffaet CommandAborted=»

2) Related Variables

€ Input/Output Variable

-08-




6. Common MC Instructions

*

Input/Output Value Initial .
Variable Name Data Type f— Value Description
. . Reference to the axis, that is, an instance
Axis Axis AXIS_REF - of AXIS_REF_SM3
Aois position Axis position operation time and position
. . operation time | MC_TP_ P e P . P
TimePosition . - data description; data consists of
and position | REF .
. multiple sets of data
description
Input Variable
. Initial L
Input Variable Name Data Type |Value Range value Description
Execute Eéif;?:;g: BOOL -IL-EIEJSEE, FALSE Start the motion at the rising edge
ArraySize Dynamic array |INT Value Range |0 The nu.mber ofarrays used in the
operation profile
PositionScale Integration LREAL "P?smve * Position scale factor in MC_TP_REF
factor 0
Offset Offset LREAL - 0 Overall offset of the position
€ Output Variable
. Initial —
Output Variable Name Data Type | Value Range Value Description
Instruction .
Done execution BOOL TRUE, FALSE Se't tp TRUE.Whe.n the execution of
FALSE axis instruction is completed
completed
Instruction
. TRUE, Set to TRUE when the current
Busy executionin | BOOL FALSE FALSE instruction is being executed
progress
Instruction TRUE, Set to TRUE when the current
CommandAbort aborted BOOL FALSE FALSE instruction is aborted
TRUE,
Error Error BOOL FALSE FALSE |Setto TRUE when an error occurs
ErroriD Error code SMC_ See SMC_ 0 Output an error code when an error
ERROR ERROR occurs

3)

Function Description

This function block is a profile motion model of time period and position. The operation mode is
Discrete Motion. It runs based on the data set by the user for the TimePosition variable.

The operation status of this function block is Standstill, and the status during instruction running is
Discrete Motion. It cannot run in other statuses.

The function block is started at the rising edge of Execute. This instruction is repeated in Discrete

Motion.

TimePosition is of the MC_TP_REF data type.

MC_TP_REF description:

Member Type Initial Value Description
Number_of_pairs INT 0 Number of profile path segments
Absolute motion (TRUE) and relative
IsAbsolute BOOL TRUE . . ( )
motion option

-90-



6. Common MC Instructions

4)

5)

Member Type Initial Value Description

MC_TP_Array ARRAY[1..N] OF SMC_TP - Array of time and position

SMC_TP description:

Member Type Initial Value Description
delta_time TIME TIME#0ms Time of position segment
position LREAL 0 Current position value

Note: When there is a change in the velocity, the corresponding adjustment is made based on
the set position data in an S-curve.

Timing Diagram

The position profile instruction can run only when the condition MC_TP_Array has been set by other
means.

The instruction can run only when the axis is in Standstill status.

Execute of the function block must have a rising edge condition.

Done of the function block indicates that the execution of the instruction is completed.

Busy of the function block indicates that the execution of the instruction is in progress.

Execute

Done |

Busy I—

CommandAborted

Error |

ErrorlD 0 >< Error code

Error Description

The error occurs as the instruction is not started in the axis status of Standstill or there is a parameter
error in the instruction system. An axis error must be cleared before the start of the operation.

MC_Power

1)

-100-

Instruction Format



6. Common MC Instructions

Instruction Name Graphic Expression ST Expression
MC Power(
Lxiz:= ,
MC_Power Enable:= ,
Haxis Status [ | bRequlatorin:= ,
—|Enable bRegulatorRealState —| bDriveStart:= ,
MC_Power Ax'fenible —bRegulaterdn bOriveStartRealState —| graryg=s |
instruction | : |-
bOrivestart EBHSE bRegqulatorBealState=> ,
=Ees kDriveStartBealState=> ,
ErrorID—
Busy=> ,
Error=> ,
ErrocrID=> );
2) Related Variables
€ InputVariable
) Initial L
Input Variable Name Data Type | Value Range Value Description
The function block start: i h
Enable Enable | BOOL TRUE, FALSE | FALSE € function block starts processing when
set to TRUE
Enable .
bRegulatorOn <tate BOOL TRUE, FALSE | FALSE The axis is enabled when set to TRUE
Enable the Set to TRUE to disable emergency stop of
bDriveStart . BOOL TRUE, FALSE | FALSE . I gency siop
drive the function block
€ Output Variable
) Initial —
Output Variable Name Data Type | Value Range value Description
R f TRUE if th isi fi
Status eady for BOOL TRUE, FALSE | FALSE | S°t to TRUEIT the axis is ready for
motion motion
Axi bl Set to TRUE when th i blei
bRegulatorRealState | /= o> € | BooL TRUE, FALSE |FALSE | > when the axis enable 1s
signal state active
Set to TRUE if the axis is not
bDriveStartRealState | Drive enabled | BOOL TRUE, FALSE | FALSE |interrupted by the quick stop
mechanism
Set to TRUE if the processing of the
Busy Executing BOOL TRUE, FALSE | FALSE , e p ne
function block is not completed
Error Error BOOL TRUE, FALSE | FALSE Set to TRUE when an error occurs
SMC See SMC Output an error code when an error
ErrorlD E d N - 0
rror frorcode ERROR | ERROR oceurs
€ Input/Output Variable
Input/Output Value Initial .
Name Data Type Description
Variable o Range Value =
Reference to the axis, that is, an instance
AXi AXi AXIS_REF_SM3 | - - ’ ’
X XS S-REF_SM3 of AXIS_REF_SM3

3) Function Description

€ Otherinputs will be processed by the function block only when the input Enable is set to TRUE.

€ [fthe MC_Power function block has been called and bRegulatorOn is set to FALSE, the function block
will set the relevant axis state (nAxisState) to the power_off, indicating that the drive is not ready for
motion.

€ Ifthe MC_Power function block has been called and bRegulatorOn is set to TRUE, the function block

-101-



6. Common MC Instructions

will set the relevant axis state (nAxisState) to Standstill if no error has occurred in the axis. If an error has
occurred, the corresponding error state will be output.

If Enable, bRegulatorOn and bDriveStart are set to TRUE but the output Status remains FALSE after a
certain period of time, then the output Error will be set. This may happen if a hardware issue arises
when the axis is enabled.

If the enable signal is lost (usually in operating mode), nAxisState of the relevant axis will be set to
ErrorStop.
Timing Diagram

Setting Enable to TRUE, bRegulatorOn to TRUE and bDriveStart to TRUE makes Busy become TRUE, the
axis enters the ON state and Status becomes TRUE, respectively.

Error Description

Do not write a program to start other instances of MC_Power in the axis that is executing MC_Power. In
principle, only one MC_Power instruction can be set for each axis.

If MC_Power of another instance is started in the axis where MC_Power is being executed, MC_Power
that is executed later will be executed preferentially.

MC_ReadActualPosition

1)

2)

-102-

This instruction reads the actual position at which the drive is running and saves it in a variable unit
defined by itself.

Instruction Format

Instruction Name Graphic Expression ST Expression
MC_ReadictualPositicn MC FeadActualPosition(
MC ReadActualPosition Rxisi=,
MC Instruction for —Hixis Valid— rE_nil_:.;e: ]
- reading actual —|Enable Busy — raie= .
ReadActualPosition ,I, gactu Error - Buay=> ,
position ErrorID— Error=» ,
Position — ErrorlD=> ,
Poaiticn=> );
Related Variables
Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable yp Range Value 2
. . Reference to the axis, that is, an instance
Axis Axis AXIS_REF_SM3 |- -
of AXIS_REF_SM3
Input Variable
. Initial _
Input Variable Name Data Type Value Range Value Description
Execution Read the current position of the
Enable Xecut BOOL TRUE, FALSE | FALSE he current positi
condition servo if set to TRUE
Output Variable
Output Initial L
Name Data Type | Value Range Description
Variable yp . g Value Pt




6. Common MC Instructions

valid Posit.ion data BOOL TRUE, FALSE | FALSE Set tF> TRUE if the drive position can be
obtainable obtained correctly
Instruction
Set to TRUE when the current
Busy execution in BOOL TRUE, FALSE | FALSE | B whne 3
instruction is being executed
progress
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
SMC See SMC Output an error code when an error
E 1D E N -
ror rror code ERROR ERROR 0 occurs
Axi iti AXi iti i
Position Xis Posmon LREAL Axis position | 0 - Xis pos-|t|0n data obtained by
obtained instruction

3) Function Description

This instruction reads the actual position of the drive. It is active at high level of Enable and can be

executed many times without affecting each other.

4) Timing Diagram

Enable of the function block must be set to TRUE.
Valid of the function block indicates that the value of Position obtained is valid.
Busy of the function block indicates that the execution of the instruction is in progress.

Timing operation description:

Enable(l)

Valid(l)

Position

MC_ReadAxisError

Busy!
yO

This instruction reads the axis error and saves it in a variable unit defined by itself.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
MC ReadRxisErrcr X
= MC ReadhxisError(
MC ReadhxisErrer Lxis:= ,
—HAnxis Valid[— Enable:= ,
MC Instruction —Enable Busy[— Valid=> ,
- H Error — Busy=>» ,
ReadAxisError for. reading ErrorID— Error=> ,
axis error AxisError — ErrorID=> ,
— LyisError=>» ,
e R R — AxisErrorID=> ,
SWEndSwitchhetive — SWEndSwitchhctive=> )r
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable P Range Value P
Reference to the axis, that is, an instance
Axis Axis AXIS_REF_SM3 | - ’ ’
- T of AXIS_REF_SM3

-103-



6. Common MC Instructions

€ InputVariable

Initial
Input Variable Name Data Type Value Range VaIILIJe Description
Enable Execgt.ion BOOL TRUE, FALSE EALSE Read t.he current position of the
condition servo if set to TRUE
€ Output Variable
. Initial A
Output Variable Name Data Type |Value Range value Description
F f TRUE if th fth
valid lagg error data BOOL TRUE, FALSE | FALSE Se.tto UEift ?error data of the
obtainable axis can be obtained
Instruction Set to TRUE when the current
Busy execution in BOOL TRUE, FALSE | FALSE . L. .
instruction is being executed
progress
Error Error BOOL TRUE, FALSE | FALSE Set to TRUE when an error occurs
SMC_ See SMC_ Output an error code when an
ErrorlD Error code ERROR ERROR 0 error occurs
h ing f h
AxisError Axis error flag BOOL  [TRUE, FALSE | FALSE | St the corresponding flag when
an axis error is read
AxisErrorID Axis error code DWORD | - 0 An error code is obtained
Soft limit switch Check the status of the soft limit
SWEndSwitchActive | 2O+ mItsWite BOOL  TRUE, FALSE | FALSE eck the status ot the softimi
active switch during reading

3) Function Description
This function block reads the error code of the drive. It is active at high level of Enable and can be
executed many times without affecting each other.

4) Timing Diagram

Enable of the function block must be set to TRUE.

Valid of the function block indicates that the values of AxisError and AxisErrorID obtained are valid.
Busy of the function block indicates that the execution of the instruction is in progress.
MC_ReadBoolParameter

This instruction reads the bit parameter of the drive axis and saves it in a variable unit defined by itself.

Instruction Format

1)

Instruction Name Graphic Expression ST Expression
MC BeadBoolParameter }{.__Rea:_']BcclParameter(
= Axis:= ,
MC ReadBooclParameter E .
. P — nable:= ,
MC Instruction for E—x:;l “; * ParameterNumber:= ,
_ . . . —L&n e usy— 1T :
reading axis bit ! valid=> ,
ReadBoolParameter —1ParameterNumber Error— Busv=>
arameters =
P ErrorID— Error=> ,
Value [~ ErrorID=> ,
Value=> )

2) Related Variables

€ Input/Output Variable

-104-



6. Common MC Instruction

S

Input/Output Value Initial .
. Name Data Type Description
Variable yp Range Value ‘Pt
. . Reference to the axis, that is, an instance
Axis Axis AXIS_REF_SM3 |- - of AXIS_REF_SM3
€ InputVariable
. Initial _
Input Variable Name Data Type Value Range value Description
Enable ExeCL.Jt.ion BOOL TRUE, FALSE FALSE Read t.he current position of the
condition servo if set to TRUE
Serial number
Obtain the ind b-ind d
ParameterNumber | of axis DINT - 0 .am emn eX’S‘f indexan
serial number of axis parameters
parameter

Note: ParameterNumber (DINT) =-DWORD_TO_DINT(SHL(USINT_TO_DOWRD(usiDataLength), 24)
(length of data in object dictionary)

+SHL(UINT_TO_DWORD(uilndex), 8) (index in object dictionary -16 bits)

+ usisublndex(sub-index in object dictionary - 8 bits))

usiDataLength: Fill in bytes; 16#01 for 1 byte, 16#02 for 2 bytes, 16#04 for 4 bytes, and so on

€ Output Variable

Output Initial
Variapble Name Data Type Value Range Value Description
valid Posit.ion data BOOL TRUE, FALSE EALSE Set tF> TRUE if the drive position can be
obtainable obtained correctly
Instruction
Set to TRUE when th t
Busy execution in BOOL TRUE, FALSE  |FALSE | c 0 '"UEwnenthecurren
instruction is being executed
progress
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
SMC_ See SMC_ Output an error code when an error
ErrorlD Error code ERROR ERROR 0 occurs
Axis position status Axi ition status obtained b
Value obtained BOOL TRUE, FALSE | FALSE |/ (' Posttion status obtained by
instruction

3)

Function Description

This instruction reads the bit data status of the drive. It is active at high level of Enable and can be

executed many times without affecting each other.

Timing Diagram

Enable of the function block must be set to TRUE.

Valid of the function block indicates that the bit status data obtained is valid.

Busy of the function block indicates that the execution of the instruction is in progress.

€ Timing operation description:

-105-



-106-

6. Common MC Instructions

MC_ReadStatus

1)

2)

Enable(l)
Valid !
0

Busy !
yO

Value !

0

This instruction reads the status data of the axis and saves it in a variable unit defined by itself.

Instruction Format

Instruction Name Graphic Expression ST Expression
MC ReadStatus MC_ReadStatus {
MC ReadStatus Rxisi=,
—Aaxis - Valid— Enable:=,
—Enable Busy — Valid=> ,
Error — Busy=> ,
ErrcrID — Error=> ,
Disabled — ErrorID=» ,
. Errorstop — Disabled=» ,
Instruction for Stapping - Errorstop=> ,
MC_ReadStatus |reading axis StandScill — Stopping=> ,
DiscreteMotion — StandStill=> ,
Status ContinucusMotion — DiscreteMotion=» ,
SynchronizedMetion — ContinucusMotion=> ,
Homing — SynchronizedMotion=> ,
ConstantVelocity — Homing=> ,
Accelerating — ConstantVelocity=> ,
Decelerating — Locelerating=>
FBErrorOccured — Decelerating=> ,
FBErrorOccured=> ) ;
Related Variables
Input/Output Variable
Input/Output Value Initial L
. Name Data Type Description
Variable yp Range Value .
Reference to the axis, that is, an instance
Axis Axis AXIS_REF_SM3 |- - ’ ’
- - of AXIS_REF_SM3
Input Variable
) Initial —
Input Variable Name Data Type Value Range value Description
Execution Read the current position of the
Enable .\ BOOL TRUE, FALSE FALSE . P
condition servo if set to TRUE
Output Variable
) Initial _—
Output Variable Name Data Type| Value Range Value Description
Flag of error data Set to TRUE if the error data of
Valid g. BOOL TRUE, FALSE | FALSE . .
obtainable the axis can be obtained
Instruction execution Set to TRUE when the current
Busy . BOOL TRUE, FALSE | FALSE . L .
in progress instruction is being executed
Set to TRUE when an error
Error Error BOOL TRUE, FALSE | FALSE occurs




6. Common MC Instructions

3)

L 4

) Initial "
Output Variable Name Data Type| Value Range Value Description
SMC_ See SMC_ Output an error code when an
ErrorlD Error code ERROR ERROR 0 error occurs
Set to TRUE when th isi
Disabled Axis disabled BOOL  |TRUE,FALSE |FALSE | o' whenthe axisis
disabled
Set to TRUE if the axisis in
Errorstop Axis error BOOL | TRUE, FALSE |FALSE ! XISIS
error state
Axis in stoppin Set to TRUE if the axisisin
Stopping XIS In Stopping BOOL | TRUE, FALSE | FALSE [RVETIheaxsis|
process stopping process
Set to TRUE when the axis is
StandStill Axis in standard state | BOOL TRUE, FALSE | FALSE |in the standard (operational)
state
Set to TRUE when th
DiscreteMotion Axis in discrete motion | BOOL | TRUE, FALSE | FALSE | o' whentheaxsisimn
discrete motion
ContinuousMotion AX|s.|n continuous BOOL TRUE, FALSE | FALSE Settg TRUE|fth.e axisisin
motion continuous motion
Axis in synchronous Set to TRUE if the axisisin
SynchronizedMotion | > " %Y Y 1BOOL | TRUE,FALSE |FALSE [HEhe axisis|
motion synchronous motion
Set to TRUE if the axisisin
Homing Axis in homing state BOOL TRUE, FALSE | FALSE )
homing state
AXi i locit Set to TRUE when th i
ConstantVelocity XISTUNRINEVEIOCY 0oL | TRUE, FALSE |FALSE | >C 0 ' "B wnentheaxis
reached reaches the running velocity
Set to TRUE duri i
Accelerating Axis acceleration BOOL  |TRUE,FALSE |FALSE |~ 0 I-EQUANEaxs
acceleration
TRUE i i
Decelerating Axis deceleration BOOL | TRUE, FALSE |FALSE |t to TRUE duringaxis
deceleration
FBErrorOccured Axis FB error BOOL | TRUE,FALSE |FALSE | cttoTRUEwhenanaxisFB
occurrence error occurs

Function Description

This instruction reads the axis status. It is active at high level of Enable and can be executed many times

without affecting each other.

Enable of the function block must be set to TRUE.

Valid of the function block indicates the data of the status flags can be read.

Busy of the function block indicates that the execution of the instruction is in progress.

MC_ReadParameter

1)

2)

This instruction reads parameters of the drive axis and saves it in the variable unit defined by itself.

Instruction Format

Instruction Name Graphic Expression ST Expression
MC ReadParamster MC ReadParameter |
= Rxis:= ,
. MC ReadParameter Frnable:=
Instruction Hayig Valid|— ' o
MC_ for reading —lEnable Busy — ?.an_amemrﬂmber'_ !
Valid=> ,
ReadParameter |axis — ParameterNunmber Error — Busy=r ,
parameters ErrorID— Error=» ,
Value — ErrorID=> ,
Value=> );

Related Variables

-107-



6. Common MC Instructions

€ Input/Output Variable

Input/Output Value Initial o
N Data T D it
Variable ame ata lype Range Value escription
. . Reference to the axis, that is, an instance
Axis Axis AXIS_REF_SM3 |- of AXIS_REF_SM3

€ InputVariable

Initial
Input Variable Name Data Type Value Range Vallllje Description
E ti Read th t iti fth
Enable xecution 1 gootL TRUE,FALSE | FALSE | | od thecurrent position ofthe
condition servo if set to TRUE
Serial
inthei F
ParameterNumber numper DINT i 0 Ob'Falnt eindex, sgb index and
of axis serial number of axis parameters
parameter

Note: ParameterNumber (DINT) = -DWORD_TO_DINT(SHL(USINT_TO_DOWRD(usiDataLength), 24) (length
of data in object dictionary)
+SHL(UINT_TO_DWORD(uilndex), 8) (index in object dictionary -16 bits)
+ usisublndex(sub-index in object dictionary - 8 bits)
usiDataLength: Fill in bytes; 16#01 for 1 byte, 16#02 for 2 bytes, 16#04 for 4 bytes, and so on
€ Output Variable

Output Initial —
N Data T V, R D t
Variable ame ata Type alue Range value escription
Valid P05|t.|on data BOOL TRUE, FALSE EALSE Set t? TRUE if the drive position can be
obtainable obtained correctly
Instruction
Set to TRUE when the current
Busy execution in BOOL TRUE, FALSE | FALSE | foEwne N
instruction is being executed
progress
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
SMC_ See SMC_ Output an error code when an error
ErrorlD Error code ERROR ERROR 0 occurs
Axi t
Value XS Parame ers LREAL - 0 Axis parameter obtained by instruction
obtained

3) Function Description

This instruction reads the bit data status of the drive. It is active at high level of Enable and can be
executed many times without affecting each other.

4) Timing Diagram
Enable of the function block must be set to TRUE.
Valid of the function block indicates that the bit status data obtained is valid.

Busy of the function block indicates that the execution of the instruction is in progress.

Timing operation description:

-108-



6. Common MC Instructions

1
Enable0
.11
Valid 0
Busy!
y0
Value "
MC_Reset
1) Instruction Format
Instruction Name Graphic Expression ST Expression
MC_Eeset MC Reset(
Instruction d MC Reset i:&xis:: .
f tti —Rxis Done — Xecute:= ,
MC_Reset Or, resetiing —{Execure Busy - Done=>» ,
axis error Buay=> ,
Error [—
state Error=> ,
ErrorID— ErrorID=> ):
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial L
N Data T D t
Variable ame ata lype Range Value escription
. . Reference to the axis, that is, an instance
Axis Axis AXIS_REF_SM3 |- - of AXIS_REF_SM3
€ InputVariable
. Initial A
Input Variable Name Data Type | Value Range value Description
E ti
Execute Xec‘f .|on BOOL TRUE, FALSE | FALSE Start the motion at the rising edge
condition
€ Output Variable
. Initial —
Output Variable Name Data Type | Value Range Value Description
Instruction . .
Done execution BOOL | TRUEFALSE |FALSE | oo to TRUEwhen the execution of axis
instruction is completed
completed
Instruction
Set to TRUE when th t
Busy executionin  |BOOL | TRUE,FALSE |FALSE | >c 'o 'RUEwhenthecurren
instruction is being executed
progress
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
SMC_ See SMC_ Output an error code when an error
ErrorID Error code ERROR ERROR 0 occurs
3) Function Description
€ This function block changes the axis status from Errorstop to Standstill when the axis is in normal
communication, that is, changes the abnormal status to the normal status.
€ When the axis Errorstop cannot be reset and Axis.bCommunication is FLASE, the communication




6. Common MC Instructions

4)

between master and slave must be re-established.

Timing Diagram

Execute

=

Note that the Busy flag bit in the instruction is connected for a very short period of time.

MC_Stop

1)

2)
.

*

*

-110-

Done

Busy

Error

Axis communication
error occurs.

ErrorlD

Error code

Instruction Format

Instruction Name Graphic Expression ST Expression
MC Stop MC_Stop(
= Axiz:= ,
. MC Stop Execute:= ,
Instruction —Rkxis Done — Deceleraticn:= ,
MC_Stop for stopping —Execuce Buay — Jerk:= ,
an axis —Deceleration Error — Done=>,
Busy=> ,
—Jderk ErrorID— Error=» ,
ErrcrID=> )
Related Variables
Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable o Range Value .
Reference to the axis, that is, an instance
Axi Axi AXIS_REF_SM3 |- - ’ ’
XS XS S-REF_SM3 of AXIS_REF_SM3
Input Variable
. Initial .
Input Variable Name Data Type | Value Range Value Description
Execution . .
Execute L BOOL TRUE, FALSE | FALSE Start the motion at the rising edge
condition
) . "Positive" + Deceleration of the function block (u
Deceleration Deceleration | LREAL "o 0 ) W/
"Positive" +
Jerk Jerk LREAL "o 0 Specify the jerk [reference unit/s?)
Output Variable
. Initial —
Output Variable Name Data Type | Value Range value Description
Instruction
Set to TRUE when the execution of axis
Done execution | BOOL TRUE, FALSE | FALSE | rYEwW xecut X
instruction is completed
completed
Instruction
Set to TRUE when the current
Busy executionin | BOOL TRUE, FALSE FALSE . L .
instruction is being executed
progress




6. Common MC Instructions

4)

. Initial _—
Output Variable Name Data Type | Value Range value Description
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
SMC_ See SMC_ Output an error code when an error
ErrorID Error code ERROR ERROR 0 occurs

Function Description

This function block stops the motion of an axis under normal operation. When the axis is in the Stopping
status, any instruction for this axis is invalid.

When the axis is in Stopping status, Execute is FALSE, Done is True, and the axis status changes to
Standstill.

This function block can run only in the Motion status and cannot run in any other status.
The function block starts at the rising edge of Execute.

When Busy indicating valid execution of MC_Stop is valid, starting MC_Stop again will make the system
enter the Errorstop status.

In Halt or Stop status, the axis variable bAvoidReversalOnHaltStop can be used to adjust the
acceleration to avoid velocity reversal. For details, see the MC_Halt instruction.

Timing Diagram

The instruction can be run only when the axis is in the Motion status.

Execute of the function block must have a rising edge condition.

Done of the function block indicates that the execution of the instruction is completed.

Busy of the function block indicates that the execution of the instruction is in progress.

CommandAborted of the function block indicates that the instruction is aborted by other motion control
instructions, in which case the flag bit is TRUE.

Programming example: Changes in the flag bits of the MC_MoveVelocity instruction and MC_Stop
instruction in different timing operations.

The processing of CommandAborted is described in the following timing diagram.

FB1 FB2
MC_MoveV elocity MC _Stop
Ads_ 1 — Axis Imvelocity |- Inve 1 Axs 1 o Ads Dore | Done_2
Exe_1 — Execute Busy |- Exe_2 — Execute Busy |
50 { %elodty  Commandfborted - Short 1 A - Deceleration Errar |-
10  Acceleration Erar |- Error_1 0 - Jerk ErrorlD |-
10 < Decelerstion Eroil |-
0 ek
1 — Diredtion

-111-



6. Common MC Instructions

FB1 1
Execute0 t
B 1
InVeloc1tyO "
CommandAborted !
0 t
Error!
0
t
FB2 ]
Execute
0 t
1
Done0 ¢
50
Velocity
0 t

5)

Error Description

When MC_Stop is run repeatedly, the error flag Error is True, and ErrorID is SMC_MS_AXI.

MC_VelocityProfile

1) Instruction Format
Instruction Name Graphic Expression ST Expression
MC VelocityFrofile(
MC WVelocityProfile Lxiz:i= ,
MC VelocityProfile TimeVelocity:i=
—Hnxis B Done — Execute:=
Velocit - R - RN LrraySize:= ,
MC_ ‘ y TimeVelocity Busy VelocityScale:= ,
Velocitvprofil profile —Execute Commandiborted — Dffset:= ,
€IoCItyFrotie i nstruction —ArraySize Error [~ Done=» ,
—VelocityScale ErrorID[— Busy=> ,
—orrser Commandiborted=> ,
Error=> ,
ErrorID=> )
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial _—
. Name Data Type Description
Variable yp Range Value P
Reference to the axis, that is, an instance
Axis Axis AXIS_REF_SM3 |- - ’ ’
- of AXIS_REF_SM3
Axis velocity . . S .
operation time Axis velocity operation time and velocity
TimeVelocity P . MC_TV_REF - - data description, consisting of multiple
and velocity
o sets of data.
description
€ InputVariable

-112-




6. Common MC Instructions

*

Input Variable Name Data Type | Value Range I\Z:Eil Description
Execute Execution BOOL TRUE, FALSE |FALSE | Start the motion at the rising edge
condition
ArraySize Dynamic array |INT Value Range |0 The nu.mber ofarrays used in the
operation profile
VelocityScale | Velocity factor | LREAL "Positive”, "0" |1 Velocity scale factor
Offset Offset LREAL 0 Overall offset of the velocity
Output Variable
. Initial —
Output Variable Name Data Type | Value Range value Description
Instruction .
Done execution BOOL TRUE, FALSE ;et to TRUEWhen the execution of
FALSE instruction is completed
completed
Instruction
o TRUE, Set to TRUE when the current
Busy executionin | BOOL FALSE FALSE instruction is being executed
progress
Instruction TRUE, Set to TRUE when the current
CommandAbort aborted BOOL FALSE FALSE instruction is aborted
TRUE,
Error Error BOOL FALSE FALSE |Setto TRUE when an error occurs
ErrorlD Error code SMC_ See SMC_ 0 Output an error code when an error
ERROR ERROR occurs

Function Description

This function block is a profile motion model of time period and velocity. The operation mode is
Continuous Motion. It runs based on the data set by the user for the TimeVelocity variable.

This function block can run in Standstill, Continuous Motion, Synchronized Motion, or Discrete Motion
status. The status during instruction running is Discrete Motion. It cannot run in other statuses.

The function block is started at the rising edge of Execute. This instruction is repeated in Discrete

Motion.

TimeVelocity is of the MC_TV_REF data type.

MC_TV_REF description:

Member Type Initial Value Description
Number_of_pairs INT 0 Number of profile path segments
Absolute motion (TRUE) and relative
IsAbsolute BOOL TRUE . . ( )
motion option
MC_TV_Array ARRAY[1..N] OF SMC_TV Array of time and velocity
SMC_TV description:
Member Type Initial Value Description
delta_time TIME TIME#0ms Time of the velocity segment
Velocity LREAL 0 Currently recorded velocity

Note: The whole velocity process is S-curve acceleration and deceleration. The velocity of each
profile section is superimposed. When the instruction is repeatedly executed, the velocity is
also superimposed. Avoid overspeed during instruction execution. In the case of repeated
operation, the axis status must be reset to Standstill.

-113-



6. Common MC Instructions

4) Timing Diagram

The position profile curve instruction can run only when the condition MC_TV_Array has been set by

other means.

The instruction can run only when the axis is in Standstill status.

Execute of the function block must have a rising edge condition.

Done of the function block indicates that the execution of the instruction is completed.

Busy of the function block indicates that the execution of the instruction is in progress.

Execute

Done

[ 1]

Busy

CommandAborted

Error

ErrorlD

° X

Error code

5) Error Description

The error occurs as the instruction is not started in the axis status of Standstill or there is a parameter
error in the instruction system. An axis error must be cleared before the start of the operation.

MC_WriteBoolParameter

This instruction sets the bit parameter of the drive axis.

Instruction Format

1)

Instruction Name Graphic Expression ST Expression
MC WriteBoolParameter MC WriteBoolParameter (
= RAyig:= ,
MC WriteBoolParameter Exscuts:= ,
e Instruction —nxis Done — Parameterlumber:= ,
- for setting bit — - |- Value:= ,
WriteBoolParameter & =zecute Busy Done=s
parameters — ParameterNumber Error Busy=s |
—Value ErrorID— Errcr:; ,
ErrorID=> };
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial L
Name Data Type Description
Variable yp Range Value P
Reference to the axis, that is, an instance
Axis Axis AXIS_REF_SM3 |- - ’ ’
-~ of AXIS_REF_SM3
€ InputVariable
. Initial L
Input Variable Name Data Type Value Range Value Description

-114-




6. Common MC Instructions

Execute Execgtllon BOOL TRUE, FALSE EALSE Drive a setup operation for a rising
condition edge operation

Serial number Obtain the index, sub-index and

ParameterNumber | of axis DINT - 0 . .
serial number of axis parameters
parameter
Value Value BOOL TRUE, FALSE FALSE Set the bit parameter value

Note: ParameterNumber (DINT) = -DWORD_TO_DINT(SHL(USINT_TO_DOWRD(usiDataLength), 24) (length
of data in object dictionary)
+SHL(UINT_TO_DWORD(uilndex), 8) (index in object dictionary -16 bits)
+ usisublndex(sub-index in object dictionary - 8 bits)
usiDataLength: Fill in bytes; 16#01 for 1 byte, 16#02 for 2 bytes, 16#04 for 4 bytes, and so on
€ Output Variable

Output Initial L
N DataT Value R D t
Variable ame ata Type alue Range value escription
Done Setup operation BOOL TRUE, FALSE FALSE ?et to TRUE when the setup operation
successful is successful
Instruction
Set to TRUE when the current
Busy execution in BOOL TRUE, FALSE FALSE . L ]
instruction is being executed
progress
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
SMC See SMC Output an error code when an error
E 1D E N -
ror fror code ERROR ERROR 0 occurs

3) Function Description

This instruction sets the bit parameter of the axis. It is started at the rising edge of Execute and can be
executed many times without affecting each other.

4) Timing Diagram
Execute of the function block must have a rising edge condition.
Done of the function block indicates that the setup operation is successful.

Busy of the function block indicates that the execution of the instruction is in progress.

€ Timing operation description:

Execute1

Done

Busy

o~ O~

MC_WriteParameter

This instruction block modifies the parameters of the drive axis and saves them in the variable unit
defined by itself.

1) Instruction Format

\ Instruction | Name | Graphic Expression ST Expression \

-115-



6. Common MC Instructions

. MC WriteParameter(
MC WriteParameter - .
— Lyis:= |
) MC WriteParameter Execute:= ,
MC Instruction for —Hnxis Done [— ParameterNumber:= ,
N setting axis — | - Value:= ,
WriteParameter & sEecute N Done=>
parameters — ParameterNumber Error— Buay=s !
—Value ErrorID— Error=s ,
ErrorID=> };
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
Name Data Type Description
Variable P Range Value P
Reference to the axis, that is, an instance
Axis Axis AXIS_REF_SM3 |- - ’ ’
- - of AXIS_REF_SM3
€ InputVariable
. Initial —
Input Variable Name Data Type | Value Range Value Description
Execution Drive a setup operation for a risin
Execute » BOOL TRUE, FALSE | FALSE Pop &
condition edge operation
Serial number
Obtain the index, sub-index and
ParameterNumber | of axis DINT - 0 . .
serial number of axis parameters
parameter
Value Value LREAL - - Set the bit parameter value

Note: ParameterNumber (DINT) =-DWORD_TO_DINT(SHL(USINT_TO_DOWRD(usiDataLength), 24)
(length of data in object dictionary)

+SHL(UINT_TO_DWORD(uilndex), 8) (index in object dictionary -16 bits)
+ usisublndex(sub-index in object dictionary - 8 bits)

usiDataLength: Fill in bytes; 16#01 for 1 byte, 16#02 for 2 bytes, 16#04 for 4 bytes, and so on

€ Output Variable

Output Initial
Val:iapt:le Name Data Type | Value Range VaIlLIJe Description
Done Setup operation BOOL TRUE, FALSE | FALSE ?et to TRUE when the setup operation
successful is successful
Instruction
Set to TRUE when the current
Busy execution in BOOL | TRUE,FALSE |FALSE | roEwWhe N
instruction is being executed
progress
Error Error BOOL TRUE, FALSE | FALSE Set to TRUE when an error occurs
SMC_ See SMC_ Output an error code when an error
ErrorID Error code ERROR ERROR 0 occurs

3) Function Description

This instruction sets the bit parameter of the axis. It is started at the rising edge of Execute and can be
executed many times without affecting each other.

4) Timing Diagram

Execute of the function block must have a rising edge condition.
Done of the function block indicates that the setup operation is successful.

Busy of the function block indicates that the execution of the instruction is in progress.

-116-



6. Common MC Instructions

ExecuLe1

Done

O~ O~

Busy

MC_AbortTrigger

This function block aborts event association related to the input latch, which is used in conjunction with

MC_Touchprobe.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
MC 2hcrtTrigger MC AbortTrigger(
MC AbortTrigger M‘:_LS:= ! .
Instruction for —Anxis Done — grlggirlnput.— '
. ) Zecute:=
MC_AbortTrigger abort{ng.event —HATriggerInput Busy [ Done=s |, f
association —Execute Error — Busy=> ,
ErrorID— Error=> ,
ErrorIl=> );
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial L
N Data T D t
Variable ame ata lype Range Value escription
Reference to the axis, that is, an instance
Axi Axi AXIS_REF_SM3 - - ’ ’
XS X e of AXIS_REF_SM3
Truggerinput T.rigger TRIGGER_REF ) ) Des.cription of trigger signals and trigger
signal attributes
€ TRIGGER_REF description:
Structure Element Data Type| Initial Value Description
Specify which of the functions is latched in drive
mode.
0: Touch probe 1 latching at rising edge
1: Touch probe 1 latching at falling ed
iTriggerNumber | INT -1 ouch probe - ate !nga ?.lnge ge
2: Touch probe 2 latching at rising edge
3: Touch probe 2 latching at falling edge
For details, see the IS620N Series Servo Design and
TRIGGER_REF . .
Maintenance User Guide.
Specify the mode of latch trigger:
bFastLatching BOOL TRUE TRUE: Drive mode
FALSE: Controller mode
binput BOOL i When bFas_tLatchingZ FLASE, it is triggered by
controller input signal.
bActive BOOL - Active signal triggered
€ InputVariable
) Initial s
Input Variable Name Data Type Value Range Value Description

-117-



6. Common MC Instructions

Execute Execgt.lon BOOL TRUE, FALSE FALSE Drive a setuP operation for a rising
condition edge operation
€ Output Variable
Output Initial .
. Name Data Type Value Range Description
Variable yp . & Value 'PH
Setup
Set to TRUE when the set
Done operation BOOL TRUE, FALSE FALSE REEW up
operation is successful
successful
Instruction
Set to TRUE when the current
Busy executionin | BOOL TRUE, FALSE FALSE | RO wWhe !
instruction is being executed
progress
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
Output de wh
ErrorlD | Error code SMC_ERROR | See SMC_ERROR |0 utputan errorcode when an
error occurs
3) Function Description

The MC_AbortTrigger function block aborts the association of a trigger signal or attribute with the
related trigger instruction.
Execute of the function block must have a rising edge condition.
Done of the function block indicates that the setup operation is successful.

Busy of the function block indicates that the execution of the instruction is in progress.

MC_ReadActualTorque

This instruction reads the actual torque value of the drive and saves it in the variable unit defined by

itself.

1)

Instruction Format

Instruction Name Graphic Expression ST Expression
MC_ReadActualTorguel |
MC ReadActualTorgue s
Snxis Valid - e '
Instruction for ) - Enable:= ,
Buay
reading the - Valid=>
MC_ReadActualTorque ne Error - _\G - '
current torque Busy=>» ,
—Enakle ErrocrID
value rror=x ,
mraus ErrorID=> ,
Torque=> ):
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial L
N Data T D t
Variable ame ata lype Range Value escription
. . Reference to the axis, that is, an instance
Axis Axis AXIS_REF_SM3 |- - of AXIS_REF_SM3
€ InputVariable
. Initial -
Input Variable Name Data Type Value Range value Description
Enable Execgt‘ion BOOL TRUE, FALSE EALSE Read t.he current position of the
condition servo if set to TRUE

-118-




6. Common MC Instructions

€ Output Variable

Output Initial

Val:iapl:;]le Name Data Type | Value Range VaIlLIJe Description

Valid Curr(?nt torque value BOOL TRUE, FALSE | FALSE Set t9 TRUE if the drive torque can be
obtainable obtained correctly
Instruction execution Set to TRUE when the current instruction

Busy [NSTUCHON eXeCUtoN | g TRUE, FALSE | FALSE |5~ W urrentinstruct
in progress is being executed

Error Error BOOL TRUE, FALSE | FALSE |Setto TRUE when an error occurs

SMC_ See SMC_ Output an error code when an error

ErrorID Error code ERROR ERROR 0 occurs
Current torque value Current torque data obtained b

Torque " . quevalu LREAL Torque value |0 .u . au ! y
obtained instruction

3)

This instruction reads the actual torque value of the drive.

Function Description

executed many times without affecting each other.

Timing Diagram

Enable of the function block must be set to TRUE.

It is active at high level of Enable and can be

Valid of the function block indicates that the value of Torque obtained is valid.

Busy of the function block indicates that the execution of the instruction is in progress.

Enableé
valid |

Busy1
0

Torque

MC_ReadActualVelocity

This instruction reads the actual velocity value of the drive and saves it in the variable unit defined by

itself.

1)

Instruction Format

Instruction Name Graphic Expression ST Expression
MC ReadActualVelocity y:—R?E?ECtuEl?ElGCitFGc
. Hnxia Valid sHELIE= y
Instruction s Enable:= ,
MC_ for reading S Valid=> ,
ReadActualVelocity |the current - T Busy=> ,
. —Enable ErroriD rror=>
velocity _ R
Veleccit ErrocrlD=>
Velocity=> );
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial L
. Name Data Type Description
Variable . Range Value .




6. Common MC Instructions

. . Reference to the axis, that is, an instance
Axis Axis AXIS_REF_SM3 |- - of AXIS_REF_SM3
€ InputVariable
. Initial _
Input Variable Name Data Type Value Range Value Description
Enable EXGCL.Jt‘iOI’] BOOL TRUE, FALSE FALSE Read the current axis velocity when
condition set to TRUE
€ Output Variable
Output Initial
Val:iapt:le Name Data Type| Value Range VaIlLlJe Description
Valid Currgnt velocity value BOOL TRUE, FALSE | FALSE Set t9 TRUE if the drive velocity can be
obtainable obtained correctly
Instruction execution in Set to TRUE when the current instruction
Busy UCHON EXECUtONIN | 3ol | TRUE, FALSE  |FALSE |~ W urrentinstruct
progress is being executed
Error Error BOOL TRUE, FALSE | FALSE Set to TRUE when an error occurs
SMC See SMC Output an error code when an error
ErrorlD E d - - 0
ot frorcode ERROR | ERROR oceurs
Velocity Curr?nt velocity value LREAL | Velocity 0 .Current.velocity data obtained by
obtained instruction

3) Function Description

This instruction reads the actual velocity value of the drive. It is active at high level of Enable and can be
executed many times without affecting each other.

4) Timing Diagram

Enable of the function block must be set to TRUE.

Valid of the function block indicates that the value of Velocity obtained is valid.

Busy of the function block indicates that the execution of the instruction is in progress.

MC_SetPosition

Enableé
Validé

Busy!
y0

Velocity

This instruction sets the axis position parameter to shift the coordinate system of an axis without any
movement caused.

1) Instruction Format

‘ Instruction ‘ Name ‘

Graphic Expression

ST Expression

-120-




6. Common MC Instructions

2)
.

*

MC SetPosition
HArnxis
Instruction
MC_ for setting - o
SetPosition | axis position | P ety
parameters
—Mode "
Related Variables
Input/Output Variable
Input/Output Name Data Type Value Initial Description
Variable Range Value
Axis - Reference to the axis, that is, an instance
Axi AXIS_REF_SM ’ ’
XIS S_REF_SM3 of AXIS_REF_SM3
Input Variable
Input Initial o
. Name Data Type | Value Range Description
Variable yp & Value P
E i Dri jion f isi
Execute xecgt_lon BOOL TRUE, FALSE | FALSE rive a_setup operation for a rising edge
condition operation
Axis
Position position LREAL - 0 Position data
data
Positi de; TRUE: Relati ition;
Mode Value BOOL TRUE, FALSE | FALSE osttion mode; TRUE: Retative posttion
FALSE: Absolute position
€ Output Variable
Output Initial
Name Data Type Value Range Description
Variable yp & Value P
Setup
Set to TRUE when the setu
Done operation BOOL TRUE, FALSE FALSE . P
operation is successful
successful
Instruction
Set to TRUE when the current
Busy execution in BOOL TRUE, FALSE FALSE . L .
instruction is being executed
progress
Set to TRUE wh
Error Error BOOL TRUE, FALSE FALSE | >0 when an error
occurs
Output an error code when an
ErrorlD Error code SMC_ERROR See SMC_ERROR 0 P
error occurs

3)

4)

Function Description

This instruction sets the axis position parameter to shift the coordinate system of an axis without any
movement caused. It is started at the rising edge of Execute. This instruction can be executed many
times without affecting each other.

Timing Diagram

Execute of the function block must have a rising edge condition.

Done of the function block indicates that the setup operation is successful.

Busy of the function block indicates that the execution of the instruction is in progress.

-121-



6. Common MC Instructions

MC_TouchProbe

1)

2)
.

*

*

-122-

Execute1

Done

Busy

O = O

Instruction Format

The instruction saves the position data of the current axis when triggered by an external signal.

Instruction Name Graphic Expression ST Expression
MC_TouchProbe (
MC_TecuchProbe Exisg:= ,
MC TouchProbe Iriggerlnput:= ,
. P = Execute:= ,
Instruction N Done — WindowCnly:= ,
for enablin —|Triggerinput Busy [— FirstPosition:= ,
MC_TOUChPrObe & —Execute Errocr— LastPosition:= ,
external N Done=» ,
) —WindowOnly ErrcrID— B
locking . . L Busy=> ,
irstPosition RecordedPosition Error=s» ,
—LastPosition Comrmandiborted — ErrorID=> ,
RecordedPogition=> ,
Commandiborted=> );
Related Variables
Input/Output Variable
Input/Output Value Initial L
Name Data Type Description
Variable yp Range Value P
Reference to the axis, that is, an instance
Axis Axis AXIS_REF_SM3 |- - ’ ’
X X —TE- of AXIS_REF_SM3
Trigger Associated attributes such as trigger
Truggerinput .gg TRIGGER_REF |- - . . . &8
signal signal or trigger attribute
Input Variable
. Initial A
Input Variable Name Data Type Value Range value Description
Execution Drive a setup operation for a rising
Execute . BOOL TRUE, FALSE FALSE j
condition edge operation
Trigger
WindowOnly .gg BOOL TRUE, FALSE FALSE
window
Tri ify th ition f
FirstPosition ngggrﬂan LREAL ) 0 Speélyt eéuwtpoann or
position receiving trigger events
Tri ify th ition f
LastPosition ngg§rend LREAL i 0 Speélyt egnd position for
position receiving trigger events
Output Variable
. Initial —
Output Variable | Name Data Type |Value Range value Description
Set ti Set to TRUE when th t ti
Done etup operation BOOL TRUE, FALSE | FALSE _e 0 when the setup operation
successful is successful
Instruction
Set to TRUE when the current
Busy execution in BOOL TRUE, FALSE | FALSE . L.
instruction is being executed
progress
Error Error BOOL TRUE, FALSE | FALSE Set to TRUE when an error occurs




6. Common MC Instructions

. Initial .
Output Variable | Name Data Type |Value Range Value Description
SMC_ See SMC_ Output an error code when an error
ErrorlD Error code ERROR ERROR 0 occurs
Trigger
RecordedPosition | recording LREAL - 0 Position where trigger event occurred
position
CommandAbort Instruction BOOL TRUE, FALSE | FALSE §etto TRUFWhen the current
aborted instruction is aborted

3) Function Description

€ Thisinstruction records the current position of the running axis when triggered by signal Truggerinput.

*

Execute is rising edge-triggered.

€ When thedrive is latched: The drive records the position in the controller after collecting the latching

signal.

FPLC Sarmpling Points

&
TRUE

Execute

FALSE

TRUE
Done

FALSE

!

\

TRUE ‘
Triggerinput.Signal |—| ‘
FALSE ‘

; |

|

\

|

TRUE
WindowOnly

FALSE

Axis.Position
LastPosition

RecordedPosition

FirstFosition

signal not
accepted

A. FirstPosition < LastPosition

- +
-
u]
LastP osition

FirstPosition

B. FirstPosition > LastPosition

FirsPosition

LastPosition

signal
ac cepted

| astP osition

-123-



-124-

6. Common MC Instructions

4)

Timing Diagram

Execute of the function block must have a rising edge condition.

Done of the function block indicates that the setup operation is successful.

Trigger. Signal 1

WindowOnly

LastPosition

FirstPosition

1

Execute
0

—

Done

o= O = O

t

The position is a cyclic counting unit. The position for triggering signals can be reused.

SMC_MoveContinuousAbsolute

1)

Distance) ending with the specified velocity (EndVelocity).

Instruction Format

This function block commands the axis to move continuously to an absolute position (specified by

Instruction

Name

Graphic Expression

ST Expression

MC_MoveContinousAbsolute

Instruction for
continuous
control of the
absolute axis

SMC_MoveContinuousAbsolute_0

EN

Auis
Execute
Position
Velocity

Jerk

N O (1 |

EndVelocity
EndVelocityDirection
Acceleration
Deceleration

SMC_MoveContinuousAbsolute

ENO
InEndVelocity

PositionReached

Busy

CommandAborted

Error
ErrorlD

SMC_MoveContinuousAbsolute 0(
Axis:= Rxis,
Execute:= ,
Position:= ,
Velocity:= ,
EndVelocity:= ,
EndVelocityDirection:= ,
Acceleration:=
Deceleration:= ,
Jerk:= ,
Directicn:= ,
AdaptEndVelToAvoidovershoot:= ,
InEndVelocity=» ,

pOSitiOﬂ i!::‘t‘::dVe\TuAvmevershuui ;::;f“’?“m“:’ :
Ccmani;bcr:a:l=> ;
Em:rD=; )
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial L
Name Data Type Description
Variable yP Range Value 'PH
Reference to the axis, that is, an instance
Axi Axi AXIS_REF_SM3 |- - ’ ’
XS XS —RER- of AXIS_REF_SM3
€ InputVariable
Data Initial
Input Variable Name Value Range - Description
Type Value
E ti Start th ti t the risi
Execute xecution BOOL | TRUE, FALSE |FALSE artthe motion at the rising
condition edge
Absolute
- . This data is the absolute position
Position position of the | LREAL Value Range |0 . P
. of the motion.
motion




6. Common MC Instructions

. Data Initial .
Input Variable Name Value Range Description
Type Value
Maximum velocity of the axis to
Velocity Running velocity | LREAL Value Range |0 ximumy . ,I y X
the target position
Moti di Runni locity after th
EndVelocity © Io.n ending LREAL Value Range |0 . “””'”g, ve.oa y after the
velocity instruction is executed
Positi Available: positive, negative,
EndVelocity Direction of the |MC_ os! ',Ve’ . P &
L ) ) T negative, Current | current;
Direction ending velocity | Direction )
current Not available: shortest, fastest
Acceleration rate for velocit
Acceleration Acceleration LREAL Value Range |0 . I velodly
increase
Decelerati te f locit
Deceleration Deceleration LREAL Value Range |0 eceleration rate forveloctty
decrease
Slope change of the curve
Jerk Jerk LREAL Value Range |0 P ) & .
acceleration/deceleration
Options for linear/circular axes:
) positive, negative;
Direction Running Shortest |Value Range |Shortest i f i
direction g Opt.|<).ns or rotéry/urcular axes:
positive, negative, current,
shortest, fastest
AdaptEndvel End velocity TRUE:.AdJust the ending velocity
) . BOOL TRUE, FALSE | FALSE to avoid overshoot; FALSE: No
ToAvoidOvershoot adjustment flag -
processing
& Output Variable
) Initial .
Output Variable Name Data Type Value Range Value Description
Instruction
Set to TRUE when the instruction
InEndVelocity | position BOOL TRUE, FALSE | FALSE o IRTEW nstruct
position is reached
reached
Instruction
Set to TRUE when the current
Busy executionin | BOOL TRUE, FALSE | FALSE |’ nYEwhe !
instruction is being executed
progress
Instructi Set to TRUE when th t
CommandAbort | o4O TeooL TRUE,FALSE  |FALSE | >°' '@ 'RUEwhenthecurren
aborted instruction is aborted
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
SMC Output de wh
ErrorlD Error code - See SMC_ERROR | 0 utput an error codewhen an error
ERROR occurs

3) Function Description

€ This function block is an instruction for absolute axis positioning. The distance data is the absolute
position of the axis.

€ The operation status of this function block is Standstill, and the status during instruction running is
Discrete Motion. A complete running process must control the different motion statuses of the axis.

€ The motion is started at the rising edge of Execute. This instruction can be rising edge-triggered
repeatedly in Discrete Motion to refresh the latest position data each time.

@ If Acceleration or Deceleration is zero, the instruction execution will be abnormal. However, the state of
the axis is Discrete Motion.

€ If AdaptEndVelToAvoidOvershoot is TRUE, the valid ending velocity will be adjusted to avoid overshoot.
In some cases, a given EndVelocity may cause position overshoot. For example, if the remaining
distance is too short to reach the ending velocity from the current velocity and acceleration, the axis
may rotate in negative direction, resulting in position overshoot. In another situation, the ending

-125-



6. Common MC Instructions

velocity is in negative direction of the movement distance. To reach the target position at this velocity,
the axis will first exceed the distance, and then reversely accelerate to the ending velocity, which will
result in position overshoot. To avoid overshoot:

If the remaining distance is too short to reach the desired EndVelocity, focus more on reaching
EndVelocity, regardless of the target position constraints. In this way, the actual displacement will be
greater than the target position, that is, the target position will be reached first (DistanceTravelled =
TRUE), and then the target velocity will be reached (InTenVelocity = TRUE).

If the direction of the ending velocity is opposite to the motion direction, set the ending velocity
corresponding to the target position to zero and then run from zero to the desired ending velocity. Note
that the motion direction is not determined by the current velocity and acceleration but by the sign of

the distance to the target position.

Timing Diagram

The instruction can run only when the axis is in Standstill status.

Execute of the function block must have a rising edge condition.

Done of the function block indicates that the execution of the instruction is completed.

Busy of the function block indicates that the execution of the instruction is in progress.

A
Execute
Done
D)istance
Position
Velocity
4

»
\

7
EndVelocity

SMC_MoveContinuousRelative

This function block commands the axis to move continuously to a relative position (specified by
Distance) ending with the specified velocity (EndVelocity).

1) Instruction Format
Instruction Name Graphic Expression ST Expression
SMC_MoveContinuousRelative_0(
Exis:= Rxis,
Execute:= ,
SMC_MaoveContinuousRelative_0 Distance:= ,
SMC_MoveContinuousRelative Velocity:=
— EN ENO |— EndVelocity:= ,
Axi lati = Axis . InEndVelocity EndVelocityDirection:= ,
MC XIS relative | Execute DistanceTravelled [ Acceleration:= ,
L —| Distance Busy | :
- . . positioning — Velocity CommandAborted [ Deceleration:= ,
MoveContinuousRelative | . . | Endvelocity Error - Jerki=
instruction jg| Sl e Presn il | 2daptEndVelTokvoidovershoot:= ,
—| Acceleration . i
_| Deceleration InEndVelocity=> ,
| Jerk DistanceTravelled=> ,
| AdaptEndvelToAveidOvershact Busy=> ,
CommandAborted=> ,
Error=> ,
ErrorID=> ):
2) Related Variables

-126-




6. Common MC Instructions

*

*

*

3)

Input/Output Variable

Input/Output Value Initial .
Name Data Type Description
Variable yp Range Value 'PH
Reference to the axis, that is, an instance
AXi Axi AXIS_REF_SM3 - - ’ ’
XS XS —nEr- of AXIS_REF_SM3
Input Variable
) Initial _
Input Variable Name Data Type |Value Range Value Description
E ti TRUE Start th ti t the risi
Execute XeCL.J .|on BOOL , FALSE art the motion at the rising
condition FALSE edge
Relative
This data is the relative
Distance position of the | LREAL Value Range | 0 ! . I . V
. position of the motion.
motion
Runnin Maximum velocity of the axis
Velocity ! l & LREAL Value Range | 0 ximumyv |.y. X
velocity to the target position
Motion endin Running velocity after the
EndVelocity l . "ne LREAL Value Range | 0 .u ! g,v . Y
velocity instruction is executed
o . Available: positive, negative,
o . Dlrectlo.n of ' . P05|tlye, current;
EndVelocityDirection the ending MC_Direction | negative, Current )
velocity current Not available: shortest,
fastest
. . Acceleration rate for velocit
Acceleration Acceleration | LREAL Value Range | 0 . y
increase
. . Deceleration rate for velocit
Deceleration Deceleration | LREAL Value Range | 0 y
decrease
Sl h fth
Jerk Jerk LREAL Value Range | 0 opec a.mge orthe cu.rve
acceleration/deceleration
AdaptEndVelTo Enf:l velocity TRUE, TRUE.: Adjust the ending
) h adjustment BOOL EALSE FALSE | velocity to avoid overshoot;
AvoidOvershoot flag FALSE: No processing
Output Variable
. Initial -
Output Variable Name Data Type | Value Range Value Description
Instruction
Set to TRUE when the instructi
InEndVelocity | position BOOL TRUE, FALSE |FALSE | ¢ o '"-EWhen meinstruction
position is reached
reached
Instruction
Set to TRUE when th t
Busy executionin | BOOL TRUE, FALSE |FALSE | ¢ 0 '"CEWnentnecurren
instruction is being executed
progress
Instructi Set to TRUE when th t
CommandAbort | oM Tgo0L TRUE, FALSE |FALSE | C 0 'RYEWhenthecurren
aborted instruction is aborted
Error Error BOOL TRUE, FALSE | FALSE Set to TRUE when an error occurs
SMC_ See SMC_ Output an error code when an error
ErrorID Error code 0
ERROR ERROR occurs

Function Description

The operation status of this function block is Standstill, and the status during instruction running is
Discrete Motion. During the instruction execution, pay attention to the operation status of the axis,
to avoid interrupting the execution of other instructions of the axis or being interrupted by other

instructions of the axis.

The motion is started at the rising edge of Execute. This instruction can be rising edge-triggered

-127-



6. Common MC Instructions

repeatedly in Discrete Motion to refresh the latest position data each time.

@ If Acceleration or Deceleration is zero, the instruction execution will be abnormal. However, the state of
the axis is Discrete Motion.

€ If AdaptEndVelToAvoidOvershoot is TRUE, the valid ending velocity will be adjusted to avoid overshoot.

4) Timing Diagram
Execute of the function block must have a rising edge condition.

Done of the function block indicates that the execution of the instruction is completed.

Busy of the function block indicates that the execution of the instruction is in progress.

A
Execute
Done
D)istance
Position
Velocity
4 -

7
EndVelocity

MC_Jog

1) Instruction Format

Instruction Name Graphic Expression ST Expression
MC Jog(
Rxiz:= ,
o MC_Jeg L JogForward:= ,
SSdE Busy JogBackward:=
—JogForward Commandiborted — Velocity:= ,
_— Axisjog. :iﬁgﬂa'.:]ﬂ'jarﬂ Error : Accelerat:}cn: =,
— instruction Velocity Errcrld Deceleration:= ,
—Aceceleration Jerk:= ,
—Deceleration Buay=> ,
—Jderk Commandaborted=> ,
Error=> ,
ErrorId=> ):

2) Related Variables

€ InputVariable

Input Variable Name Data Type | Value Range Initial Description
Value
Valid in Set to TRUE to start moving in positive
JogForward positive BOOL TRUE, FALSE | FALSE direction; set to FALSE to stop movingin
direction positive direction

-128-



6. Common MC Instructions

Valid in Set to TRUE to start moving in negative
JogBackward | negative BOOL TRUE, FALSE | FALSE direction; set to FALSE to stop movingin
direction negative direction
Positive Specify the target velocity Unit:
Velocity Target velocity | LREAL v 0 .p " . g veloaty Ui
number or 0 [instruction unit/s]
Positi S ify th lerati te Unit:
Acceleration | Acceleration LREAL osttive 0 .pea y ) eacc.e eration rate Uni
number or 0 [instruction unit/s]
Positi S ify the d lerati te Unit:
Deceleration | Deceleration | LREAL osttive 0 .pea y ) € ec.e eration rate Uni
number or 0 [instruction unit/s]

€ Output Variable

Output Variable Name Data Type | Value Range | Initial Value Description
Set to TRUE after the instruction is
Busy Executing | BOOL TRUE, FALSE | FALSE .
received
Al i f TRUE wh hei ioni
Commandaborted | 2101 [ 5o TRUE, FALSE | FALSE Setto TRUE when the instruction is
execution aborted
Error Error BOOL TRUE, FALSE | FALSE Set to TRUE when an error occurs
See SMC QOutput an error code when an error
ErrorlD Error code | SMC_ERROR - o utpu W
ERROR occurs

Input/Output Variable

Input/Output Name Data Type Value Initial Description
Variable Range Value
Axis - - Reference to the axis, that is, an instance
AXi AXIS_REF_SM ’ ’
XIS S_REF_SM3 of AXIS_REF_SM3

Function Description

This instruction performs jogging at the specified Velocity (target velocity).

To jog in positive direction, set JogForward to TRUE. To jog in negative direction, set JogBackward to
TRUE.

If both JogForward and JogBackward are set to TRUE, no motion will occur.

If the set velocity of the MC_Jog instruction exceeds the maximum jogging velocity in the axis parameter,
the maximum jogging velocity will be followed.

Timing Diagram
Busy will change to TRUE while JogForward or JogBackward is activated.

Busy will change to FALSE while deceleration starts at the falling edge of JogForward or JogBackward
and the axis stops.

When this instruction is aborted by another instruction, the value of CommandAborted changes to TRUE
and that of Busy changes to FALSE.

-129-



6. Common MC Instructions

JogForward

I
JogBackward |

Busy

CommandAborted

Error

ErrorID

Velocity | Acceleration

. Deceleration

X :

5) Error Description

\ % Time

Aborted bv other

If an error occurs during the execution of this instruction, Error changes to TRUE and the axis stops.

You can check the output value of ErrorlD (error code) for the cause of error.

€ Timingdiagram when an exception occurs

JogForward

JogBackward

I

I

|
Busy r

CommandAborted

Error

ErrorIlD >

Error code

SMC_Inch

This instruction performs single-step motion control of axes through the program.

1) Instruction Format

I Instruction | Name |

Graphic Expression | ST Expression

-130-



6. Common MC Instructions

SMC Tnch 5}::_1:1@1:: {
Hixis Busy
CommandAborted
— InchForward Errorld
Axis relative
SMC_Inch positioning o '
instruction E‘.“"l'd"kw'a '
—Dista
—Velocity i
—Acceleration =
e Commandiborted=>» ,
—{Jerk Exr e
ErrorId=> )
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
Name Data Type Description
Variable yp Range Value P
Axis Axis AXIS_REF_SM3 ] i Reference to the axis, that is, an instance
of AXIS_REF_SM3
€ InputVariable
. Initial .
Input Variable Name Data Type| Value Range value Description
If InchForward is TRUE, the axis will
move at the given velocity (Velocity,
Acceleration, or Deceleration) in positive
direction until the distance is reached. To
) start the motion again, the input must be
Execution specified as FALSE and then TRUE.
InchF i iti BOOL TRUE, FALSE FALSE
nchForward |n. pOS.Itlve 00 UE, S S If InchForward is set to FALSE before
direction . . L
it reaches position, then the axis will
immediately decelerate to 0 and Busy will
be set to FALSE.
If InchBackward is set to TRUE in the
simulation, no motion will occur.
If InchBackward is TRUE, the axis will
move at the given velocity (Velocity,
Acceleration, or Deceleration) in positive
Backward direction to the specified position. To start
InchBackward execution BOOL TRUE, FALSE FALSE another motion, the input must be set to
FALSE and then TRUE.
If InchForward is set to TRUE at the same
time, no axis motion will occur.
Movement
Distance . Y LREAL Value Range 0 This data is the movement distance
distance
Runnin Maximum velocity of the axis to the target
Velocity ! I & LREAL  |Value Range 0 X,l . Hm vetocrty X &
velocity position
Acceleration | Acceleration |LREAL |Value Range Acceleration rate for velocity increase
Deceleration |Deceleration |LREAL |Value Range Deceleration rate for velocity decrease

€ Output Variable

-131-



6. Common MC Instructions

. Initial .
Output Variable Name Data Type | Value Range Value Description
Instruction
Set to TRUE when the current
Busy executionin  |BOOL | TRUE,FALSE |FALSE | RoEwWhe !
instruction is being executed
progress
Instructi Setto TRUE when th t
CommandAbort | 0Ol Bo0L | TRUE, FALSE |FALSE | >°r 1o 'RUEwhen thecurren
aborted instruction is aborted
Error Error BOOL TRUE, FALSE | FALSE Set to TRUE when an error occurs
SMC_ See SMC_ Output an error code when an error
ErrorID Error code ERROR ERROR 0 occurs

3) Function Description

€ The operation status of this function block is Standstill, and the status during instruction running is
Discrete Motion. During the instruction execution, pay attention to the operation status of the axis,
to avoid interrupting the execution of other instructions of the axis or being interrupted by other
instructions of the axis.

@ If Acceleration or Deceleration is zero, the instruction execution will be abnormal. However, the state of

the axis is Discrete Motion.

4) Timing Diagram

InchForward/InchBackward of the function block must have a TRUE/FALSE condition.

Busy of the function block indicates that the execution of the instruction is in progress.

InchForward

InchBackward

Busy

Velocity

Distance

A

SMC3_PersistPosition

This instruction keeps recording the position of the absolute encoder of the real axis (after the controller
is powered off and restarted again, the position value recorded before power-off will be restored). If the

servo motor uses an absolute encoder, this function block can be used in conjunction with it.

1) Instruction Format

‘ Instruction | Name |

Graphic Expression

ST Expression

-132-




6. Common MC Instructions

SMC3_PersistPositiond(
SMC3_PersistPosition( T | Rxisi= '
SMC3_PersistPosition = Perziztentlata:=
Instruction —Zﬁ.xis_ bF'ositign.Hestored —| EEnakle:= ,
SMC3_ for keeping] —HAPerzistentDats bPositionStored — | bPozitionRestored=s
PersistPosition| the axis —|bEnzble bEusy—| bPositionStored=> ,
position bError— | pRusy=> |,
ekrorlD =1 pError=s |
eRestoringDiag — eErrorID=s ,
eRestoringDiag=> );
2) Related Variables
€ Input/Output Variable
Input/Output Value | Initial .
. Name Data Type Description
Variable yp Range | Value 2
. . Reference to the axis, that is, an instance
Axis Axis AXIS_REF_SM3 - -
of AXIS_REF_SM3
. Retentive |SMC3_ Power-down retentive data structure for
PersistentData . - - . S .
data PersistPosition_Data storing position information
€ InputVariable
. Initial .
Input Variable Name Data Type | Value Range Value Description
The function block is executed if set to
TRUE and not executed if set to FALSE.
bEnable Executed BOOL TRUE, FALSE | FALSE To restore the last stored position
during initialization, this value must be
set to TRUE from application startup.
€ Output Variable
Output Variable Name Data Type |Value Range Initial Value Description
Position Set to TRUE when the
bPositionRestored . BOOL TRUE, FALSE | FALSE position is restored upon
restoring .
axis restart
Position Set to TRUE when the
bPositionStored savin BOOL TRUE, FALSE | FALSE position is stored after an FB
& call
FB Set to TRUE when FB
bBusy execution in | BOOL TRUE, FALSE | FALSE L
execution is not completed.
progress
Set to TRUE when an error
bError Error BOOL TRUE, FALSE | FALSE
occurs
Output an error code when
eErrorlD Error code | SMC_ERROR |- SMC_NO_ERROR P
an error occurs

-133-



-134-

6. Common MC Instructions

4)

Output Variable

Name Data Type |Value Range Initial Value Description

eRestoringDiag

Diagnostic information in
position restoration

SMC3_PPD_RESTORING_
OK: Position successfully
restored;

SMC3_PPD_AXIS_PROP_
CHANGED: Axis parameters
have been changed and

SMC3
SMC3 - .
Restoration Persis; PersistPositionDiag, the position could not be
diagnostics PositionDi SMC3_PPD_ restored;
ostiontiag RESTORING_OK SMC3_PPD_DATA_STORED_

DURING_WRITING: The
function block copies data
from the axis parameter data
structure instead of from
PersistentData. Possible
cause: Non-synchronized
retentive variable, controller
crash

Function Description

If bEnable is TRUE upon PLC restart, then bPositionRestroed outputs TRUE.

Virtual and logical axes are not supported.

It is hereby declared that the actual position of the axis in AM600 is: Offset + Encoder feedback position

(instruction unit Plus) x Scale. The position recorded by the absolute encoder after power-off is the

instruction unit value. Therefore, to restore the “actual position” before power-off upon PLC restart,

use this function block and configure SMC3_PersistPosition_Data as a retentive variable.
Usage (when the real axis encoder is a multi-turn absolute encoder):

1) SMC3_PersistPosition_Data declared in PersistentVars

+ @ MairTask
+-5E Task

E{p tra

@ tra_1

T' PersistentVars

-_'J Device @ PersistentVars X
/AR, GLOBAL| PERSISTENT RETAIN
persistentDatal: SMC3_PersistPosition Data;
8 END VAR

2) Called in the PLC main task (EthCat task)

Declaration section:

VAR

SMC3_PersistPosition_1:SMC3_PersistPosition;
END_VAR
Program section:

| SMC3_PersistPosition 1 (Axis:=X Axis , PersistentData:=persistentDatal ,bEnable:

Timing Diagram

v



6. Common MC Instructions

A
bEnable > ¢
bPosition
Restored > t
bPosition " t
stored >
One scan
bERROR |

5) Error Description

If the input axis is a virtual or logical one, an error will be output. An axis error will result in an error

output.

SMC3_PersistPositionSingleturn

This instruction keeps recording the position of the absolute encoder (single-turn) of the real axis (after
the controller is powered off and restarted again, the position value recorded before power-off will be
restored). If the servo motor uses a single-turn absolute encoder, use this function block in conjunction

with it.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
SMC3_PersistPFositionSingleturn 0
SMC3_PersistPositionSingleturn 0 Lxiz:= .
SMC3 PersistPositionSingleturn PersistentData:= ,
Instruction Saxis bPoaitionRestored —| bEnakle
. persistentData bPositi usilumber0fibscluteBits:= ,
SMC?— . . for kee.pmg bFositionRestored=> ,
PersistPositionSingleturn | the axis bEositionStored=s |
pOSItIOn | hEnabla bBusy=> ,
—usiNumberOfAbscluteBits eRestoringliag
eRestoringDiag=> );
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable yp Range Value P
Reference to the axis, that is, an
Axis Axis AXIS_REF_SM3 - - . ' ’
-~ instance of AXIS_REF_SM3
. SMC3_ Power-down retentive data
. Retentive . . . . "
PersistentData data PersistPositionSingletrun_ - - structure for storing position
Data information

€ InputVariable

-135-



-136-

6. Common MC Instructions

Input Variable

Name

Value
Range

Data
Type

Initial

Description
Value P

bEnable

Executed

TRUE,
FALSE

BOOL

The function block
is executed if set
to TRUE and not
executed if set to
FALSE.

To restore the last
stored position
during initialization,
this value must be
set to TRUE from
application startup.

FALSE

es

usiNumberofAbsoluteBitesusiNumberofAbsoluteBit

Bit

UINT |-

Specify the bits of
absolute encoder
(such as 20-bit and
24-bit)

16

€ Output Variable

Output Variable

Name

Data Type

Value
Range

Initial Value

Description

bPositionRestored

Position
restoring

BOOL

TRUE,
FALSE

FALSE

Set to TRUE when the
position is restored upon
axis restart

bPositionStored

Position
saving

BOOL

TRUE,
FALSE

FALSE

Set to TRUE when the
position is stored after an FB
call

bBusy

FB execution
in progress

BOOL

TRUE,
FALSE

FALSE

Set to TRUE when FB
execution is not completed.

bError

Error

BOOL

TRUE,
FALSE

FALSE

Set to TRUE when an error
occurs

eErrorID

Error code

SMC_ERROR

SMC_NO_ERROR

Output an error code when
an error occurs

eRestoringDiag

Restoration
diagnostics

SMC3_
PersistPosi-
tionDiag

SMC3_
PersistPositionDiag.
SMC3_PPD_
RESTORING_OK

Diagnostic information in
position restoration

SMC3_PPD_RESTORING_
OK: Position successfully
restored;

SMC3_PPD_AXIS_PROP_
CHANGED: Axis parameters
have been changed and
the position could not be
restored;

SMC3_PPD_DATA_STORED_
DURING_WRITING: The
function block copies data
from the axis parameter data
structure instead of from
PersistentData. Possible
cause: Non-synchronized
retentive variable, controller
crash

3) Function Description

€ IfbEnableis TRUE upon PLC restart, then bPositionRestroed outputs TRUE.

€ Virtual and logical axes are not supported.

€ Torestorethe “actual position” before power-off upon PLC restart, use this function block and
configure SMC3_PersistPositionSingleTurn_Data as a retentive variable.




6. Common MC Instructions

Usage (when the real axis encoder is a multi-turn absolute encoder):

1) SMC3_PersistPositionSingleTurn_Data declared in PersistentVars

+ @‘MainTask
+ @ Task

& ra

& ra_1

? PersistentVars

R _GLOBAL| FERSISTENT RETAIN
persistentDataZ: 3MC3_PersistPositionSingleTurn Data:

END V2H

2) Called in the PLC main task (EthCat task)
& Declaration section:

VAR
SMC3_PersistPosition_2: SMC3_PersistPositionSingleTurn_Data;
END_VAR
€ Program section:

SMC3_PersistPosition 2 (Axis:=Y Axis , PersistentData:=persistentData?Z ,bEnable:=TRUE };

4) Timing Diagram

A
bEnable
able > t
bPosition
Restored > t
bPosition "
: >
stored
One scan
bERROR P

5) Error Description

If the input axis is a virtual or logical one, an error will be output. An axis error will result in an error
output.

SMC_CheckAxisCommunication

This instruction checks the current communication status of the drive.

1) Instruction Format

-137-



-138-

6. Common MC Instructions

Instruction Name Graphic Expression ST Expression
= = SMC ChecklxisCommunication0 (
SMC ChecklxisCommunication _E'.x' i
. = - 17, 3 - 1a:= '
BExis bvalid bEnable:= ,
Axis limit bError - bBvalid=> ,
SMC_ eErrorID - =
.. |check bError=x ,
CheckLimits instruction —bEnable bOperaticnal eErrorID=> ,
eComState [~ bOperaticnal=> ,
wComState [~ eComState=> ,
wClomState=> )7
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial L
Name Data Type Description
Variable yp Range Value P
Reference to the axis, that is, an instance
Axis Axis AXIS_REF_SM3 - ’ ’
X X - of AXIS_REF_SM3
€ InputVariable
. Initial A
Input Variable Name Data Type | Value Range value Description
bEnable Executed BOOL TRUE, FALSE | FALSE Set to TRUE when a check is in progress
€ Output Variable
Output Value | Initial .
Name Data Type Description
Variable YP Range | Value P
TRUE Set to TRUE when instruction execution is
Vali E i BOOL ’ FALSE
bValid xecuting 00 EALSE S valid
TRUE,
bError Error BOOL FALSE FALSE |Setto TRUE when an error occurs
eErrorlD Error code SMC_ERROR See SMC_Error
Set to TRUE when the communication is
normal (code 100) and operations can be
. Communication TRUE, performed on the axis
bOperational BOOL FALSE o
normal FALSE Set to FALSE when the communication
is abnormal and operations cannot be
performed on the axis




6. Common MC Instructions

Output

N
Variable ame

Data Type

Value
Range

Initial

Description
Value P

Communication
state

eComState

SMC_
COMMUNI-
CATIONSTATE

Including:

SMC_COMSTATE_NOT_STARTED:
Communication not started

Communication variable initialization
SMC_COMSTATE_BASE_COM_
INITIALIZATION: Base port initialization
SMC_COMSTATE_DRIVE_INITIALIZATION:
Communication drive initialization
SMC_COMSTATE_DRIVE_WAITING_FOR_
SYNC: Warning for synchronization

SMC_COMSTATE_INITIALIZATION_DONE:
Initialization done
SMC_COMSTATE_OPERATIONAL: Normal
communication
SMC_COMSTATE_REINITIALIZATION:
Communication re-initialization
SMC_COMSTATE_ERROR: Communication
error

SMC_COMSTATE_UNKNOWN: Unknown
communication state

SMC_COMSTATE_VARIABLE_INITIALIZATION:

Communication

wComState
code

WORD

Same value as Axis.wCommunicationState
in the input/output axis structure variable.

Code indicating the current communication
state. See AXIS_REF_SM3 parameter 1013.

3) Function Description

When bEnable is TRUE, no error occurs, and bValid outputs TRUE, this instruction checks the axis

communication state.

When bValid outputs TRUE, this instruction checks the axis communication state. When eComState
outputs SMC_COMSTATE_OPERATIONAL, bOperational outputs TRUE.

4)  Sample Program

SMC_ChecklxisCommunication 0O

TRUE

I bEnable

SMC CheckiPxisComminication
huis —Hpxis

bOperational =

bvalid ~—jR——
bErrocr m= RyAri
eErrorID — |SMC NO ERR

eComState — [SMC COMSTL
wComState — [ 100

&

5) Error Description

At the rising edge of bExecute:
An error is output if there is an axis error.

An error is output if the axis input is invalid.

-139-



-140-

6. Common MC Instructions

SMC_FollowPosition

This instruction sets the axis position without performing any check. This instruction is different from

MC_MoveAbsolute in that after the bExecute rising edge signal arrives, it will give the axis position
instruction in each task period regardless of the axis status. (Users can use this instruction to write cam
functions instead of using instructions such as MC_Camin.)

1) Instruction Format

Instruction Name Graphic Expression ST Expression
3MC_FollowPFosition_0(
SMC FollowPosition Zpigie
. Hrxis - bBusy 2= !
Axis = g bExecute:= ]
SMC_ position Lo slsnnbisaizs o fSetPosition:=5ET_POSITION ,
FollowPosition |reference Shobe bBusy=> ,
instruction —bExecute iErrocrID bCommandiborted=> |,
—f3etPositicn bError=> ,
iErrorID=> );
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial L
Name Data Type Description
Variable yp Range | Value Pt
Reference to the axis, that is, an instance of
Axis Axis AXIS_REF_SM3 - ’ ’
X X -TE- AXIS_REF_SM3
€ InputVariable
. Initial —
Input Variable Name Data Type | Value Range value Description
bExecute Executed BOOL TRUE, FALSE | FALSE Execute the FB at the rising edge
fSetPosition Set position | LREAL - 0 Axis position setting
€ Output Variable
. Initial L
Output Variable Name Data Type | Value Range value Description
Set to TRUE when the instruction is being
executed
(At this time, the axis is in the
bBusy Executing | BOOL TRUE, FALSE | FALSE | Synchronized status, which is the same as
the axis status during the execution of the
cam MC_Camin instruction). The bBusy
status can be cleared with the MC_Camout
instruction.
| i TRUE wh h isisi
bCommandAborted nstruction BOOL TRUE, FALSE | FALSE Setto TRUE w e'n the axvls is interrupted
aborted by other control instructions
bError Error BOOL TRUE, FALSE | FALSE | Set to TRUE when an error occurs
iErrorlD Error code | SMC_ERROR |- - See SMC_Error

3) Function Description

€ After SMC_FollowPosition is started at the rising edge of bExecute, the axis will send position instruction
to the axis in each task period.

€ When the bBusy signal is received, the axis is in Synchronized Motion status, which is the same as the
slave axis when the MC_CamlIn instruction takes effect. The status can be cleared with the MC_CamOut




6. Common MC Instructions

instruction.

€ The axis velocity is calculated by the increment of the position difference between two task periods:

Velocity= AL/ At . AL is the difference between fSetVelocity of this task period and fSetVelocity of
the previous task period. At is the scanning time.

€ When the bExecute signal is TRUE, bBusy changes from TRUE to FALSE when this instruction is
interrupted by another instruction.

4)  Timing Diagram

A
bEecute E Pt
bBusy E Pt
bCommandA i i :
borted . + > t
Error > t

5) Error Description

At the rising edge of bExecute:
An error is output when the Axis variable is connected to a non-AXIS_REF_SM3 type structure variable.
An error is output when the axis is disabled.

An error is output when there is an axis error during instruction execution.

6) Sample Description

Use SMC_FollowPosition to achieve the electronic cam function.

1 CAM BUILD 1
CAM BUILD
360 —Master peridec Mater pesition
End profile =

M CAM STZRET EBusy (=
HDH bBExcute
I bPeriod
360 —5lave_peridec

5M Drive Virtual —SMater Axis
Lxiz —Hs5lave Dxis

FB variable definition section:

FUNCTION_BLOCK CAM_BUILD
VAR_INPUT//Input variable definition
Master_peridec:REAL; //Master axis period

-141-



6. Common MC Instructions

bExcute:BOOL; //Instruction execution
bPeriod:BOOL; //Cyclic cam execution; false: single-period execution
Slave_peridec:REAL; //Slave period
END_VAR
VAR_OUTPUT; //Output variable definition
Mater_position:LREAL;//Master axis position (the position of the master axis calculated after the
start of instruction execution)
End_profile:BOOL,; //Flag bit of curve output completed
bBusy:BOOL; //Execution in progress
END_VAR
VAR//FB intermediate variable definition
SMC_FollowPosition_0: SMC_FollowPosition;
SET_POSITION: LREAL;
SET_POSITIONOLD: LREAL;
Mater_positionOLD:LREAL,;
bExcute_old:BOOL;
INC:LREAL,;
Y:LREAL;
X5:LREAL;
X4:LREAL;
X3:LREAL;
X2:LREAL;
X1:LREAL;
MC_Stop0: MC_Stop;
STOP:BOOL;
COUNTNUM:DINT;
SET_INC:LREAL;
YOLD:LREAL;
SMC_FollowPositionVelocity_0: SMC_FollowPositionVelocity;
K:REAL;
K_OUT:REAL;
MC_CamOut_0: MC_CamOut;
END_VAR
VAR_IN_OUT// Input and output variable definition
Mater_Axis:AXIS_REF_SM3;
Slave_Axis:AXIS_REF_SM3;
END_VAR
Program section:
IF bExcute AND NOT bExcute_old THEN //Rising edge initialization parameter
Mater_position:=0;
Mater_positionOLD:=Mater_Axis.fActPosition;
End_profile:=FALSE;
SET_POSITION:=Slave_Axis.fActPosition;
SET_POSITIONOLD:=Slave_Axis.fActPosition;
COUNTNUM:=0;
YOLD:=0;
K:=0;
ELSE
IF bExcute_old THEN
INC:=Mater_Axis.fActPosition-Mater_positionOLD;//Increment of master axis task period
IF INC<0 THEN //Master axis code position exceeds zero point (when axis mode is set to modulo)
INC:=Mater_Axis.fActPosition-Mater_positionOLD+Mater_Axis.fPositionPeriod;

-142-



6. Common MC Instructions

END_IF
Mater_position:=INC+Mater_position;//Current position of master axis
Mater_positionOLD:=Mater_Axis.fActPosition;
[/ *Curve judgment completed™********//
IF Mater_position>=Master_peridec THEN
End_profile:=TRUE;
ELSE
End_profile:=FALSE;
END_IF
IF bPeriod THEN
IF Mater_position>=Master_peridec THEN
Mater_position:=Mater_position-Master_peridec;
END_IF
END_IF
END_IF
END_IF
IF bExcute_old THEN
X1:=(Mater_position/Master_peridec);
X2:=X1*X1,
X3:=X2*X1,;
X4:=X3*X1,
X5:=X4*X1,
Y:=(6*X5-15*X4+10*X3)*Slave_peridec;//Slave axis position, curve
K:=(30*X4-60*X3+30*X2)*Slave_peridec/Master_peridec;//Curve slope
SET_INC:=Y-YOLD;
IF SET_INC<0 THEN
SET_INC:=Slave_peridec-YOLD+Y;
END_IF
YOLD:=Y;
IF bPeriod THEN
SET_POSITION:=SET_POSITION+SET_INC;
ELSE
IF End_profile THEN
SET_POSITION:=SET_POSITIONOLD+Slave_peridec;
ELSE
SET_POSITION:=SET_POSITION+SET_INC;
END_IF
END_IF
IF SET_POSITION>=Slave_Axis.fPositionPeriod THEN
SET_POSITION:=SET_POSITION-Slave_Axis.fPositionPeriod;
END_IF
END_IF
SMC_FollowPosition_0(
Axis:=Slave_AXxis,
bExecute:=bExcute,
fSetPosition:=SET_POSITION
bBusy=>bBusy,
bCommandAborted=>,
bError=>,
iErrorlD=>);
IF NOT bExcute AND bExcute_old THEN
STOP:=TRUE;

-143-



6. Common MC Instructions

END_IF

MC_CamOut_0(
Slave:=Slave_Axis,
Execute:= STOP,
Done=>,
Busy=>,
Error=>,
ErrorlD=>);

MC_Stop0(
Axis:=Slave_Axis,
Execute:=MC_CamOut_0.Done OR MC_CamOut_0.Error,
Deceleration:=20000,
Jerk:=20000,
Done=>,
Busy=>,
Error=>,
ErrorlD=>);
IF MC_Stop0.Done OR MC_Stop0.Error THEN

STOP:=FALSE;
END_IF
IF NOTbExcute_old THEN
End_profile:=FALSE;

END_IF

bExcute_old:=bExcute;

SMC_FollowPositionVelocity
The usage and function of this instruction are the same as SMC_FollowPosition. This instruction

additionally provides velocity setting.

Note: The velocity setting must adapt to the position setting change. Velocity setting = First order
derivative of the difference in position settings between task periods with respect to time. For example,
if the position setting is the same between two periods, the velocity must be set to 0; otherwise, it will
cause the motor to vibrate violently.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
= — — SMC FollowFositionVeleccity 0
5MC FeollowPositionVelocity L -
Axis Hoio . Rxig:= ’
M RAxis PBusy m™
. bExecute:= ,
position bCommandhborted M coorposition:—
SMC_ o ) and ) PError™  ssecvelocity:= ,
FollowPositionVelocity|velocity b bExecute iErrorID|{{ bBusy=> bBuay,
reference | —f3etBoasiticn bCormandiborted=» ,
instruction (—fsetVelocity BError=y ,
iErrorID=> };
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial L
. Name Data Type Description
Variable yp Range | Value P
Reference to the axis, that is, an instance of
Axis Axis AXIS_REF_SM3 - - ’ ’
-~ AXIS_REF_SM3

-144-



6. Common MC Instructions

€ InputVariable

Input Variable Name Data Type | Value Range I\Zﬂil Description
bExecute Executed BOOL TRUE, FALSE | FALSE Execute the FB at the rising edge
fSetPosition Set position | LREAL - 0 Axis position setting
fSetVelocity Set velocity | LREAL - 0 Axis velocity setting
€ Output Variable
) Initial L
Output Variable Name Data Type | Value Range value Description
Set to TRUE when the instruction is being
executed
(At this time, the axis is in the synchronized
bBusy Executing | BOOL TRUE, FALSE | FALSE | status, which is the same as the axis status
during the execution of the cam MC_Camin
instruction). The bBusy status can be
cleared with the MC_Camout instruction.
bCommandAborted Instruction BOOL TRUE, FALSE | FALSE Set to TRUE vvhen the'aX|s is interrupted by
aborted other control instructions
bError Error BOOL TRUE, FALSE | FALSE | Setto TRUE when an error occurs
iErrorID Error code | SMC_ERROR |- - See SMC_Error
3) Function Description
€ After SMC_FollowPositionVelocity is started at the rising edge of bExecute, the axis will send the position
and velocity setting instruction to the axis in each task period.
€ When the bBusy signal is received, the axis is in Synchronized Motion status, which is the same as the
slave axis when the MC_CamlIn instruction takes effect. The status can be cleared with the MC_CamOut
instruction.
€ The velocity setting must adapt to the position setting change. fSetVelocity = A7 / A - AL s the
difference between fSetVelocity of this task period and fSetVelocity of the previous task period. Ay is
the scanning time.
€ When the bExecute signal is TRUE, bBusy changes from TRUE to FALSE when this instruction is
interrupted by another instruction.
4) Timing Diagram
A
bEecute Pt
bBusy Pt
bCommandA
borted Pt
Error >t

-145-



-146-

6. Common MC Instructions

5)

Error Description

At the rising edge of bExecute:

An error is output when the Axis variable is connected to a non-AXIS_REF_SM3 type structure variable.

An error is output when the axis is disabled.

An error is output when there is an axis error during instruction execution.

SMC_FollowVelocity

This instruction sets the axis velocity without performing any check. This instruction is different from
MC_MoveVelocity in that after the execution of the rising edge model, it will give the axis velocity
instruction in each task period. (The MC_MoveVelocity instruction must be refreshed to take effect after
the velocity is changed.)

1)

Instruction Format

Instruction Name Graphic Expression ST Expression
- SMC FollowWVelocity 0f
SMC FellowVelocity E—'in; L -
Hpxis bBuay — " !
Axis velocity bCommandiborted — bExecute:=
SMC_ reference fSetVelocity:= ,
FollowVelocity struction bErroz = EBusy=> ,
—|bExecute iErrorlD — bCommandiborted=> |
— o T i r
fSetVelocity bError=> ,
iErrorID=> ):
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial L
N Data T D t
Variable ame ata lype Range | Value escription
Reference to the axis, that is, an instance of
Axi AXxi AXIS_REF_SM3 - - ’ ’
XS XS —Er- AXIS_REF_SM3
€ InputVariable
. Initial A
Input Variable Name Data Type | Value Range value Description
bExecute Executed BOOL TRUE, FALSE | FALSE Execute the FB at the rising edge
fSetVelocity Set velocity | LREAL - 0 Axis velocity setting
€ Output Variable
. Initial .
Output Variable Name Data Type | Value Range Value Description
Set to TRUE when the instruction is
being executed
(At this time, the axis is in the
bBusy Executing | BOOL TRUE, FALSE | FALSE | Synchronized status, whichiis the same
as the axis status during the execution
of the cam MC_Camin instruction). The
bBusy status can be cleared with the
MC_Camout instruction.




6. Common MC Instructions

5)

Instruction Set to TRUE when the axis is interrupted
bCommandAborted aborted BOOL TRUE, FALSE | FALSE by another control instruction (when
bExecute is True)
bError Error BOOL TRUE, FALSE | FALSE Set to TRUE when an error occurs
iErrorlD Error code | SMC_ERROR |- - See SMC_Error

Function Description

After SMC_FollowVelocity is started at the rising edge of bExecute, the axis will send the velocity
instruction to the axis in each task period.

When the bBusy signal is received, the axis is in Synchronized Motion status, which is the same as the
slave axis when the MC_Camln instruction takes effect. The status can be cleared with the MC_CamOut
instruction.

When the bExecute signal is TRUE, bBusy changes from TRUE to FALSE when this instruction is
interrupted by another instruction.

Timing Diagram

A
bEecute P>t
bBusy Pt
bCommandA
borted Pt
Error >t

Error Description

At the rising edge of bExecute:
An error is output when the Axis variable is connected to a non-AXIS_REF_SM3 type structure variable.
An error is output when the axis is disabled.

An error is output when there is an axis error during instruction execution.

SMC_FollowSetValues

1)

Like other SMC_Follow functions, it directly sends an instruction to the axis. However, this instruction
not only includes other SMC_Follow functions, but also includes acceleration, current, torque and
other control signals. Therefore, it can be regarded as a comprehensive instruction. Users can select the
desired through the DwValueMask value.

Instruction Format

-147-



-148-

6. Common MC Instructions

Instruction Name Graphic Expression ST Expression
SMC_FollowSetValues 0
Exis:= Rxis,
SMC FollowSetValues 0
= = bExecute:= ,
. SMC FollowSetValues o bibort:= ,
= Axis bBusy fw'«'alueltiaék: !
Axis- —{ bExecute bCommandAborted 'SEtF_CS]'t:!'Cn'_ ’
SMC related —{ bAbort bError fSetVelocity:= ,
- . ) — dwWValueMask iErroriD f3ethcceleration:= |
FollowSetValues [instruction .
—| fSetPosition fietderk:= ,
reference :
— fSetVelocity foetTorque:= ,
— :SetAcclfleratlon fSetCurrent:= ,
1 fée:._.lrer bBusy=> ,
—| oetierque Commandiborted=> |,
—| fSetCurrent
bError=> ,
iErrorID=> };
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial L
N Data T D t
Variable ame ata lype Range | Value escription
. . Reference to the axis, that is, an instance of
Axis Axis AXIS_REF - - AXIS_ REF
€ InputVariable
. Initial L
Input Variable Name Data Type| Value Range Value Description
bExecute Start BOOL TRUE, FALSE | FALSE | Execute the FB at the rising edge
Abort th i ti d t all
bAbort Abort condition | BOOL | TRUE, FALSE | FALSE |/ 00"t (he ongoing motion and reseta
outputs
Bit 0: TRUE: fSetPosition active; FALSE:
Ignore
Bit 1: TRUE: fSetVelocity active; FALSE:
Ignore
Control . . ; e .
dwValueMask DWORD |- 0 Bit 2: TRUE: fSetAcceleration active; FALSE:
management |
gnore
Bit 3: TRUE: fSetJerk active; FALSE: Ignore
Bit 4: TRUE: fSetTorque active; FALSE: Ignore
Bit 5: TRUE: fSetCurrent active; FALSE: Ignore
fSetPosition Set position LREAL - Axis position setting (calibrated unit)
fSetVelocity Set velocity LREAL - Axis velocity setting (calibrated unit)
Set
fSetAcceleration . LREAL - 0 Axis acceleration setting (calibrated unit/s2)
acceleration
fSetJerk Set jerk LREAL |- 0 Axis jerk setting (calibrated unit/s3)
Torque
fSetTorque 9 LREAL - 0 Axis torque setting (NM/N)
reference
fSetCurrent Set current LREAL - 0 Axis current setting (A)

€ Output Variable




6. Common MC Instructions

. Initial -
Output Variable Name Data Type | Value Range value Description
Set to TRUE after the instruction is
bBusy Executing | BOOL TRUE, FALSE | FALSE , nstructiont
received
Instructi Set to TRUE when th tinstructi
bCommandAborted| " | BooL TRUE, FALSE | FALSE |25 when the current instruction
aborted is aborted
bError Error BOOL TRUE, FALSE | FALSE | Setto TRUE when an error occurs
Output de wh
iErrorlD Error code | SMC_ERROR |- 0 OSCE:JS an errorcodewhen an error

3) Function Description

€ After SMC_FollowSetValues is started at the rising edge of bExecute, it will send the selected parameter
instruction to the axis in each task period.

€ When the bBusy signal is received, the axis is in Synchronized Motion status, which is the same as the
slave axis when the MC_CamlIn instruction takes effect. The status can be cleared with the MC_CamOut

instruction.

€ When the bExecute signal is TRUE, bBusy changes from TRUE to FALSE when this instruction is
interrupted by another instruction.

€ The control parameter can be selected through the value of DwValueMask. For example, if DwValueMask

is 1, it sends the position for each task period, with the same function as the SMC_FollowPosition

instruction. If DwValueMask is 2, it is an instruction output for the velocity. If DwValueMask is 3, it is an
instruction output for the position and velocity. If DwValueMask is 7, it is an instruction output for the
position, velocity, acceleration, and so on.

4)  Timing Diagram

SMC_SetControllerMode

SMC_SetControllerMode sets the current operation mode of the servo. By default, synchronous

SMC FollowSetValues 0(

Exis:= RAxis,
bExecute:= ,
bAbort:= ,
dwValusMask:= |,

cyclic position control is adopted. For details on the control mode setting, see IS620N Series
Servo Design and Maintenance User Guide.

1) Instruction Format

Instruction Name

Graphic Expression

ST Expression

SMC

SetControllerMode

Instruction for
setting axis
control mode | _|

SMC SetControllerMode
Haxis bDone
bBBusy
bBError
bBExecute nErrocrID
—nControllerMeode

SMC_SetControllerModel (
Lyis:= .

bExecute:= ,
nControllerMode:= ,
bDone=> ,

bBusy=> ,

LError=> ,

nErrorID=> );

-149-



6. Common MC Instructions

2) Related Variables

€ Input/Output Variable

Input/Output Value Initial .
Name Data Type Description
Variable P Range | Value P
Reference to the axis, that is, an instance
Axi AXi AXIS_REF_SM - - ’ ’
XIS XS S_REF_SM3 of AXIS_REF_SM3

€ InputVariable

Initial
Input Variable Name Data Type Value Range Value Description
bExecute Executed |BOOL TRUE, FALSE | FALSE | Execute the FB at the rising edge
Axis control mode
1: SMC_torque: Torque control mode
2: SMC_Velocity: Velocity control
Control SMC_CONTROLLER_ SMC_ | mode
nControllerMode - -
mode MODE Position | 3. sMc_position: Position control
mode
4: SMC_Current: Current control
mode
€ Output Variable
Output - _—
Name Data Type Value Range Initial Value Description
Variable yp & P
M i TRUE wh
bDone odesetting | o0y TRUE, FALSE FALSE Setto TRUE when mode
completed setting is completed
Set to TRUE when the
bBusy Executing BOOL TRUE, FALSE FALSE instruction is being
executed
TRUE wh
bError Error BOOL TRUE, FALSE FALSE Setto TRUE when an
error occurs
iErrorlD Error code SMC_ERROR - - See SMC_Error

3) Function Description

€ After being started at the rising edge of bExecute, SMC_SetControllerMode sets the servo drive control
mode, which can also be set through the value of Axis.out.byModesofOpreation (requiring the addition
of the Object Dictionary 6060h in the process data).

FDO Assignment (1651C12): b Insert [&1 Edit X Delete 4+ Move Up Maove Down
161600 PDO Content (16£1600):

Index Size Offs MName Type

1owFoUslitl £ U.U Controlword

€ Conditions for using the function block:

1. The axis must meet these control conditions, for example, a virtual axis is not allowed to use this
function block.

-150-



6. Common MC Instructions

4)

5)

2. The synchronization period supported by each mode must be consistent (see 7.3.3 “Communication
Period Supported by Each Mode” of the IS620N Series Servo Design and Maintenance User Guide).

3. The axis must be in a state other than Errorstop, Stopping, or Homing during instruction execution;
otherwise, an error will occur.

If the axis has not changed to the set control mode after the instruction has been executed for 1000 task
periods, the instruction will report an error and bError will change from FALSE to TRUE.

When the control mode of the axis changes from low level to high level (torque -> velocity, torque

-> position, velocity -> position), the function block calculates the set value of the high level mode.

For example, when there is a change from torque mode to position mode, the function block will
compensate for the time lag between the actual and set values by superimposing an expected position
distance on the actual position of the current axis (calculated based on the current velocity and the
time offset during the task period).

After the instruction is executed, when the actual control mode of the axis changes to the set control
mode and the bDone signal is triggered, the axis will still run during the time between the trigger of the
instruction and the bDone signal. In addition, the function block will calculate the appropriate set value
according to the set control mode during this period. However, if the bDone signal is triggered and there
is no other control instruction to continue to set the value for the axis, the axis will stop immediately
and report an error. Therefore, it is necessary to use the rising edge of the bDone signal to trigger
instructions such as MC_Halt, MC_MoveVelocity or MC_MoveAbsolute to smooth the control axis.

Note that when the control mode changes to torque control, a torque control instruction (such as MC_
TorqueControl and SMC_SetTorque) is required to smooth the control axis.

Timing Diagram

A
bEecute P>t
bBusy Pt
bDone > t
Error >t

Error Description

At the rising edge of bExecute:

The axis is invalid.

The axis status is invalid.

The axis does not meet the control mode.

An error is output if there is an axis error.

-151-



-152-

6. Common MC Instructions

SMC_CheckLimits

This instruction checks whether the current drive setpoint exceeds the maximum value configured by

the controller.

1) Instruction Format
Instruction Name Graphic Expression ST Expression
SMC Checklimits
i P - |-
~HLS bEusy SMC CheckLimitsd{
. bBError axigie r
o iErrorID bEnable:= ,
e Axis limit —bEnable blLimitsExceeded bCheckVel:= ,
- check bChecklhccDec:= ,
CheckLimits |, .
instruction bBusy=> ,
— bCheckVel bError=> ,
iErrorID=> ,
bLimitsExceeded=> ) ;
—kChecklhccDec
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial o
N Data T D it
Variable ame ata lype Range | Value escription
. . Reference to the axis, that is, an instance
Axis Axis AXIS_REF_SM3 - - of AXIS_REF_SM3
€ InputVariable
. Initial s
Input Variable Name Data Type| Value Range value Description
bEnable Executed BOOL TRUE, FALSE |FALSE | Setto TRUE when a check is in progress
velocit A velocity check will be performed if set to
bCheckVel check y BOOL TRUE, FALSE |FALSE | TRUE. No velocity check will be performed
if set to FALSE.
. An acceleration/deceleration check will be
Acceleration/ erformed if set to TRUE. No acceleration/
bCheckAccDec | deceleration | BOOL TRUE, FALSE |FALSE P . I .
check deceleration check will be performed if set
to FALSE.
€ Output Variable
Output Variable Name Data Type Value Range Initial Value Description
An axis check will be performed
if set to TRUE.
bBusy Executing | BOOL TRUE, FALSE FALSE
No axis check will be
performed if set to FALSE.
bError Error BOOL TRUE, FALSE | FALSE Setto TRUE when an error
occurs
iErrorlD Error code | SMC_ERROR | - - See SMC_Error




6. Common MC Instructions

Output Variable Name Data Type Value Range Initial Value Description
Set to TRUE when the current
set velocity or acceleration/

. Limit deceleration rate exceeds
bLimitsExceeded o;:tp:t BOOL TRUE, FALSE FALSE Axis.fsWMaxVelocity, Axis.
chec

fSWMaxAcceleration, or

Axis.fSWMaxDeceleration.

3) Function Description
€@ When bEnable is TRUE and bBusy outputs TRUE, an axis velocity check or acceleration check will be
performed.

€ Ifthe setvelocity or acceleration/deceleration rate of the current axis exceeds the set value of Axis.
fSWMaxVelocity, Axis.fSWMaxAcceleration, or Axis.fSWMaxDeceleration, the bLimitsExceeded signal
outputs TRUE.

Note: This instruction only checks that the current instruction velocity or acceleration/deceleration
exceeds the set limit, and it does not stop the axis.

4) Timing Diagram

A

bEnable Pt
bBusy ; Pt

bLimitsEx
ceded Pt

Limitvalue |77 "/\\

Reference L
Error i i : Pt

5) Error Description

At the rising edge of bExecute:
An error is output if there is an axis error.

An error is output if the axis input is invalid.

SMC_GetMaxSetAccDec

This instruction reads the maximum acceleration/deceleration rate of the axis.

1) Instruction Format

-153-



-154-

6. Common MC Instructions

3)

Instruction Name Graphic Expression ST Expression
SMC_GetMaxSethccDec_0(
SMC GetMaxSetAccDec Axig:= ,
Maximum Hnxis bEValid bEnable:= ,
SMC_ acceleration/ bSusy - dwTimeStampi= ,
GetMaxSetAccDec |deceleration FHawhcce eration bvalid=> ,
rate of the axis —bEnable dwTimeAtMax — bBuay=> ,
—jdwlimeStamp fMaxhcceleration=> ,
dwTimeAtMax=> )
Related Variables
Input/Output Variable
Input/Output Value Initial o
Name Data Type Description
Variable yp Range | Value P
Reference to the axis, that is, an instance of
Axis Axis AXIS_REF_SM3 - - ’ ’
X X —REr- AXIS_REF_SM3
Input Variable
. Initial .
Input Variable Name |Data Type| Value Range value Description
bEnable Executed |BOOL TRUE, FALSE | FALSE | Execute the read operation if set to TRUE
Optional timestamp input, which can be used to
dwTimeStamp Dword - - .p pinp )
find out what happens at the maximum value.
Output Variable
. Initial L
Output Variable Name Data Type | Value Range value Description
Set to TRUE when instruction execution is
bValid Enable BOOL TRUE, FALSE | FALSE valid
bBusy Executing BOOL TRUE, FALSE | FALSE | Set to TRUE when an error occurs
. Maximum acceleration/deceleration value
Maximum . . .
acceleration/ (positive means acceleration, negative
fMaxAcceleration . LREAL - 0 means deceleration, and the maximum
deceleration . A .
absolute acceleration/deceleration value is
value .
the final value)
dwTimeStamp value corresponding to
the maximum acceleration/deceleration
rate (For example, when the acceleration
Timestamp continues to increase, the value follows
i Ti he fMaxA i
dwTimeAtMax correspon@ng bword |- 0 dw |meStamp, and the fMax ccelerz-atlon
to the maximum value is updated. Once the acceleration rate
value reaches the maximum value, the maximum
value of fMaxAcceleration is recorded,
and dwTimeStamp corresponding to the
maximum value is also recorded.)

Function Description

When bEnable is TRUE, no error occurs, and bValid outputs TRUE, a maximum acceleration/deceleration
check will be performed for the axis.

When the absolute value of acceleration/deceleration is larger than the previously recorded value,
fMaxAcceleration and dwTimeAtMax will be updated.

The value of dwTimeAtMax is the value of dwTimeStamp when the maximum acceleration/deceleration
rate occurs. Therefore, dwTimeStamp must be set to a variable value, such as a cumulative value



6. Common MC Instructions

changing with the task period or a fixed time period. (See the sample program.)

4)  Sample Program
SMC_GetMaxSetRAccDec_0
SMC GetMaxSetAccDec
Lxis —Axia B bvalid r—j—
bEusy ~ [IESEE
GET_STZRT fMaxAcceleration -
Il BEnable dwTimeAtMax 115
COUNT 223 dwTime Stamp
EXECUTE
== 1 IF GET_STARTEGUEN THEN -
z COUNT[ 228 |:=1+COUNI[ 5 |
3 END IF
- 4 IF NOT GET_STARTGNE THEN =
5 COUNI[ 225  |:=1;
&  END IF
= 7 IF COUNI[__ 2%  P=400 THEN
- COUNT[ 28 |:=1;
C] GET_STARTEGUEN:=cz1z=;
100 % |[E ~

SMC_GetMaxSetVelocity

This instruction reads the maximum velocity of the axis.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
SMC GetMaxSetWVelocity 0
SMC GetMaxSetVelocity ige—
Maximum Aneis EValidf S r
: = v bEnable:= ,
acceleration e .
SMC_GetMax deceleration/ bEusy dwTimeStamp:= ,
SetVelocity e of th MaxVelocity [ EValid=> ,
ra.eo € ==bEnable dwTimelitMax - EBusy=> ,
axis
—|dwTimeStamp fMaxVelocity=> ,
AwTimeAtMax=> )»
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial L
N Data T D t
Variable ame ata lype Range Value escription
Reference to the axis, that is, an instance of
Axi Axi AXIS_REF_SM3 | - - ’ ’
X X e AXIS_REF_SM3
€ InputVariable
. Initial o
Input Variable Name |Data Type| Value Range value Description
bEnable Executed |BOOL TRUE, FALSE | FALSE | Execute the read operation if set to TRUE
dwTimeStamp i Dword ) i (?ptional timestamp input, which Fan be used to
find out what happens at the maximum value.

€ Output Variable

-155-



6. Common MC Instructions

\Zliitapl:lz Name Data Type| Value Range I\;!ltl:a: Description
bvalid Enable BOOL TRUE, FALSE | FALSE | Set to TRUE when instruction execution is valid
bBusy Executing BOOL TRUE, FALSE | FALSE | Set to TRUE when an error occurs
Maximum Maximum velocity value (positive means
fMaxVelocity |acceleration LREAL - 0 forward, negative means backward, and the
value maximum absolute value is the final value)
dwTimeStamp value corresponding to the
maximum velocity (For example, when the
Timestamp velocity continues to increase, the value
corresponding follows dwTimeStamp, and the fMaxVelocity
dwTimeAtMax | to the Dword |- 0 value is updated. Once the velocity reaches
maximum the maximum value, the maximum value of
value fMaxVelocity is recorded, and dwTimeStamp
corresponding to the maximum value is also
recorded.)

3) Function Description

€ When bEnable is TRUE, no error occurs, and bValid outputs TRUE, a maximum acceleration/deceleration
check will be performed for the axis.

€ When the absolute value of velocity is larger than the previously recorded value, fMaxVelocity and
dwTimeAtMax will be updated.

€ Thevalue of dwTimeAtMax is the value of dwTimeStamp when the maximum velocity occurs. Therefore,
dwTimeStamp must be set to a variable value. For example, set to a count value changing with the task
period or a fixed time period. (See the sample program.)

4) Sample Program

1=z SMC_GetMaxSetVelocity 0
SMC GetMaxSetVeloclty
Axis —Smxis bvalid FjEr—
EBusy =
GET STRRT fMaxVelocity —
Il bEnable dwTimeAtMax —
COUNT dwTimeStamp

=

- 1 IF SET_STARTRGUE] THEN
COUNI[ =88 |:=1+COUNT[ =% |
END IF
IF NOT GET_STARTRGUE] THEW
COUNT[ 358  |:=1:
END IF
= 7 IF COUNI[ 258  p=400 THEN
COUNI[ 3%  |:=1:

*

(5]

[ ]
m

=3

Wwooom
)
2]

Il—.l
L
E
—
—
A
[
m

Il
[+
=
Ly
1]

100 %a

e

[
on

-156-




6. Common MC Instructions

MC_GetTrackingError

This instruction measures the current or maximum lag error (difference between the instruc-
tion position and actual axis position) for dead-zone time compensation.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
SMC GetTrackingError(
_ - Axias:= '
SMC GetTrackingError bEnable:=
A awis KValid M i o ._
Instruction bEusy H byDeadTimelycles:= ,
SMC_ for reading fhctTrackingError H dwlimeltamp:=
GeTrackingError [the axis lag l=lpEnabl e fMaxTrackingError | bvalid=> ,
deviation | dpyDeadTimeCycles dwTimeAtMax H bBusy=> ,
| wTime Stamp fhctTrackingError=:>x ,
fMaxTrackingError=> ,
dwTimeltMax=> ) ;
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
Name Data Type Description
Variable o Range Value .
Reference to the axis, that is, an instance
AXi Axi AXIS_REF_SM3 | - - ’ ’
X Xs >-REF_SM3 of AXIS_REF_SM3
€ InputVariable
. Initial —
Input Variable Name |Data Type| Value Range Value Description
bEnable Executed | BOOL TRUE, FALSE | FALSE | Execute the read operation if set to TRUE
Number of dead-zone periods, for which a lag
byDeadTimeCycles |- Byte - 2 check is performed after bEnable trigger lags for
certain dwTimeStamp values
Optional timestamp input, which can be used to
dwTimeStamp - Dword |- - .p ! l P Input, whi ) !
find out what happens at the maximum value.
€ Output Variable
. Initial —
Output Variable Name Data Type| Value Range Value Description
Set to TRUE when instructi tioni
bvalid Enable BOOL | TRUE, FALSE | FALSE Vae“do when nstruction execution s
bBusy Executing BOOL TRUE, FALSE | FALSE | Set to TRUE when an error occurs
Current deviation detection related to the
fActTrackingError | Current lag LREAL - 0 8 viatl . I
value of byDeaTimeCycles
Current deviation value (deviation of the
fMaxTrackingError | Maximumlag | LREAL - 0 instruction position from the feedback
position)
) Maximum deviation value (positive means
Tlmestamp. lag, negative means lead, and the maximum
dwTimeAtMax corresponc.img Dword - 0 absolute value is the final value)
to the maximum ) .
value Note: This value is affected by the value of
byDeaTimeCycles.

-157-



6. Common MC Instructions

3) Function Description

€ When bEnable is TRUE and bValid outputs TRUE, axis lag deviation detection will be performed.

€ When the absolute value of the deviation is larger than the previously recorded value, fMaxTrackingError
and dwTimeAtMax will be updated.

€ Thevalue of dwTimeAtMax is the value of dwTimeStamp when the maximum deviation occurs.
Therefore, dwTimeStamp must be set to a variable value. For example, set to a count value changing
with the task period or a fixed time period. (See the sample program.)

4) Sample Program

SMC_GetTrackingError_0

SMC_GetTrackingError
Lxizs —Snxis EValid e io—
bBusy = iiuy
GET_S5TART fhctTrackingError —
I]ll] bEnable fMaxTrackingError —
0 —byDeadTimeCycles dwlimeRtMax — 487
COUNT dwTimeStamp

. ——1

= 1 IF GET_STARTRENE] THEN A
z COUNT[ =84  |:=1+COUNI[__s54  |;
3 END IF
= 4~ IF NOT GET_STARTEGNE] THEN
5 COUNI[_ s :=1; E
&  END IF
= 7 IF COUNI[ 5%  p=:200 THEN
3 COUNT[ 53 |:=1:
3 GET_STARTEGNEN:=c=ls=;
10 END IF
- 100 % (&) ~
SMC_GetTrackingError_ 0
SMC GetTrackingError
nxis —axis B bValid r—jpras—
bBuay m= s
GET_STZRT fhctTrackingError —
Il bBEnable fMaxTrackingError —
4 —|byDeadTimeCycles dwTimelhtMax —
COUNT dwTimeStamp

= i1

IF GET_STARTIEGUEN THEN -
COUNT[__ 748 |:=1+COUNT[__ 744 |

END IF

= 4 IF NOT GET_START|EGUE THEN
5 COUNI[__ 748  |:=1; =
&  END IF

= 7 IF COUNI[__ 744 p=200
: coowt_7m ]
c] GET_STARTEENEN: =
10 END IF

oM P

100 % |[ER) ~

SMC_InPosition

This instruction monitors the deviation of the set position value of the current axis from the
actual value and determines whether the axis is within the required deviation range based on
the set deviation window.

-158-



6. Common MC Instructions

1) Instruction Format

Instruction Name Graphic Expression ST Expression
SMC InPosition 3MC_TnPoszition0(
Apxia B bInPosition = hrls:=hxis ,
pBusy bEEnakle:= ,
Axis bTime0ut M fPosWindow:= ,
deviation = e —
SMC_InPosition . — hEnabl e fPosTime:= ,
monitoring flimeCut:= ,
i i — fPoaWindow - '
instruction _ bInPosition=> ,
— fPoaTime
] bBusy=> ,
fTimelut bTimelut=> ) :

2) Related Variables

€ Input/Output Variable

Input/Output Value Initial .
. Name Data Type Description
Variable yp Range | Value .
. . Reference to the axis, that is, an instance of
Axis Axis AXIS_REF_SM3 |- -
AXIS_REF_SM3
€ InputVariable
. Initial _
Input Variable| Name |Data Type| Value Range Value Description
bEnable Executed |BOOL TRUE, FALSE | FALSE | Execute the read operation if set to TRUE
Set the window for deviation monitoring. If
. Deviation fPosWindow > Distance (deviation between the
fPosWindow | | LREAL - 0 . . . .
window instruction position and the feedback position), then
output bInPosition as TRUE according to fPosTime.
i Deviation time within the window, used to trigger
rigger iti
fPosTime tirfeg LREAL |- 0 binPosition
Unit: s (seconds)
Ti t Deviation timeout
fPosTiout | oMt IREAL - 0 ,
period Unit: s (seconds)
€ Output Variable
Output
Vari:ble Name | Data Type Value Range Initial Value Description
N [ Set to TRUE if the deviation is within th
binPosition | o' |BOOL  |TRUE, FALSE FALSE et to TRUE ITihe deviation s within the
deviation set window
Set to TRUE when the instruction is bein
bBusy Executing |BOOL TRUE, FALSE FALSE &
executed
C t deviation detecti lated t
bTimeOut |Timeout |LREAL | TRUE, FALSE FALSE urrent deviation detection refated to
the value of byDeaTimeCycles

3) Function Description

€ When bEnableis TRUE, once the detected deviation is smaller than the set window fPosWindow for
fPosTime, binPosition changes to TRUE. Once the detected deviation is larger than the set window,
bInPosition immediately changes to FALSE. Note: fPosTime must be set reasonably; otherwise it will
cause bTimeOut trigger (for example, for a cam with a period of 2 seconds, the time for determining
continuous deviation not exceeding the set window time is 1.5 seconds. If fPosTime is larger than 1.5
seconds, bInPosition will not be triggered).

-159-



6. Common MC Instructions

€ When bEnable is TRUE, the bBusy outputs TRUE.
€ Thedeviation value can monitor fCurrentDistance in the SMC_InPosition structure.
When bEnable is TRUE, if binPosition does not change to TRUE even after the set time of fPosTime, then

bTimeOut changes to TRUE.

€ Timing Diagram Sample Program
SMC_InPeosgition 1

1
SMC InPositicn
Exis —Haxis bInPFosition m—
bEBusy = sy
INFOSTION Enble bTimeQut =
Il bEnable
20 —fPosWindow
0.01 —fPo3Time
3 —fTimeQut
¢ Sample Program
- - v
10 \
c \  Confiquration
Add variale

T . FUN_TEST.SMC InPosition_1bInPasition

~ 1

I FUN_TEST.SMC_InPosition_t fCurrentDistance

20.329207041723294

[

binPosition immediately changes from TRUE to FALSE after the set window is exceeded.

A4

| _ Configuration
| Addvariable

\\\ mm FUN_TEST.SMC_InPasition_1.bInPosition
\\ 0
mm FUN_TEST.SMC_InPasition_LfCurrentDistance

18.982306485215304

-

After 4 task periods (2.5 ms) within the set window, binPosition becomes TRUE, which matches the

program setting of 0.01s.

-160-



6. Common MC Instructions

4) Timing Diagram

bEnable
bBusy
bInPosition
[ i :
fPosWindow //\\ /
- AN
eviation value
fPosTime
bTimeOut :
fPosTime fPosTime fPosTime

SMC_ReadSetPosition

This instruction reads the instruction position of the axis (converted user unit).

1)

Instruction Format

Instruction Name Graphic Expression ST Expression
SMC_ReadSetPositiond(
. SMC ReadsetPosition Auis:= .
Instruct|.0n = Talidk Ensbleis |
sMC_ :(: reading Busy b Valides |
e -
ReadSetPosition . ) I Busy=> ,
instruction ={Enable ErrorID| Errocr=> ,
position Pogition | ErrorID=> ,
Position=> );
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable yp Range Value .
. . Reference to the axis, that is, an instance of
Axis Axis AXIS_REF_SM3 - AXIS_REF_SM3
€ InputVariable
. Initial A
Input Variable Name Data Type Value Range value Description
E teth d tion if set t
Enable Executed | BOOL TRUE, FALSE | FALSE Xeclite Ehe read aperation I et o
TRUE
€ Output Variable




6. Common MC Instructions

3)

5)

Output .\ —
. Name Data Type Value Range | Initial Value Description
Variable yp . & - ! 'PH
Set to TRUE when th d
Valid Enable BOOL TRUE, FALSE | FALSE etto TRUE when the rea
value is valid
Set to TRUE when the
Busy Executing | BOOL TRUE, FALSE FALSE . . ,W .
instruction is being executed
Set to TRUE wh
Error Error BOOL TRUE, FALSE | FALSE etto when an error
occurs
ErrorlD Error code |SMC_ERROR - - See SMC_Error
Position Inst.rL.Jctlon LREAL i 0 Instruct|.on position of current
position task period

SMC_SetTorque

1)

2)

-162-

Function Description

READ SETPosition EN

Lxis —SBxis

The output of Position is the value of Axis.fSetPosition.

Timing Diagram Sample Program

SMC ReadSetPosition_0

When Enable is TRUE, Valid is output if no error occurs, and Busy outputs TURE.

When Enable becomes FALSE, Valid and Busy output FALSE. Position retains the value at the moment
before the value changes to FALSE.

Error Description

SMC ReadSetPesition
B Valid
Busy
Error
Enable ErrorID
Bositicn

ml FLLSE
— | SMC NO EBR
— 1.5ZE4+03

At the rising edge of bExecute: An error is output if there is an axis error. An error is output if the axis
inputisinvalid.

This instruction sets the axis torque (valid in torque control mode).

Instruction Format
Instruction Name Graphic Expression ST Expression
SMC_SetTorque 0(
SMC_SetTorque_0 Axis:= Axis,
Torque SMC_SetTorque bEnable:= ,
k — 1EN ENO — fTorque:= ,
SMC_SetTorque setting = Axis bBusy EBusy=>
instruction — bEnable CommandAborted [— Cormandiborted=s |
— fTorque bError |- bError—s
nErrorlD |- '
nErrorID=> }:
Related Variables
Input/Output Variable
Input/Output Value Initial L
Name Data Type Description
Variable yp Range | Value P




6. Common MC Instructions

*

*

4)

. . Reference to the axis, that is, an instance of
Axis Axis AXIS_REF_SM3 | - - AXIS_REF_SM3
Input Variable
) Initial .
Input Variable Name Data Type | Value Range Value Description
bEnable Executed BOOL TRUE, FALSE | FALSE Set axis torque at the rising edge
T
fTorque orgue LREAL - 0 Target torque value
setting
Output Variable
Output Variable Name Data Type Value Range Initial Value Description
Set to TRUE when the
Busy Executing |BOOL TRUE, FALSE FALSE . . .W .
instruction is being executed
Commandaborted | "IN [ Bo0L TRUE, FALSE FALSE Setto TRUE when the current
aborted instruction is aborted.
Error Error BOOL TRUE, FALSE FALSE Setto TRUE when an error
occurs
ErrorID Error code |SMC_ERROR |- - See SMC_Error

Function Description

If there is no error at the rising edge of bEnable, bBusy outputs TURE.

This instruction only sets the torque value for the axis and does not perform torque control. The axis
control mode is valid in the torque control mode.

The torque setting instruction can only run in synchronous torque mode. Before enabling this
instruction, switch the control mode to synchronous torque mode by using the SMC_SetControllermode
system.

The actual torque of the drive is limited by the maximum positive and negative torque set in the
configuration.

To stop the execution of this instruction, use the MC_Stop (forced stop) or MC_ImmediateStop
(emergency stop) instruction. After the instruction is stopped, the drive switches to the synchronous
position mode.

Error Description

At the rising edge of bExecute:
An error is output if there is an axis error. An error is output if the axis input is invalid.

An error is output when there is an axis control mode error, and the error code is SMC_ST_WRONG_
CONTROLLER_MODE.

SMC_BacklashCompensation

This instruction compensates for the gap between master and slave axes. For example, when the
virtual axis is the master axis and the slave axis is the synchronous mirror of the virtual axis in the belt
transmission, there is a backlash between the position of the slave axis and the master axis due to
external reasons. In this case, this instruction can be used to compensate for this backlash.

The function of this instruction is similar to that of the phase shift instruction (MC_Phasing), where the
phase depends on the running direction of the master axis.

-163-



-164-

6. Common MC Instructions

1)

Instruction Format

Instruction Name Graphic Expression ST Expression
SMC_BacklashCompensationl |
SMC_BacklashCompensaticn Master:= '
SBMaster bBusy Slawve:= ,
Hs51ave bCommandiborted - bExecute:= ,
bError - fBacklash:= ,
iErrorID flompensationVel:= ,
SMC_ Backlash —|bExecute bCompensating - flompensaticnhcci= ,
BacklashCom |compensation | 4 fBacklash fCompensationbDec:= ,
pensation instruction —|fCompensationVel eBacklashMode:= ,
— fCompensaticnice eBacklashStart3itate:= ,
— fCompensaticnDec bBusy=> ,
—eBacklashMode bCommandAborted=> ,
—|eBacklashStartState bError=> ,
iErroriID=> ,
klompensating=> ) >
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable - Range | Value 2
Master Reference to the axis, that is, an instance of
Master AXIS_REF_SM3 |- - ’ ’
axis - AXIS_REF_SM3
Slave Reference to the axis, that is, an instance of
Slave . AXIS_REF_SM3 |- -
axis AXIS_REF_SM3
€ InputVariable
Input Variable Name Data Type | Value Range |Initial Value Description
bExecute Executed |BOOL TRUE, FALSE | FALSE Set the offset at the rising edge
fBacklash LREAL - 0 Compensate for the backlash
fCompensationVel LREAL - 0 Velocity at compensation
fCompensationAcc LREAL - 0 Acceleration rate at compensation
fCompensationDec LREAL - 0 Deceleration rate at compensation
Compensation mode:
SMC_BL_AUTO: The running direction
of the master axis determines the
compensation direction.
SMC_ SMC_BL_POSITIVE: Positive
SMC_BL_ . .
eBacklashMode BACKLASH_ |- AUTO compensation, independent of the
MODE running direction of the master axis
SMC_BL_NEGATIVE: Negative
compensation, independent of the
running direction of the master axis
SMC_BL_OFF: No compensation




6. Common MC Instructions

Input Variable

Name Data Type

Value Range

Initial Value

Description

eBacklashStartState

SMC_
BACKLASH_
STARTSTATE

SMC_BL_
START_
NEGATIVE

Describe the operating state of the
axis during instruction execution.
SMC_BL_START_NEGATIVE: The slave
axis moves under negative traction.
No compensation is required for
motion in negative direction. Once the
motion direction changes to positive,
compensation must be established as
twice the value of fBacklash.
SMC_BL_START_POSITIVE: The slave
axis moves under positive traction.
No compensation is required for
motion in positive motion. Once the
motion direction changes to negative,
compensation must be established as
twice the value of fBacklash.
SMC_BL_START_NONE: Motion in
positive or negative direction will
generate distance compensation
equaling the value of fBacklash.

€ Output Variable

Output Variable

Name

Data Type

Value Range

Initial Value Description

bBusy

Executing BOOL

TRUE, FALSE

Set to TRUE when the
instruction is being
executed

FALSE

bCommandAborted

Instruction

BOOL
aborted

TRUE, FALSE

Set to TRUE when the
instruction is interrupted
by other control
instructions

FALSE

bError

Error BOOL

TRUE, FALSE

Set to TRUE when an
error occurs

FALSE

iErrorlD

Error code

SMC_ERROR -

- See SMC_Error

bCompsating

Compensation in
progress

BOOL

TRUE, FALSE

FALSE

3) Function Description

€ Ifthereisno error at the rising edge of bExecute, bBusy and bCompsating output TRUE. After
compensation is completed, bCompsating outputs FALSE.

€ Working mode: eBacklashMode - compensation direction is “Positive” , eBacklashStartState is
“Positive” , and fBacklash is a positive value. Before the bBusy signal arrives, the master and slave

axes should be in the same position if possible; otherwise, the slave axis will be synchronized with the
master axis phase after the bExecute rising edge signal arrives. If the bBusy signal is already available,
refreshing the bExecute rising edge should observe:

4)  Timing Diagram Sample Program

-165-



-166-

6. Common MC Instructions

SMC_BacklashCompensation_0

SMC BacklashCompensation

3M Drive Virtual —“Master

SM Drive Virtual 1 —Hslave

€ Sample Program

COFENSATION iE
[lll] LExecute bCompen
—fBacklash
1000 —fCompensaticnVel
2000 —fCompensaticnlAcc
2000 — fCompensaticnDec

SMC BL DQS | —|eBacklashMode
—|eBacklash3tartState

bBusy ——

bCommandAborted f=

bError [~
rrorID— [SMC NO ERR
gating = RENG

Configuration
Add variable

i T

| e / |
Ry / |
| g L
5 -~ / -
P = b

| /// P P

5)

Error Description

At the rising edge of bExecute:

w= SM_Drive_Virtual_1.fSetPosition

157.64839 18085869

W FUN_TEST.SMC_BacklzshCompensation_0.bCompensating
o

e SM_Drive_Virtual fSetPosition

107.6483918085869

An error is output if there is an axis error. An error is output if the axis input is invalid.

SMC_ChangeGearingRatio

This instruction changes the electronic gearing ratio (ratio of pulse to user unit) and drive type set by

the user. Note: After this function block is executed, the axis must be restarted by SMC3_ReinitDrive to

ensure that the setup variables can be initialized correctly.

1)  Instruction Format
Instruction Name Graphic Expression ST Expression
ChangeGearingRaticO(
3MC ChangeGearingRatic Axig:=
“nxis B bDone = o '
= bExecute:= ,
Dy dwRaticTechUnitsDencm:= ,
Instruction IR iRatioTechUnitsNum:= ,
SMC_ for changing| T]eecute RErrorlD - £PositionPeriod:=
. . LIS L lii-= ,
ChangeGearingRatio gear ratio —|dwRaticTechlni tsDenom iMovementType:= ,
—iRaticTechUnit sNum b >,
—fPositionPeriod bEL
—iMovementType bET
nl 1




6. Common MC Instructions

2)
.

*

*

3)

Related Variables

Input/Output Variable
Input/Output Value Initial .
N Data T D t
Variable ame ata lype Range | Value escription
Reference to the axis, that is, an instance of
Axis Axis AXIS_REF_SM3 | - - AXIS_REF_SM3. The gear ratio of this axis will be
changed
Input Variable
. Initial s
Input Variable Name |Data Type | Value Range value Description
bExecute Executed | BOOL TRUE, FALSE | FALSE Execute the FB at the rising edge
P - —
dwRatioTechUnitsDenom | - DWORD |- 0 ulse unit converted to application
units (eg: mm)
dwRatioTechUnitsDenom value
iRatioTechUnitsNum - DINT - 0 corresponding to the desired
application unit
Positl -
fPositionPeriod ) LREAL ] ) o§|t|on cycle period (modulus value),
valid only for rotary motors
iMovementType - INT - - 0: Modulo axis; 1: Finite axis
Output Variable
Output
Variapble Name Data Type Value Range Initial Value Description
Set to TRUE when
bDone Completed BOOL TRUE, FALSE FALSE execution setup is
completed
Set to TRUE when the
bBusy Executing BOOL TRUE, FALSE FALSE instruction is being
executed
TRUE wh
bError Error BOOL TRUE, FALSE FALSE setto TRUE whenan
error occurs
nErroriD Error code SMC_ERROR - - See SMC_Error

Function Description

€ Attherising edge of bExecute, if there is no error, bBusy outputs TURE. At completion, bDone outputs
TRUE, and bBusy outputs FALSE.

For example, for a 20-bit encoder servo motor with a 10:1 reduction ratio, if the lead screw is driven
(10 mm pitch), the motor needs to rotate 10 turns and the screw moves a distance of 10 mm. Set
dwRatioTechUnitsDenom to 1048576*10 and iRatioTechUnitsNum to 10.

€ The function block is used to dynamically modify the highlighted part of the program shown below:

-167-



6. Common MC Instructions

Y Axis X
General Axis type and limits
) . [ wirtual made T :
SE L Tio @ Modulo Modulo value [u]: 360.0

Commissioning NI

Software error reaction

SM_Drive_ETC_GenericDSP402: I/0
Mapping Decelerate Deceleration [u/s2]: i

Status Max. distance [u]: 0

Information Dynamic limits

Velocity [ufs]: Acceleration [ufs?]  Deceleration [ufs2]  Jerk [ufs3]:

1000 1000 1000

4 Axis X
Scaling
e [7] Invert direction
Scaling/Mapping 16%100000 increments <=2 matar turns 1
1 motor turns <=3 gear output turns 1
Commissioning
1 gear output turns <=3 units in application 360
SM_Drive_ETC_GenericDSP402: I/O
Mapping Mapping
Status Automatic mapping

Trrutes

4)  Error Description
At the rising edge of bExecute:
An error is output if there is an axis error.
An error is output when the input value is invalid, with the error code SMC_CGR_ZERO_VALUES.
An error is output when the axis is in instruction control, with error code SMC_CGR_DRIVE_POWERED.

An error is output when the input modulus value is invalid (eg: <0), with error code SMC_CGR_INVALID_
POSPERIOD.

SMC_ReadFBError

This instruction reads the function block error.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
— — SMC ReadFBError(
SMC ReadFBError Mxis:= .
E= P -
Lxis bVvalid FEnakle:= .
Instruction DHE = EValid=> ,
SMC_ for reading bFEErzoz = bBuay=> ,
. = hEnahle nFBErrorID
ReadFBError |function bBFEError=: ,
pbyErrcrInstance [~
block errors nFEErrorID=>
strErrorInstance [~ !
tTimeStamp | pbkvErrorInstance=> ,
strErrorInstance=> ,
tIimeStamp=> );

-168-



6. Common MC Instructions

L 2

4)

Related Variables

Input/Output Variable

Input/Output Value Initial .
Name Data Type Description
Variable P Range | Value P
Reference to the axis, that is, an instance of
Axi AXi AXIS_REF_SM3 - - ’ ’
XS XS —REr- AXIS_REF_SM3
Input Variable
. Initial s
Input Variable Name Data Type | Value Range value Description
bEnable Executed BOOL TRUE, FALSE | FALSE Execute the read operation if set to TRUE
Output Variable
) Initial o
Output Variable Name Data Type Value Range Value Description
bValid Enable BOOL TRUE, FALSE | FALSE Set to TRUE when the read value is valid
Set to TRUE when the instruction i
bBusy Executing | BOOL TRUE, FALSE | FALSE erro when the mstruction s
being executed
bFBError Error BOOL TRUE, FALSE | FALSE Set to TRUE when an FB error occurs
nFBErroriD Error code | SMC_ERROR |- - See SMC_Error
pbyErrorinstance |- - - - Function block error at output point
Point to the error function block
strErrorinstance |- - - - .
(program, subprogram, function block)
tTimeStamp - TIME - - Timestamp when the error occurred

Function Description

When Enable is TRUE, Valid is output if no error occurs, and Busy outputs TURE.

If there is a function block alarm, bFBError outputs TRUE.

When Enable becomes FALSE, Valid and Busy output FALSE.

Timing Diagram Sample Program

€ Sample Program

SMC_ReadFBError_0

Zxis —Saxis

bEnable

SMC ReadFBError
B bValid
bBusy
bFBError
nFEErrorID
pbvErrecrInstance
gtrErrorInstance
tTimeStamp

.
- =

- =

- [55c 3 0]

- [emssonis]

- [Device app)]
~ [Toinsmmseseiine]

-169-



-170-

6. Common MC Instructions

Prepare Value

-
Prepare Walue

Expression: SMC_ReadFBError_0.nFBErrorlD

Type: SMC_ERROR

What do you want to do?

Current value: SMC_ERROR.SMC_ADL_BUFFER_OVERRUN

(@) Prepare a new value for the next write or force operation:

=28

Expression: SMC_ReadFEError_0.strErrarInstance

Type: STRIMG

Current value: Device. Application. FUM_TEST.SMC_AxisDiagnosticLog_0

What do you want to do?

(@) Prepare a new value for the next write or force operation:

Remove preparation with a value.

Release the force, without modifying the value.

Release the force and restore the variable to the value it had

s value it had

[ o]

before forcng it.
OK ] [ Cancel
¢ ErroriD
] SMC_ ExisDiagnesticLog 0
SMC AxisDiagnosticlog
ixis Haxis bDone
bBusy
LOG_EXE LError
|]l[| bExecute ErrorID
bRecording
CLOSEFILE
Il ECloseFile

[reseizs™ |—|sFileName

bSetPosition
bRctPosition
TRUE
|]l[| bBSetVelccity
TEUE
|]l[| bRctVelocity
bSetRAceceleration
TEUE
|]l[| bActAcceleration
—bySeparatorChar
'T! —sReccrdSeparatorString

LOG AT CLO|—|eMode

- I
— [smc anr 50]
- B

Function block where the error occurred



6. Common MC Instructions

5) Error Description

At the rising edge of bExecute:

An error is output if there is an axis error.

An error is output if the axis input is invalid.

SMC_ClearFBError

This instruction clears the FB error.

Instruction Format

1)

Instruction Name Graphic Expression ST Expression
Instruction SMC_ClearFBE
SMC_ . —pDrive SRR SMC_ClearFBErrorf— TEST:=SMC_
for clearing . .
ClearFBError ClearFBError(pDrive:=ADR(AXxis) );
the FB error

2) Related Variables
€ InputVariable
Value Initial
Input Variable Name Data Type Description
pu ! yp Range Value B
Drive Axis AXIS REF SM3 Reference to the axis, that is, an instance
P —REr- of AXIS_REF_SM3
€ Output Variable
Output Variable Name Data Type Value Range Initial Value Description
E h f
SMC_ClearFBError ror BOOL TRUE, FALSE | FALSE Clear the error fset to
clearing TRUE

SMC3_PersistPositionLogical

This instruction keeps recording the position of the logical axis (right-click at the real or virtual axis
and click “Add Device” to select the logical axis to be added). After the controller is powered off and
restarted, the recorded value of the position before power-off will be restored.

1) Instruction Format
Instruction Name Graphic Expression ST Expression
SMC3_PersistPositionLogicall(
SMC3_PersistPositionLogical Rxis:= '
. Hrxis bPogitionRestored — PersistentData:= '
SMC3 Instruction | 4parsistentata bPositionStored — bEnable:= ,
Persis;Position for keeping bBusy - bPositicnRestored=>
Logical the axis bError — bPositionStored=> ,
I . r=
g position —EEnakle eErrorID - bBusy=> ,
. . kError=> ,
eBestoringDiag—
eErroriD=> ,
eRestoringDiag=> ):
2) Related Variables
€ Input/Output Variable

-171-



-172-

6. Common MC Instructions

*

Input/Output Value | Initial .
N Data T D t
Variable ame ata fype Range | Value escription
Axis Axis AXIS_REF_LOGICAL_ Reference to the axis, that is, an instance
SM3 of AXIS_REF_SM3
SMC3
) Retentive T . Power-down retentive data structure for
PersistentData PersistPositionLogical_ | - - . . .
data storing position information
Data
Input Variable
. Initial L
Input Variable Name | Data Type | Value Range Value Description
The function block is executed if set to TRUE
and not executed if set to FALSE.
bEnable Executed | BOOL TRUE, FALSE | FALSE To restore the last stored position during
initialization, this value must be set to TRUE
from application startup.
€ Output Variable
Output
Vs Name Data Type Value Range Initial Value Description
bPosition P05|t|(?n BOOL TRUE, FALSE |FALSE Set to TRUE wher.1 the position is
Restored |restoring restored upon axis restart
bPosition Pos'ltlon BOOL TRUE, FALSE |FALSE Set to TRUE when the position is
Stored saving stored after an FB call
FB
Set to TRUE when FB tioni
bBusy  |execution |BOOL TRUE, FALSE |FALSE etto TRUE when T execution s
) not completed.
in progress
bError Error BOOL TRUE, FALSE |FALSE Set to TRUE when an error occurs
Output de wh
eErrorlD  |Error code |SMC_ERROR - SMC_NO_ERROR | ~UtPutanerrorcodewnen an
error occurs
Diagnostic information in
position restoration
SMC3_PPD_RESTORING_OK:
Position successfully restored;
SMC3_PPD_AXIS_PROP_
CHANGED: Axis parameters have
SMC3_ been changed and the position
eRestoring-|Restoration |SMC3_ PersistPositionDiag. |could not be restored;
Diag diagnostics | persistPositionDiag SMC3_PPD_ SMC3_PPD_DATA_STORED_
RESTORING_OK  |pyRING_WRITING: The function
block copies data from the axis
parameter data structure instead
of from PersistentData.
Possible cause: Non-
synchronized retentive variable,
controller crash

3)
.

Function Description

If bEnable is TRUE upon PLC restart, then bPositionRestroed outputs TRUE.

Virtual and real axes are not supported.

€ Torestorethe “position” before power-off upon PLC restart, use this function block and configure
SMC3_PersistPositionLogical_Data as a retentive variable.

€ Usage (when the real axis encoder is a multi-turn absolute encoder):

SMC3_PersistPositionLogical_Data declared in PersistentVars




6. Common MC Instructions

+- 32 MainTask
+-g¥ Task

E’@ tra

&5 tra_1

T PersistentVars

VAR GLOBAL PERSISTENT RETAIN
peraiastentData3: SMC3 PersistPositionlogical Datas

3| END VAR

[ &]

Called in the PLC main task (EthCat task)
€ Declaration section:

VAR
SMC3_PersistPosition_3:SMC3_PersistPositionLogical;
END_VAR
€ Program section:

El SMC3_PersistPosition l({Axis:=K Axis , PersistentData:=persistentDatzl ,bEnable:=IEUE };

* Timing Diagram

A
bEnabl
nable > .
bPosition
Restored > t
bPosition " t
stored >
One scan
bERROR P+

4)  Error Description

If the input axis is a virtual or real one, an error will be output. An axis error will result in an error output.

SMC_Homing

This axis homing instruction is different from MC_Home. For MC_Home, the homing method is set at the
axis configuration. For this instruction, the homing method is controlled by the controller.

1) Instruction Format

-173-



-174-

6. Common MC Instructions

Instruction Name Graphic Expression ST Expression
SMC_Heming
Haxis bDone [— SMC Homing(
HE= Lxis:= ,
bCommandfiborted — EExecute:= ,
CE HIEEE |y fHomePosition:= ,
fHemePositicn nErrorID— - .
) ) fVelocitySlow:= ,
fVelecitySlow bStartlatchincIndex — . . L
fVelecityFast __#ElccltiF'.ﬁSt'_ '
fleceleration fAcceleration:= ,
fDeceleration fleceleraticn:= ,
fder: fderk:= ,
nDirecticn nlirection:= ,
Asis homi bEeferencelwitch:= ,
Xis homin s
SMC_Homing instructiong fSignalDelay:= ,
J— L=
?E?ference““_ltm nHomingMode:= ,
":LglllaDEla&' bReturnIofero:= ,
—nHomingMode
bIndexOccured:= ,
fIndexPosition:= ,
—bReturnToZero bIgnoreHWLimit:= ,
bDone=> ,
bBusy=> ,
—(pIndexdccured bCommandiborted=> ,
—fIndexPosition bFError=>
nErrorIl=> ,
. bStartlatchingIndex=> )
—bIgnoredWLimit
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
Name Data Type Description
Variable yp Range Value P
Reference to the axis, that is, an instance of
Axis Axis AXIS_REF_SM3 - - ’ ’
-~ AXIS_REF_SM3
€ InputVariable
. Initial _—
Input Variable Name Data Type Value Range value Description
The function block is executed if set
bExecute Executed BOOL TRUE, FALSE | FALSE | to TRUE and not executed if set to
FALSE.
Home position Home position setting after homing,
fHomePosition nep LREAL - 0 pe 6 &
setting the unitis a user-calibrated one
. Low velocity reference after the
fVelocitySlow Low velocity LREAL - 0 y.
reference switch
) High velocity reference after the
fVelocityFast Fast LREAL - 0 & y
reference switch
fAcceleration Acceleration LREAL - Acceleration setting
fDeceleration Deceleration | LREAL - Deceleration setting
Acceleration
flerk . LREAL - 0 Jerkin [u/s3]
derivative
N Homing .| Star direction of homing. See MC
nDirection MC_DIRECTION |- Negative -
direction - 83UVe pIRECTION
Reference switch connection
. Reference . .
bReferenceSwitch switch BOOL TRUE, FALSE | FALSE | TRUE: Trigger reference switch
FALSE: Close reference switch




6. Common MC Instructions

Initial

Input Variable Name Data Type Value Range
pu ! yP Y & Value

Description

Transfer time of the reference
fSignalDelay Delay LREAL - 0 switch, to compensate for dead-
zone time Unit: second

SMC_HOMING
nHomingMode Homing mode MOD_E - - - See SMC_HOMING_MODE.

TRUE: The axis moves to the zero
position after homing is complete
(Note: If fHomePosition=10, the axis
bReturnTozero RetL.Jr.n to zero BOOL TRUE, FALSE | FALSE Position becomes 10 after homing
position is complete. If bReturnTozero is
TRUE, the axis moves for 10 units
in negative direction to the zero

position after homing is complete.)

TRUE: Flag pulse recording, which is
valid when homing mode is FAST_
BSLOW_I_S_STOP or FAST_SLOW_
|_S_STOP

Position recorded at the time of flag

pulse

bIndexOccured BOOL TRUE, FALSE | FALSE

findexPosition LREAL - 0

If its value is TRUE, set hardware
limit switch to FALSE. If a physical
Ignore switch is used as both a hardware

. .. | BOOL TRUE, FALSE | FALSE L . .
hardware limit limit switch and a reference switch,
then the hardware control will be
set to FALSE.

blgnoreHWLimit

€ Output Variable

Initial

Output Variable |Name| DataType | Value Range Value Description
bDone BOOL TRUE, FALSE | FALSE Set to TRUE when homing is complete
bBusy BOOL TRUE, FALSE | FALSE :fefte: TRUE when function block is in
bCommandAborted BOOL TRUE, FALSE |FALSE | ctto TRUE when the function block is

interrupted by another instruction
Error BOOL TRUE, FALSE | FALSE Set to TRUE when an error occurs

Error code, enumerated variable
See SMC_Error for specific error code.

ErrorlD SMC_ERROR

|
o

Generated by bindexOccured and

bStartLatchingIndex BOOL TRUE, FALSE | FALSE .
findexPosition

€ Homing Mode (SMC_HOMING_MODE)

Initial

Enumeration Name Type
yp Value

Description

The axis moves toward the home switch rapidly in the set
direction. After touching the home switch, the axis leaves

FAST_BSLOW_S_STOP ;%CD‘EHOMING_ 0 the home switch slowly in negative direction. After that,
execute MC_setPosition to set the current position to the
fHomePosition setpoint, and then execute MC_stop.

The axis moves toward the home switch rapidly in the
set direction. After touching the home switch, the axis

FAST BSLOW_STOP_S SMC_HOMING_ 1 leaves the home switch slowly in negative.direction.

MOD After that, execute MC_stop to stop the axis, and then

execute MC_setPosition to set the current position to the
fHomePosition setpoint.

-175-



-176-

6. Common MC Instructions

3)

Initial

Enumeration Name Type
yP Value

Description

The axis moves toward the home switch rapidly in the set
SMC_ HOMING direction. After touching the home switch, the axis leaves
FAST_BSLOW_|_S_STOP MOD_ - 2 the home switch slowly in negative direction. When the

bindexOccured signal arrives, execute MC_setPosition first
and then MC_stop.

The axis moves toward the home switch rapidly in the set
direction. After touching the home switch, the axis leaves

SMC_HOMING
FAST_SLOW_S_STOP MOD_ - 4 the home switch slowly. After that, execute MC_setPosition
to set the current position to the fHomePosition setpoint
and then execute MC_stop.
The axis moves toward the home switch rapidly in the set
SMC_HOMING.. direction. After touching the home switch, the axis leaves

FAST_SLOW_STOP_S MOD 5 the home switch slowly. After that, execute MC_stop, and
then execute MC_setPosition to set the current position to
the fHomePosition setpoint.

The axis moves toward the home switch rapidly in the set
SMC_HOMING direction. After touching the home switch, the axis leaves
FAST_SLOW_I_S_STOP MOD_ - 6 the home switch slowly in negative direction. When the

bindexOccured signal arrives, execute MC_setPosition first
and then MC_stop.

Function Description

After SMC_HOMING is started at the rising edge of bExecute, the axis starts moving at fVelocityFast
and in the direction defined by nDirection until bReferenceSwitch changes to FALSE. The axis will then
slowly stop and leave the reference switch at fVelocitySlow in negative direction. Homing is complete
after bReferenceSwitch changes to TRUE.

The state of bReferenceSwitch is ON->OFF->ON after the homing instruction is enabled. Homing is
complete at the rising edge of OFF->ON. Set the reference position.

Reference position = fHomePostion + ((fSignalDelay x 1000 + 1 DC clock period)/1000) x fVelocitySlow.
It compensates for the set bReferenceSwitch sampling delay and one communication period
displacement delay.

If bReturnToZero = TRUE, bReferenceSwitch will, at the rising edge of state OFF->ON, set the reference
position to: fHomePostion + ((fSignalDelay x 1000+1 DC clock period)/1000) x fVelocitySlow. Then, the
axis moves to the zero position at fVelocityFast.

Note: After the Done signal, the axis position is set to fHomePosition. The timing of the setting is related
to nHomingMode. (For details, see SMC_HOMING_MODE.) The following figures show different homing
modes:

3) Homing mode “0”

Home detection ON |
bReferenceSwitch |
OFF

| >
Il MC_SETPOSITION

Fast in the set direction I One task period between two points
/ \ I MC STOP
Homing velocity 1l >

|
1y
|

I Slow in the direction
Il reverse to the set direction

4) Homing mode “1”



6. Common MC Instructions

Home detection N |
bReferenceSwitch |
OFF f >
I 11 MC_STOP
Fast in the set direction |1 MC_SETPOSITION
I
Homing velocity |4~ >

Slow in the direction
reverse to the set direction

—

5) Homing mode “4”

Home detection
bReferenceSwitch

Slow in the direction reverse to the set direction
MC_SETPOSITION

. . /—\ n
Fastin the set direction % One task period between two points
Homing velocity 4l MC_STOP >

I
I
OFF I
I
I

6) Homing mode “5”

: ON
Home detection

bReferenceSwitch

>

Slow in the direction reverse to the set direction
MC_SETPOSITION

OFF

|
|
|
Fast in the set direction I |
i
I
|
1

[
Homing velocity 11 MC_STOP >
(|
1
4) Timing Diagram
7) When bReferenceSwitch is TRUE during instruction execution
A
bEecute »t
bReferenc
eSwitch »t
bBusy >
bDone >
fVelgcity
Fafst
VELOCITY >
-fVelocitySlow \

8) When bReferenceSwitch is FALSE during instruction execution

-177-



6. Common MC Instructions

A
bEecute > .
bReferenc
eSwitch > t
bBusy > t
bDone Pt
VELOCITY |
—fVelociytySlow

5) Error Description

There is an error in the input axis type.

There is an axis error.
The axis is disabled.

The velocity or acceleration is invalid.

MC_TorqueControl

This instruction performs torque control by using the torque control mode of the servo drive.

1) Instruction Format

Instruction

Name FB/FC

LD Expression

ST Expression

MC_

TorqueControl

Torque

Control FB
instruction

MC TorqueControl_0

[l

MC TorqueControl

EM EMNC
iz InTorgue
Execute Busy
Torque CommandAborted
TorgueRamp Error
Velocity ErrorlD

MC TorqueControl 0(
Bxis:= Axis,
Execute:= ,
Torque:= ,
TorgqueRamp:=
Veloccity:= ,
InTorgque=> ,
Buay=> ,
Ective=» |
Commandiborted=>
Error== ,
ErrorID=> ):

r

2) Related Variables

€ Input/Output Variable

-178-




6. Common MC Instructions

*

*

Input/Output Value Initial .
. Name Data Type Description
Variable yP Range Value P
Reference to the axis, that is, an instance
Axi AXi AXIS_REF_SM3 |- - ’ ’
XS X —REr- of AXIS_REF_SM3
Input Variable
Input Variable Name | Data Type Value Range Initial Value Description
Start the motion at the
Execute Start BOOL TRUE, FALSE FALSE . I
rising edge
N Specify the target
The positive torque torque to be output
cannot b.e. larger than to the servo drive in
fMaxP05|.t|veTorq ue units of [0.1%], at the
Target of the axis structure. ratio "100.0%" of rated
Torque LREAL The absolute value of 0 t
torque the negative torque oraue
& q Unit: [%/s]
cannot be larger than ]
fMaxNegativeTorque of If1001is entere'd, the
the axis structure. target torque is the
rated torque.
Specify the ratio for
converting the current
value to the target
torque. The larger the
Torque o value, the faster the
TorqueRamp slope LREAL Positive or 0 0 target torque is reached
[%/s].
The value 0 means the
output is just the target
torque.
Velocity Velocity |LREAL Positive or 0 0 Max. running velocity
Output Variable
Output Variable Name Data Type Value Range Initial Value Description
TRUE: Target torque is
reached
Target isflagi
InTorque torque BOOL TRUE, FALSE | FALSE Note: This flag s
reached continuously refreshed
during instruction
execution.
Set to TRUE after th
Busy Executing | BOOL TRUE, FALSE | FALSE >etto IRUE attere
instruction is received
Set to TRUE when the
Command Instruction , S
aborted BOOL TRUE, FALSE FALSE current instruction is
Aborted aborted
Set to TRUE when an
Error Error BOOL TRUE, FALSE FALSE W
error occurs
Output d
ErroriD Error code | DWORD - 0 utputan error code
when an error occurs

Function Description

Specify the torque instruction value directly to control the output torque of the servo motor.

The target torque is specified in units of [0.1%)]. For the specified value, the first decimal place is valid,
and other decimal places are discarded.

-179-



-180-

6. Common MC Instructions

4)

The actual torque of the drive is limited by the maximum positive and negative torque set in the
configuration.

To stop the execution of this instruction, use the MC_Stop (forced stop) or MC_ImmediateStop
(emergency stop) instruction. After the instruction is stopped, the drive switches to the synchronous
position mode.

This instruction achieves torque control by using the torque control mode of the servo drive. The axis is
in the Continuous Motion status during instruction execution.

Velocity is always a positive value. The direction depends on the torque and load.

The torque instruction requires the drive to map the desired torque (0x6071) and the maximum profile
velocity (0x607f); otherwise, an error will be reported.

TorqueRamp specifies the slope from the currently specified instruction torque to the output target
torque.

Examples are shown below:

Torque ¢

Torque

A J

Time

TorqueRamp

0 v i

As shown above, the larger the TorqueRamp, the faster the target torque Torque is reached.
Precautions

The torque control instruction can only run in synchronous torque mode. Before enabling this
instruction, switch the control mode to synchronous torque mode by using the SMC_SetControllermode
system.

Timing Diagram

Start this instruction and then stop it.



6. Common MC Instructions

ComnandAborted

MC_ImmediateStop

Execute

InTorque

Busy

Active

Current velocity

At stop

Y
-

A Torque control Position control
Velocity _m””””“””””m_;;;;;;;:;;;;;y——__"i;;;,_”m__””_””””“”m““
>
Time
Torque control _Position control
Torque
4 Reference torque
Tarque [ h Torque control based
//\ P 7 — on the servo drive
/ Current torque . velocity limit
5 \ >
T T L

Time

This instruction stops the axis according to the stopping mode specified by StopMode, regardless of the

axis status.

1) Instruction Format

Instruction Name FB/FC LD Expression ST Expression
MC TmmediateStop 0(
MC_ImmediateStop_0 Lxis:= Axis,
MC_ImmediateStop Execute:= ,
Immediate —{ EM ENO |-
. StopMode:=
MC_ImmediateStop |stop FB = Auas Done — D p-_ !
instruction —| Execute Busy — one=>
— StopMode Error [— Busy=> ,
ErrorlD — Error=s ,
ErrorID=> }:
2) Related Variables
Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable 2 Range Value .
Reference to the axis, that is, an instance
Axi Axi AXIS_REF_SM - - ’ ’
XS X S-REF_SM3 of AXIS_REF_SM3
€ InputVariable
i Initial o
Input Variable Name Data Type Value Range value Description
Execute Start BOOL TRUE, FALSE FALSE Start the motion at the rising edge

-181-



6. Common MC Instructions

0: The instruction velocity is
reduced from the current velocity
StopMode Stop MC_STOP_MODE |0/1 0 to 0.

1: Immediately stop and switch
the servo to OFF.

€ Output Variable

Output Variable Name Data Type Value Range Initial Value Description
Set to TRUE upon
Done Completed | BOOL TRUE, FALSE | FALSE 4 rUEupon
instruction completion
Set to TRUE after the
Busy Executing BOOL TRUE, FALSE FALSE . L .
instruction is received
Set to TRUE wh
Error Error BOOL TRUE, FALSE | FALSE etto when an error
occurs
Output d
ErrorID Error code | DWORD - 0 utputan errorcode
when an error occurs

3) Function Description

€ Thisinstruction can be executed when the axis is in any status. For example, this instruction can be used
to stop the axis immediately even if it decelerates to stop due to an exception.

€ When ErrorStop is TRUE, the MC_Stop instruction cannot be executed, but the MC_ImmediateStop
instruction can be executed.

€ After theinstruction is executed, the motion is stopped immediately as specified by StopMode. The
instruction in the action changes to the CommandAborted status.

€ Ifthe axisisin disabled state, execution completion is returned directly.
€ Ifthe axisis a non-control one, an error will be reported.

€ Iftheservois set to OFF, the axis can be enabled only after MC_Reset is executed if an emergency stop
occurs.

€ When MC_ImmediateStop is triggered in torque control mode, the control mode will change to position
mode first, and then an emergency stop will be performed.

4) Precautions

€ Axisin Stopping status
In the following conditions, the axis status is Stopping:
The axis is decelerated to stop by the MC_Stop instruction.
The MC_ResetFollowingError instruction is being executed.
When this instruction is started, Error of the above instruction in execution changes to TRUE.
5) Timing Diagram
The value of Busy changes to TRUE when Execute is started.

When processing of the immediate stop instruction is complete, Done changes to TREU.

-182-




6. Common MC Instructions

MC_Move instruction
Execute

Done
Busy
Active

CommandAborted

MC_ImediateStop instruction

Execute

Done
Busy

CommandAborted

Velocity

MC_ResetFollowingError

This instruction resets the deviation between the current instruction position and the feedback position.

1) Instruction Format

v

Time

Instruction Name FB/FC LD Expression ST Expression
MC_ResetFollowingError_0
< MC ResetFollowingError 0(
MC_ResetFollowingError T -
Bxig:= hxis,
. — EM EMNO
Deviation Execute:=
MC_Reset B i
- reset FB Auxis Daone Done=s |
FollowintError .+ tion — Execute Busy Busy=> ,
Commandaborted Commandiborted=> ,

Error Error=» ,

ErrorlD ErrorIl=> ):

2) Related Variables
Input/Output Variable

Input/Output Value Initial L

Name Data Type Description
Variable Y Range Value P

Reference to the axis, that is, an instance
Axi Axi AXIS_REF_SM - ’ ’
XS XS S_REF_SM3 of AXIS_REF_SM3
€ InputVariable
. Initial _
Input Variable Name Data Type Value Range value Description

-183-



6. Common MC Instructions

‘ Execute Start BOOL TRUE, FALSE FALSE Start the motion at the rising edge

€ Output Variable

Output Variable Name Data Type Value Range Initial Value Description
Set to TRUE
Done Completed | BOOL TRUE, FALSE FALSE ‘e © . vpon .
instruction completion
. Set to TRUE after the
Busy Executing | BOOL TRUE, FALSE FALSE . L .
instruction is received
. Set to TRUE when the
Instruction . L
CommandAborted BOOL TRUE, FALSE FALSE current instruction is
aborted
aborted
Set to TRUE wh
Error Error BOOL TRUE, FALSE | FALSE etto when an error
occurs
Output d
ErrorID Error code | DWORD - 0 utputan errorcode
when an error occurs

3) Function Description

€ Thisinstruction sets the deviation between the current instruction position and the feedback position
of the MC function moduleto “0” in the cyclic synchronous position mode.

€ When therising edge of Execute is detected, the feedback position at that time is given to the instruction
as the new target position.

€ Asshown in the figure below, when this instruction is started during a contact action in which a position
deviation occurs, the position instruction is issued in negative direction so that the position deviation
is “0” .Foraninstruction with a position deviation, CommandAborted becomes TRUE and the
instruction is aborted.

Positi
os! '_DI_-I A Reference position
Contact stop position
{Position reference
value)
Contact direction |- - oo T
target position
-
Ll
Velocity & Time
Contact direction |.... , ......... 7 : Reference velodity
E /i i H
Target velocity H / \ : :
(Velocity reference Y . :
value) s Feedback velocit i :
i T >
; ¥, Time
- - Triggers
Position deviation 4 ! MC_ResetFollowingError.
i : ; -
f f f g
Ti »
Start Contact Executes deviation ime

counter reset.

€ When the position deviationissetto “0” , a position instruction is issued by using the maximum
velocity set in the axis parameter. The maximum acceleration and maximum deceleration are not
applicable.

€ Thevelocity at which the deviation reset instruction is executed is the largest among the current
velocity, the velocity value set in the background axis dynamic parameter, and the velocity set in the
default axis parameter.

-184-



6. Common MC Instructions

*® & o o

When the instruction is completed by reaching the new target position, Done changes to TRUE.
If the axis is in an error state, the instruction will not be executed and an error will be returned.
If the axis is a non-control one, an error will be reported.

Notes on the triggering condition of the instruction and the axis status upon instruction triggering: The
instruction cannot be called when the axis is in the Error, Homing, Down-enable or Stopping status.

In addition, if the instruction is in the following error reset, triggering the instruction will also report
an error. After the instruction is triggered, the axis is in Stopping status. After instruction execution is
complete, the axis status changes to Standstill.

Notes on repeated triggering of an instruction and multi-triggering: Repeated triggering of the
instruction will report an error indicating that the axis is in error reset.

Notes on the relationship between this instruction and the Stop instruction: The Stop instruction cannot
be executed during a reset, and the reset is not allowed during the execution of the Stop instruction;
otherwise, an error will be reported.

Notes on starting the SetPosition instruction during the instruction execution: It is not allowed to start
the SetPosition instruction during the reset; otherwise, there may be a position jump that causes an
excessive position deviation.

Notes on interrupting this instruction by another instruction: It is not allowed to interrupt this
instruction during a reset, except for an emergency stop.

Acceleration overrun is not checked during instruction execution.
Precautions

*  Please start this instruction at a low axis velocity. This instruction assigns the instruction value in
the opposite direction to the previous instruction (contact direction). Therefore, if this instruction is
started at a high axis velocity, it may cause a shock to the machine.

*  Thisinstruction issues a position instruction in the direction opposite to the motion in which the
position deviation occurs. However, it is not applicable to “Motion during reversal” in the axis
parameter.

Timing Diagram

The following figure shows the timing of starting this instruction in the contact status after the MC_
MoveAbsolute instruction is started.

-185-



-186-

6. Common MC Instructions

MC_MoveAbsolute
instruction

Execute

Done

Busy

Active

CommandAborted

MC_ResetFollowingError
instruction

Execute

Done
Busy
CommandAborted
Position 4
/:f:} _________
I H Time
Velocity &
Y % Reference velocity Contact state
Feedback velocity
/s »
Time

MC_SetTorqueLimit

This instruction limits the servo drive output through the torque limit function of the servo drive.

1) Instruction Format

Instruction Name FB/FC LD Expression ST Expression
. KC SetT Limit 0
MC_SetTorqueLinit_0 = .cr:[ue %ml ot
Bxis:= Lxis,
MC_SetTorqueLimit Execute:= ,
— EN EMNO |— PositiveEnable:= ,
= Axis Cone |— PoaitiveValue:= |
MC_Set Torque limit FB — Execute Busy — NegativeEnable:= ,
TorqueLimit |instruction —| PositiveEnable Error |— NegativeValue:= ,
— PositiveValue ErrorlD [— Done=> ,
— MegativeEnable Buay=> ,
— MNegativeValue Error=» ,
Errorll=> ) :
2) Related Variables
Input/Output Variable
Input/Output Value Initial o
. Name Data Type Description
Variable yp Range Value 2
. . Reference to the axis, that is, an instance
Axis Axis AXIS_REF_SM3 |- -
of AXIS_REF_SM3

€ InputVariable




6. Common MC Instructions

Input Variable Name Data Type Value Range I\Zﬂi Description
Execute Start BOOL TRUE, FALSE FALSE Start the motion at the rising edge
TRUE: Enable the positive torque
Valid in limit.
PositiveEnable positive | BOOL TRUE, FALSE FALSE ) .
direction FALSE: Disable the positive torque
limit.
Set the torque limit in positive
direction in increments of 1%.
(The actual servo increment is
0.1%. For details, see the servo
Value of guide.)

PositiveValue positive LREAL Positive number | 300 If the value exceeds "Maximum
torque positive torque limit" in the axis
limit parameter, the positive torque

will be the "Maximum positive
torque limit". If "0" or "Negative"
is specified, the motion will be
taken based on the value "0".
o TRUE: Enable the negative torque
Valid in limit.
NegativeEnable |negative | BOOL TRUE, FALSE FALSE ) )
direction FALSE: Disable negative torque
limit.
Set the torque limit in negative
direction in increments of 1%.
(The actual servo increment is
0.1%. For details, see the servo
Value of guide.)

NegativeValue negative LREAL Positive number | 300 If the value exceeds "Maximum
torque negative torque limit" in the axis
limit parameter, the negative torque

will be the "Maximum negative
torque limit". If "0" or "Negative"
is specified, the motion will be
taken based on the value "0".
€ Output Variable
Output Variable Name Data Type Value Range Initial Value Description
Set to TRUE when

Done Completed |BOOL TRUE, FALSE FALSE the execution of axis

instruction is complete

Busy Executing | BOOL TRUE, FALSE | FALSE Set to TRUE after the

instruction is received

Error Error BOOL TRUE, FALSE FALSE Setto TRUE when an

error occurs

ErrorID Error code |DWORD - 0 Output an error code

when an error occurs

3) Function Description

€ [f PositiveEnable is set to TRUE when Execute (TRUE) is triggered, the limit will be performed based on
PositiveValue. If NegativeEnable is set to TRUE, the limit will be performed based on NegativeValue.

@ If PositiveEnable is set to FALSE, set “Upper limit of positive torque” of the axis parameter in the servo
drive. Similarly, if NegativeEnable is set to FALSE, set “Upper limit of negative torque” of the axis
parameter in the servo drive.

-187-



6. Common MC Instructions

€ When Execute is set to FALSE in this instruction, set  “Upper limit of positive torque” and “Upper limit
of negative torque” in the servo drive and set Busy to FALSE.

€ When the values of PositiveValue and NegativeValue are set to a number less than or equal to 0, the
motion will be taken based on the value “0” .

€ Thetorque limit can be set in units of 1% relative to the motor torque. For the specified value, the first
decimal place is valid.

4) Precautions

Currently, this instruction can only take effect when 0x60e0 and 0x60e1l are not configured. If PDO object
dictionary 0x60e0 and 0x60e1 are configured, the written value will be refreshed by the default value (0).

5) Timing Diagram

Omitted.

MC_ReadDigitalinput

This instruction reads digital inputs.

1) Instruction Format

Instruction Name |FB/FC LD Expression ST Expression
MC_ReadDigitallnput_0
== MC ReadDigitallnput O
MC_ReadDigitalinput Axis:= Axis
. ] Eh! E'\:l[:' — Enable:= ,
MC_ P'g'ttal B = Axis Valid — Valid=> ,
ReadDigitallnput |np; — Enable Busy — Buay=y ,
rea Error — Error=> ,
ErrorlD | ErrorID=> ,
UDIStatus —  pprscatus=s ):
2) Related Variables
Input/Output Variable
Input/Output Value Initial o
N Data T D
Variable ame ata Type Range Value escription
. . Reference to the axis, that is, an instance
Axis Axis AXIS_REF_SM3 |- - of AXIS_REF_SM3
€ InputVariable
) Initial e
Input Variable Name Data Type Value Range Value Description

TRUE: Execute the function block.
Enable Start BOOL TRUE, FALSE FALSE FALSE: Do not execute the
function block.

€ Output Variable

Output Variable | Name Data Type Value Range Initial Value Description

-188-



6. Common MC Instructions

valid Active BOOL TRUE, FALSE FALSE TRUE: The function block
state has a valid output.
Set to TRUE after th
Busy Executing | BOOL TRUE, FALSE | FALSE etto atterthe

instruction is received

Set to TRUE when an error

Error Error BOOL TRUE, FALSE FALSE
occurs
ErrorlD Error code | DWORD - 0 Outputan error code
when an error occurs
DI terminal state.
The standard format
compliant with CiA402 is
Input ) .
defined as follows:
UDIStatus terminal | UDINT - 0 ) o
status Bit 0: Negative limit

signal; Bit 1: Positive limit
signal; Bit 2: Home signal;
Bit 3-31: Custom

3) Function Description
€ Theinstruction is active high: The short pulse on the digital input may end before the next function
block period occurs.
€ Thisinstruction reads the status of the axis digital input terminals. It applies to EtherCAT bus axes and
does not support the virtual axis mode.
€ When Enable = ON, the Valid signal is valid (if the value 0x60fd is read successfully in the requested
EtherCAT bus axis).
€ Anerroris returned in the following conditions:
The axis number does not exist.
€ Axisinitialization fails.
€ Theaxis typeisincorrect.
4) Precautions
This instruction can read digital input values regardless of whether the PDO with digital input (16#60fd)
is configured.
5) Timing Diagram
Enable
Busy
Valid
Error
HMC_Reset
This instruction resets drive communication faults and axis faults.
1)  Instruction Format

-189-



6. Common MC Instructions

Instruction Name |FB/FC LD Expression ST Expression
HMC Reset 0
ETC Slave:= InoSVEeON,
Execute:= ,
Fault HMC_Reset TimeOut:= ,
HMC_Reset FB T Done— Mode:=
reset —TimeQut Errorf— Done=> ,
—Mode ErrorlDf—
Busy=> ,
Error=> ,
ErrorID=> ):
2) Related Variables
Input/Output Variable
Input/Output Value Initial .
Name Data Type Description
Variable P Range Value P
ETC_Slave Axis ETCSlave -
€ InputVariable
. Initial _—
Input Variable Name Data Type Value Range value Description
Execute Start BOOL TRUE, FALSE FALSE Start the motion at the rising edge
. Timeout time = Task period x
. Timeout . . .
TimeOut time WORD >=3000 10000 TimeOut. The timeout time is at
least 3s.
0: Fast reset
Mode Mode WORD Oorl 0 1: Slow reset with DC
synchronization, reset time > 20s
€ Output Variable
Output Variable Name Data Type Value Range Initial Value Description
Execution
Done BOOL TRUE, FALSE FALSE TRUE: Reset completed
completed
Busy Executing BOOL TRUE, FALSE FALSE TRUE: Reset in progress
TRUE wh
Error Error BOOL TRUE, FALSE | FALSE Setto TRUE when an error
occurs
ErrorlD Errorcode | DWORD - 0 Output an error code
when an error occurs

3)

Function Description

€ Thisinstruction resets EtherCAT slaves and CIA402 axes, such as servo drive, AC drive, and EtherCAT
remote |/O modules.

€ Itautomatically recognizes the number and status of CIA402 axes under EtherCAT slave devices, and
resets the axis in Errorstop state for the state machine. It facilitates axis reset for multidrive devices,
such as 1S810, SV820, GR10_4MPE of Inovance.

Precautions

Generally, fast reset is adopted, that is, Mode is set to 0. If Mode is set to 1, slow reset is adopted, and
online reset provides the DC function. For an EtherCAT slave device that is powered on again, for
example, partial servo failure on the bus, restart after a power failure, and online access to the master,

-190-




6. Common MC Instruction

S

this mode must be adopted; otherwise, an unpredictable error may occur.

SMC_SetSoftwareLimits

This instruction sets software limits for the host controller.

1)

Instruction Format

Instruction Name FB/FC LD Expression ST Expression
1
SMC_SetSoftwareLimits
e bDonef— MC_SetTorqueLimic_0(
—SVJL_A:twy_ated ErrorIDp— LAyis:= Lxis .
. —{SWL_Positive
Instruction O Execute:= ,
SMC_ for setting FB et PositiveEnable:= ,
SetSoftwareLimits |software PositiveValue:= ,
L. NegativeEnable:= ,
limits NegativeValue:= ,
Done=> ,
Buay=> ,
2) Related Variables
Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable 2 Range Value .
Axis Axis AXIS_REF_SM3 |- -
€ InputVariable
) Initial -
Input Variable Name Data Type Value Range value Description
Start th ti t the risi
bExecute Start BOOL TRUE, FALSE | FALSE artthe motlon at the rising
edge
. Software . o
SWL_Activated . . BOOL TRUE, FALSE TRUE: Activate software limit
limit active
SWL_Positive Positive limit | LREAL - 0 Positive limit
. Negative R
SWL_Negative limgi{t LREAL - 0 Negative limit
Invalid setting. By default,
SWL_Error_ Decelerate L .
) ) BOOL TRUE, FALSE deceleration is required when
Decelerate configuration L
the limit is encountered.
Deceleration
SWL_Error for overlimit
-7 LREAL - 0 Deceleration for positive limit
Deceleration error
response
Maximum Maximum deceleration
SWL_Error_ . . . .
. deceleration | LREAL - 0 distance, only used in positive
MaxDistance . .
distance limit
€ Output Variable
Output Variable Name Data Type Value Range Initial Value Description
Execution
Done BOOL TRUE, FALSE FALSE TRUE: Reset completed
completed
Set to TRUE when an error
Error Error BOOL TRUE, FALSE FALSE
occurs
Output an error code
ErrorlD Errorcode | DWORD - 0
when an error occurs

-191-



6. Common MC Instructions

3) Function Description

This instruction sets the positive and negative position limits for the host controller and the response to
a software limit error.

4) Precautions

The deceleration rate of the overlimit response is the largest one among the three parameters:

“fSwLimitDeceleration” (function block parameter “SWL_Error_Deceleration” ), background
dynamic limit parameter “fSWMaxDeceleration” , and the deceleration calculated by stopping at the
maximum deceleration distance “fSWErrorDistance” .

6.2 Axis Group Instructions (Master/Slave Axis Instructions)

SMC_CamRegister

This instruction performs cam tappet control (cam switch). Tappet control can be achieved with this
function block by configuring the tappet table without editing the master/slave axis curve during cam
editing.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
SMC_CamBegister((
SMC CamRegister Master:= .
—SMaster Busy - CamTable:=
—camTable Error - bTappet:= .
o,
—bTappet ErrorID Enghle:= .
SMC Cam tappet End0fProfile - MasterOffaet:=0 ,
c E ist control Mastericaling:= 1,
amRegister |. . —
& instruction R TappetHysteresis:=
= EE R DeadTimeCompensation:= ,
u— = 0
MasterScaling Buay=> ,
—T tHyat i
appe- ysteresis _ Error=» ,
DeadTimeCompensation ErrorID=s ,

EndOfFrofile=> );

2) Related Variables

€ Input/Output Variable

Input/Output Value Initial .
Name Data Type Description
Variable 2 Range Value .
Reference to the axis, that is, an instance
M M i AXIS_REF_SM - - ’ ’
aster aster axis S_REF_SM3 of AXIS_REF_SM3
Reference to an electronic cam, that is,
CamTable Camtable |MC_CAM_REF - - . .
an instance of electronic cam
ARRAY [1..MAX_
Tappet .
bTappet outout NUM_TAPPETS] |- - Output of the tappet point
P OF BOOL

€ InputVariable

. Initial A
Input Variable Name Data Type Value Range Value Description
The function block is executed if set to
Enable Executed BOOL TRUE, FALSE FALSE .
TRUE and not executed if set to FALSE.

-192-




6. Common MC Instructions

Masteroffset Master axis LREAL Master axis offset
offset
MasterScaling Q/Iczslt;erams LREAL Linear scaling factor of master axis
. | Tappet .
TappetHysteresis damping LREAL Tappet control damping factor
The tappet output is linearly
. Dead- compensated according to the current
DeadTime . . .
. zone time LREAL velocity of the master axis. The value
Compensation . ., .
compensation can be positive or negative.
Unit: s
€ Output Variable
Output Variable Name Data Type Value Range Initial Value Description
Busy Executing | BOOL TRUE, FALSE | FALSE TRUE: Executing function
block
Error Error BOOL TRUE, FALSE | FALSE Setto TRUE when an error
occurs
ErrorlD Errorcode | SMC_ERROR SMC_NO_ERROR Outputan error code
when an error occurs
Profile TRUE: The master axis
EndofProfile period BOOL TRUE, FALSE | FALSE position is greater than or
completed equal to the set period.
3) Function Description
€ When the Enable signal is TRUE, and there is no error output, Busy outputs TRUE, indicating that tappet
control is executed.
€ This function block is irrelevant to the slave axis in the electronic cam. Only the master axis period and
tappet table need to be configured.
€ DbTappetis a one-dimensional Boolean structure (MAX_NUM_TAPPETS=512), and bTappet[i] corresponds
to the output of the ith tappet point.
€ Theunit of DeadTimeCompensation is second. When it is set to a positive value, the tappet signal will
be output in advance; when it is set to a negative value, the tappet signal will be output with lag.
For example, if it is set to 0.02 seconds, and Ethcat task period is set to 4 ms, then the tappet outputs the
tappet value at the master axis set position calculated by this formula: P - V*0.02 (V: linear velocity of the
master axis; P: tappet output position). If it is set to -0.02 seconds, the tappet signal will be output with a
lag of five periods after the master axis set position is greater than or equal to P.
€ Example of using this function block:

Variable declaration:

VAR
TPP:ARRAY[1..MAX_NUM_TAPPETS] OF BOOL;
SMC_CamRegister0: SMC_CamRegister;
END_VAR
Program section:
SMC_CamRegister0(
Master:=Virtual_X,
CamTable:=Cam,
bTappet:=TPP,
Enable:=TRUE ,
MasterOffset:=0,

-193-



6. Common MC Instructions

MasterScaling:= 1,
TappetHysteresis:=0,
DeadTimeCompensation:=0,
Busy=>,
Error=>,
ErrorlD=>,
EndOfProfile=>);

Cam editing

Start axis Virtual_X:

Monitoring curve:

TPPI1T

05—

L 2 2 . 0 0 1 03 2 1 e e e 2 2

05—

1.0=4

05~

TPP[4]

When the dead-zone time compensation is set to -0.02 seconds
SMC_CamRegister0(

Master:=Virtual_X,

CamTable:=Cam,

bTappet:=TPP,

Enable:=TRUE,

MasterOffset:=0,

MasterScaling:= 1,

TappetHysteresis:= 0,

DeadTimeCompensation:=-0.02,

Busy=>,

Error=>,

ErrorlD=>,

EndOfProfile=>);
The tappet output lags five task periods (each task period is 4 ms):

-194-



6. Common MC Instructions

in

Configure
Add variable

wm TEST3_TOUCHPROB.TPP[1 ™

0]1]a1
mm TEST3_TOUCHPROB.TPP[2]

0]0] a0

== TEST3_TOUCHFROB.TPR[3]
n]o|ao

== TEST3_TOUCHPROB.TPP[4]
o]0 a0
= Virtual_X.fSetPosition

10, 3 | 10.105

mm Virtual_X.fActPosition
9.985000000000003 | 10.08500

4)  Error Description

There is an axis error, the axis is disabled, or the offset value or the scale value exceeds the master axis

range.

SMC_GetCamSlaveSetPosition

This instruction reads the slave axis position, velocity and acceleration information of the cam table.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
3MC_GetCam5laveSetPo3itionO (
SMC GetCamSlaveSetPosition Master:= '
HBMaster fStartPosition | Slave:= '
Hslave fStartVelocity [ Enable: f_ '
Instruction fitarticceleration HaSter‘f‘_‘SEt:= '
for Buav - Slave0ffset:= ,
SMC_GetCam . : MasterScaling:=
obtaining —Enable Error [ i
SlaveSet h SlaveScaling:= ,
Position t ecaml —|MasterQffset ErrorID[ CamTableID:=
slave axis —Slavelffset fitartPositiones
position —|MasterScaling fStartVelocity=> |
—SlaveScaling fStarthcceleration=» ,
—CamTakleID Buay=x ,
Error=> ,
ErrorIDl=> );
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
Name Data Type Description
Variable P Range Value P
Master .
Master ; AXIS_REF - Reference to the axis
axis
Slave Slave axis | AXIS_REF - Reference to the axis
€ InputVariable
. Initial —
Input Variable Name Data Type Value Range Value Description
The function block is executed if set to
Enable Executed |BOOL TRUE, FALSE | FALSE )
TRUE and not executed if set to FALSE.
Master .
Masteroffset . LREAL - 0 Master axis offset of the cam table
axis offset
Slave axis .
Slaveoffset offset LREAL - 0 Slave axis offset of the cam table

-195-



6. Common MC Instructions

. Initial .
Input Variable Name Data Type Value Range Value Description
Master
MasterScaling | axis LREAL - 1 Master axis scaling factor of the cam table
scaling
Slave axis
SlaveScaling V, XI5 1 REAL - 1 Slave axis scaling factor of the cam table
scaling
CamTablelD Cam ID MC_CAM_ID |- - Cam table ID
€ Output Variable
Output Variable Name Data Type Value Range Initial Value Description
Slave axis position
Slave axis obtained based on
fStartPosition . LREAL - 0 the cam table and the
position .
current master axis
information
Slave axis velocity
Slave axis obtained based on
fStartVelocity . LREAL - 0 the cam table and the
velocity .
current master axis
information
Slave axis acceleration
Slave axis rate obtained based
fStartAcceleration . LREAL - 0 on the cam table and
acceleration .
the current master axis
information
TRUE: Executing the
busy Executing | BOOL TRUE, FALSE | FALSE + EXecuting
function block
Set to TRUE wh
Error Error BOOL TRUE, FALSE | FALSE etto Rt whenan
error occurs
Output d
ErrorlD Errorcode | SMC_ERROR - SMC_NO_ERROR utputan error code
when an error occurs

3) Function Description

Output value calculated by this instruction: Y = (Cam ((Cam start master axis position of the cam +
Masteroffset) x MasterScaling) + Slaveoffset) x SlaveScaling. Cam is the cam table function. For example,
if the cam start master axis position is 0, the master/slave scaling ratio is 1, Masteroffset is 100, and
Slaveoffset is 0, then the output of the function block is the slave axis position corresponding to the cam
table at 100.

This function block can read the slave position as long as the cam table is built successfully. It has no
requirement on whether the master and slave axes are running.

Example:
Declaration:
SMC_GetCamSlaveSetPosition0: SMC_GetCamSlaveSetPosition;
ENABLE: BOOL,;

MC_CamTableSelect0: MC_CamTableSelect;
Program:
MC_CamTableSelectO(

Master:=Virtual_X,

Slave:=Virtual _Y,

CamTable:=Cam,

Execute:=,

Periodic:=TRUE ,

-196-



6. Common MC Instructions

MasterAbsolute:=0,
SlaveAbsolute:=0 ,
Done=>,
Busy=>,
Error=>,
ErrorlD=>,
CamTablelD=>);
SMC_GetCamSlaveSetPosition0(
Master:= Virtual_X,
Slave:=Virtual_Y,
Enable:=ENABLE ,
MasterOffset:= 100,
SlaveOffset:=0,
MasterScaling:=1,
SlaveScaling:=1,
CamTablelD:=MC_CamTableSelect0.CamTablelD,
fStartPosition=>,
fStartVelocity=>,
fStartAcceleration=>,

Busy=>,
Error=>,
ErrorlD=>);
4y Enable BOOL
5 MasterOffset LREAL 100
A SlaveOffset LREAL ]
% MasterScaling LREAL 1
% slaveScaling LREAL 1
+ % CamTablelD MC_CAM_ID
g fStartPosition LREAL 33.580246813580254

4)  Error Description

The instruction error is output when Error is TRUE.
See ErrorID and SMC_ERROR to determine the cause of the error.

SMC_GetTappetValue

This instruction obtains the current tappet output value when used in conjunction with the MC_Camin
instruction.

1) Instruction Format

-197-



-198-

6. Common MC Instructions

Instruction Name Graphic Expression ST Expression
SMC GetTappetValue
= Tappets bTappet
—iID SMC_GetTappetValuel (
Instruction .'.l'appets = '
SMC_ for obtaining 1I:'f=r_
GetTappetValue|the tappet | dpTpitvalue bInitValue:=,
output value bSetInitValuselAtReset:= ,
bTappet=> );
—bSetInitValuelAtEeset
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
N Data T Description
Variable ame ata lype Range Value P
Tappets Tappet SMC_TappetData - Reference to the tappet
€ InputVariable
. Initial .
Input Variable Name Data Type Value Range Value Description
T t
ilD appe INT Group ID of the tappet
group ID
Initial Initialization value of the tappet
binitvalue BOOL when the function block is called
Value .
for the first time
TRUE: The tappet output value
will be initialized to binitValue
when the MC_Camln function
block is restarted.
bSetlnitValueAtReset BOOL
FALSE: The current tappet
output value will be kept when
the MC_Camln function block is
restarted.
€ Output Variable
Output Variable Name Data Type Value Range Initial Value Description
Tappet
bT t BOOL - FALSE Tappet value
appe output PP

3) Function Description

€ This function block must be used in conjunction with the MC_Camin instruction.

€ This function block reads the tappet output value as does the SMC_CamRegister function. Due to a
conflict between the two, only one of these instructions can be used in a cam tappet table.

Example of use:
MC_CamIn0(

Master:=Virtual_X,
Slave:=Virtual_Y,

Execute:=,

MasterOffset:= 0,

SlaveOffset:=

0,




6. Common MC Instructions

MasterScaling:=1,
SlaveScaling:=1,

StartMode:=1,
CamTablelD:= MC_CamTableSelect0.CamTablelD,

VelocityDiff:=,

Acceleration:=,

Deceleration:=,

Jerk:=,

TappetHysteresis:=,

InSync=>,

Busy=>,

CommandAborted=>,

Error=>,

ErrorlD=>,

EndOfProfile=>,

Tappets=>);
SMC_GetTappetValue0(

Tappets:= MC_CamlIn0O.Tappets,

iID:=2,

binitvalue:=false,

bSetInitValueAtReset:=true ,

bTappet=>);

seu L
J M.—”"

300

4)  Error Description

There is an axis error.
The axis is disabled.

CamTable ID has no mapping object.

MC_CamTableSelect

-199-



6. Common MC Instructions

This instruction specifies the cam table. It must be used in conjunction with the MC_CamlIn instruction.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
MC CamTableSelect
AMaster Done =
e Busy MC CamTableSelectd(
AcanTable Error ™ Master:= !
ErrorID [ Slave:= '
CamTableID CamTakle:= ],
Instruction | =——Execute Execute:= ,
MC_ for Periodic:= ,
CamTableSelect |specifying Masterlibsolute:= ,
the cam —Derigdic Slavelbsolute:= ,
table Done=> ,
Busy=> ,
==Masteribsolute Error=> ,
ErrorID=> ,
CamTableIDl=> )
=—Slavelibsolute

2) Related Variables

€ Input/Output Variable

Input/Output Value Initial L
N Data T D t
Variable ame ata lype Range | Value escription
Reference to the master axis, that is, an instance of
Mast Mast is | AXIS_REF_SM3 |- - ’ ’
aster aster axis _REF_ AXIS_ REF_SM3
Reference to the slave axis, an instance of AXIS
Sl Sl i AXIS_REF - - ’ -
ave ave axis _ REF._SM3
Table Reference to the cam table description, that is, an
CamTabl MC_CAM_REF |- - ’ ’
amiable selection -~ instance of MC_CAM_REF
Note:
The master and slave axes cannot be specified as the same axis; otherwise, an error will be output. The cam table
corresponding to CamTable must be correctly edited; otherwise, an instruction error will be reported. The master
and slave axes can be real or virtual axes.
€ InputVariable
. Initial L
Input Variable Name |Data Type | Value Range value Description
Execute Executed | BOOL TRUE, FALSE | FALSE | Execute the instruction at the rising edge
Specify whether to execute the cam table
iodi eriodically or only once
Periodic Periodic | ool | TRUE, FALSE | FALSE | " yoreny
Mode TRUE: Periodically
False: Once
Absolute Specify whether the following distance
mode of coordinate system of the master axis is based on
MasterAbsolute master BOOL TRUE, FALSE FALSE absolute or relative position.
axis 1: Absolute position, 0: Relative position

-200-



6. Common MC Instructions

Input Variable Name |Data Type | Value Range I\;;Ell Description

Specify whether the current instruction position
of the slave axis is the absolute or relative value
of the cam table output with StartMode in the

Absolute MC_Camln instruction.

mode Absolute: Cam table output value corresponding

SlaveAbsolute | . |BOOL TRUE, FALSE | FALSE |y 1o c\yrrent master axis position

absolute Relative: Cam table output value superimposed
by the slave axis position at the start of the
instruction
1: Absolute position, 0: Relative position

Note:

Improper selection of MasterAbsolute and SlaveAbsolute may cause the electronic cam output to jump. Therefore,
determine the cam curve operating mode before setting the variables.

€ Output Variable
) Initial A
Output Variable Name Data Type Value Range value Description
Set to TRUE when the selection is
Done Completed | BOOL TRUE, FALSE | FALSE W ont
completed
Set to TRUE when the selection isin
Busy Executing | BOOL TRUE, FALSE | FALSE W on s
progress
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
M t h
Error(D Error code SMC_ERROR See SMC_ 0 Output an error code when an error
ERROR occurs
Select the valid Cam_ID, which is
CamTablelD Valid cam ID | MC_CAM_ID - - used together with CamTablelD in
MC_Camln instruction.
Note:

When an error occurs, see SMC_ERROR in Help based on ErrorID.

3) Function Description

€ Thisinstruction specifies the cam table required for the electronic cam to run. Therefore, edit the cam
table online or through the cam editor before using this instruction.

€ Attherising edge of Execute, the specified cam table is executed, and the specified cam table can be
refreshed after a cam table update.

€@ When the Done signal outputs TRUE, the output variable CamTablelD is generated and becomes valid.

€ Duringinstruction execution, the Busy signal outputs TRUE. When the Done signal outputs TRUE, the
Busy signal outputs FALSE.

€ Forthe specific functions of MasterAbsolute, SlaveAbsolute, and Periodic, see the MC_Camlin
instruction.

4)  Error Description

€ The master and slave axes cannot be specified as the same axis; otherwise, an error will be output.

€ The cam table corresponding to CamTable must be edited correctly; otherwise, an error will be output.

-201-



-202-

6. Common MC Instructions

MC_Camin

1)

This instruction uses the specified cam table to start executing the electronic cam action. The offset
value, scaling ratio and working mode of the master and slave axes can be specified according to the

application requirements.

Instruction Format

Instruction| Name Graphic Expression ST Expression
MC_CamIn0(
Master:= ,
MC CamIn
o = _ Slawve:= ,
—Ma=zter InSync p
oo = Execute:= ,
= Rt Jm
~ave usy MasterDffset:= ,
CommandAborted p R
SlawveQffset:= ,
Bl sEe | MazsterScaling:= ,
= Execute ErroxID | SlawveScaling:= ,
—Masterlffset EndOfProfile p StartMode:= ,
—|SlaveQffzet Tappets CamTaklelID:= ,
Start cam —|MasterScaling VelocityDiff:= ,
MC_Camin . i N .
operation —|SlaveScaling Acceleration:= ,
—startMode Deceleration:= ,
—|CanTableID Jerk:= , _
—VelocityDi££ TappetHysteresis:= ,
. . InSyne=> ,
—Acceleration
5 ) e Busy=> ,
meSssratien Commandhiborted=> ,
—Jerk
Error=> ,
—TappetHysteresis ErrorID=>
r
End0fProfile=> ,
Tappeta=> )
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial
. Name Data Type Description
Variable yp Range Value P
Master Reference to the axis, that is, an instance
Master R AXIS_REF_SM3 | - - ’ ’
axis of AXIS_REF_SM3
Reference to the axis, that is, an instance
Slave Slave axis | AXIS_REF - - ’ ’
- of AXIS_REF_SM3
Note:

|The master and slave axes cannot be specified as the same axis; otherwise, an error will be output.

€ InputVariable

Initial
Input Variable Name Data Type | Value Range Value Description
Cam functi E te the electroni t the risi
Execute am u_nc fon | - voL TRUE, FALSE | FALSE xecute the electronic cam at the rising
execution edge
Negative .
. Move the phase of the master axis based
MasterOffset Master offset | LREAL value, positive | 0 p_ )
on the specified offset value
value, 0
. Negative .
Slave axis . Move the phase of the slave axis based
SlaveOffset LREAL value, positive | 0 »
offset on the specified offset value
value, 0
Pre-compiling . .
. ] Zoom in/out the phase of the master axis
MasterScaling ratio of master | LREAL >0.0 1 / p. . .
axis based on the specified ratio




6. Common MC Instructions

3)

. Initial -
Input Variable Name Data Type | Value Range Value Description
Pre-compiling . .
Z tthe ph fthe sl
SlaveScaling ratio of slave | LREAL >0.0 1 oom infout the p. .ase © . e slave axis
. based on the specified ratio
axis
Slave axis MC 0: Absolute position:1: Relative position
StartMode outp.ut mode Sta;tMode Oto4 absolute| 2: ramp_in; 3: ramp_in_pos; 4: ramp_in_
relative to cam neg
MC CAM Define the use of the cam table. It is used
CamTablelD Table ID b - T |=0 - in conjunction with the output point
CamTablelD of MC_CamTableSelect
Couplin
VelocityDiff uP,I & LREAL >0.0 0 Maximum velocity different from ramp_in
velocity
Acceleration Acceleration LREAL >0.0 Acceleration at ramp_in
Deceleration Deceleration | LREAL >0.0 Deceleration at ramp_in
Jerk Jerk LREAL >0.0 Acceleration at ramp_in
. | Tappet factor )
TappetHysteresis LREAL >0.0 0 Tappet damping factor
Range
Note:

The master and slave axes cannot be specified as the same axis; otherwise, an error will be output.

Output Variable

. Initial .
Output Variable Name Data Type | Value Range value Description
InSync is set after the cam relationship
is established bet th t d
InSync Camvalid | BOOL TRUE, FALSE | FALSE | SStaPlished between the masterand
slave axes, and is reset when the execution
condition of the instruction is OFF.
Set to TRUE at the rising edge of Execute,
which indicates that the cam relationship
Synchronous . . .
o isin coupling and needs to be reset with
Busy operationin | BOOL TRUE, FALSE | FALSE . . . .
the Cam_out instruction. The instruction
progress ) o )
execution condition reset cannot reset this
status.
Instructi Output TRUE when the sl isi
CommandAborted - oM BooL TRUE, FALSE | FALSE | ~""PY whenthe siave axisis
aborted interrupted by other control instructions
When an error is detected, the Error bit is
set.
Error Error BOOL TRUE, FALSE | FALSE
The Error bit is reset when the execution
condition of the instruction is OFF.
SMC_ See SMC_
ErrorlD Error code ERROR ERROR 0 Output an error code when an error occurs
If Periodic is 0 (non-periodic) during the
Curve execution of MC_CamTableSelect, the
EndOfProfile BOOL - FALSE | EndOfProfile bit is set when the cam curve
completed . .
is executed once and is reset when the
execution condition of the instruction is OFF.
Taopets SMC_ Associate a cam tappet that can be read by
PP TappetData the MC_GetTappetValue instruction.

Function Description

€ Thisinstruction is started at the rising edge of Execute if there is no axis error and the cam table is
selected correctly.

-203-



-204-

6. Common MC Instructions

*

In a cam system, to call a cam curve, first call the MC_CamTableSelect instruction to select the cam
table, and then execute MC_Camin. To replace the cam curve, call the MC_CamTableSelect instruction
to re-select the cam table.

It is necessary to use the Camout instruction to cancel the cam coupling relationship between the
master axis and the slave axis.

During the execution of this instruction, if the slave axis of this instruction executes other motion
instructions, the cam relationship between the slave axis and the master axis will be canceled, and
CommandAborted will output TRUE.

Instruction Details

The following describes the instruction in details:
Instruction Execution Condition

This instruction can be started in the status of master axis stopping, position control, velocity control, or
synchronous control.

Note: The cam slave position setpoint should be within the software limit; otherwise, the instruction will
be incorrectly output.

The contact point in the cam curve is calculated as follows:

Master

Slave
offset

scaling

l 1+ Cam curve l

Master ——
" (1 Slave
position fi —)—" \,%_. oosition

Master
scaling

According to the above diagram, the calculation formula is as follows:
Position_Slave = SlaveScaling x CAM (MasterScaling x MasterPosition + MasterOffset) + SlaveOffset

The master and slave positions in this formula are related to the cam function curve and do not
represent the actual physical axis positions.

The relationship between the master/slave axis positions and the master/slave real axis positions is
described in detail.

Note: The master and slave positions are required for the cam function curve and are not the master and
slave real axis positions.

Relationship of Periodical Mode to EndOfProfile:

The periodical mode determines whether or not the electronic cam will be performed again after the
master axis reaches the termination position.

Non-periodical mode: Periodic is set to FALSE for the MC_CamTableSelect instruction.

In non-periodical mode, EndofProfile outputs TRUE when the cam is completed and outputs FALSE
when the execution input is FALSE. In this case, the cam is executed for only one master axis period.

Note: The master axis period refers to the range between the start point of the master axis of the
electronic cam to the end point.

1) Periodical mode: Periodic is set to TRUE for the MC_CamTableSelect instruction.



6. Common MC Instructions

<—Started atrisingedge

o] <—Physical axis posW

P s

/’”—;7 Cam master axis position

EndofProfile .=

Cam slave axis position

}?”f/f/i_m\f\f\f%xwe/f/fii

In this case, the cam will be continuously executed for the next period after the completion of one
master axis period, and the TRUE output of the EndofProfile signal only lasts for one task period.

Notes:

When the cam master axis position is larger than or equal to the cam end position, the EndofProfile
signal outputs TRUE, and the cam master axis position is updated to the sum of the cam start position
and the portion exceeding the end position. For example, the start position of the electronic cam master
axis is 0, the end position is 360, the master/slave scaling ratio is set to 1, the master/slave offset is set

to 0, the task period is 2 ms, and the master axis velocity is 100. When the cam master axis position of a
task period is 359.99, then EndofProfile of the next period outputs True and the master axis position is:
359.99 + 100 x 0.002 - 360 =0.19.

It is recommended to keep a smooth transition between the start and end positions of the cam curve in
periodical mode; otherwise, a position jump will be generated.

For example, if the start velocity is 0 and the end velocity is not 0, it will cause the master axis to jump at
the end of the period and the beginning of a new period.

L

08 <= Startedatrisingedge

300 B it et
200 M Physical-axig.position thM ,,,,,,,,,
1;;—”

00 QU coiasth S SRS SO O
. M 777777777

100 // <= Cammaster W

EndafProfile ’

g
2

% ‘ «——Cam-slave axis position
4

pd

s e e e L e e oo e L e e e |
10s 20s 30s

The relationship between StartMode and the absolute/relative mode of the master and slave axes in MC_
CamTableSlect:

Absolute mode: At the start of a new electronic cam period, the calculation of the electronic camis
independent of the current slave axis position. If the start position of the slave axis relative to the master
axis is different from the end position of the slave axis relative to the master axis, a jump will be caused.

-205-



-206-

6. Common MC Instructions

Relative mode: The new electronic cam will change according to the current slave position. That is, the

position of the slave axis at the end of the last electronic cam period will be added up by the current

electronic cam motion asa “slave axis offset” . However, if the slave axis position corresponding to the

master axis start position is not 0 in the electronic cam definition, a jump will be caused.

Ramp input: Add a compensating motion (obtained based on the limit value VelocityDiff, acceleration

and deceleration) to prevent potential jumps at the start of the electronic cam. Thus, as long as the slave
axis rotates, the positive ramp input provides only positive compensation, while the reverse ramp input
only provides reverse compensation. For a linearly moving slave axis, the compensation direction can be
achieved automatically, that is, the positive ramp input and the negative ramp input can be interpreted

in terms of ramp inputs).

The relationship is shown in the following table:

MC_CamTableSelect.MasterAbsolute

Master axis
mode

absolute Absolute mode
relative Relative mode
MC_Camln.StartMode MC_CamTableSelect.SlaveAbsolute Slave axis mode
absolute TRUE Absolute mode
absolute FALSE Relative mode
relative TRUE Relative mode
relative FALSE Relative mode
ramp_in TRUE Absolute ramp-in
ramp_in FALSE Relative ramp-in
Absolute ramp-in in
ramp_in_pos TRUE . . p
positive direction
Relati -ini
ramp_in_pos FALSE € ? .|ve ra.lmp .|n n
positive direction
. Absolut -ini
ramp_in_neg TRUE 50 u € rémp_m n
negative direction
Relative ramp-inin
ramp_in_neg FALSE ly . P I. I
negative direction

The relationship is described below:

Cam master axis range (0-360), cam slave axis range (0-180), periodical mode, master/slave offset (0),
master/slave scaling ratio (1) The designed cam table is shown below:

[n] uosod aae|s]

cam | cam ¥ | BiF | HiHFE

[
&}
w
&.
&
¥
F3.




6. Common MC Instructions

2) StartMode =0 (absolute mode)

When MasterAbsolute of the MC_CamTableSlect instruction is set to FALSE and SlaveAbsolute is set to
TRUE, then the master axis works in relative mode and the slave axis works in absolute mode. When the
cam is started at the rising edge of Execute, the cam master axis starts from the “Start position” (0) of
the cam table, and the cam slave axis calculates the output according to the cam table meshing formula
mentioned above. The instruction position of the slave real axis is equal to the meshing calculation
output value. For example, if the start position of the cam slave axis is 0, and the position of the slave
real axis is 20 when the cam is started, then a jump will be caused when the position of the slave real axis
from the start is commanded to be 0.

Note: In this case, if the start position of the slave axis (real axis) is not at the cam slave axis start
position, then a jump will be caused.

= Startedatrising edge

g

<«—Masteraxis (real a><isl/_/

Cam maStCriW |
I -

i_,./"' |

Camslave (:1><|s position /
|

|

I /

1

|

l

Stavejaxi
-
(real a><|s)!poswt|on

Lol b b a1

ol il

=%
AR

When both MasterAbsolute and SlaveAbsolute of the MC_CamTableSlect instruction are set to FALSE,
then the master and slave axes work in relative mode. When the cam is started at the rising edge

of Execute, the cam master axis starts from the “Start position” (0) of the cam table, and the cam

slave axis calculates the output according to the cam table meshing formula mentioned above. The
instruction position of the slave real axis is equal to the sum of the meshing calculation output value (cam
slave axis position) and the slave real axis position at startup.

For example, if the slave real axis position at cam startup is 20, and the slave axis start position of the
cam table is 0, then the slave real axis position at cam startup is commanded to 20. The subsequent
value is the sum of 20 and the cam table calculation value, and the peak value is 200, which is the sum of
20 and the maximum cam table calculation value (180 in this case).

-207-



6. Common MC Instructions

<— Started at rfsing edge

i

500 et 4 Master akis (real axis) |
. % M ‘} ‘/”‘T—/
] ‘ M l
|
|

I
|
|
5 " ‘
4 |
300 1 ; -
E | Cam-master axis-position == /”‘j
] | »
|
| i

Cam slave axis position —»-

St

ta

(realaxis)position

5) Error Description

€ Thesetting information of this instruction does not match that of the Camslect instruction.

€@ Theaxisis disabled.
When MasterAbsolute of the MC_CamTableSlect instruction is set to TRUE and SlaveAbsolute is set to
FALSE, then the master axis works in absolute mode and the slave axis works in relative mode. At the
rising edge of Execute, the cam master axis starts from the current “master real axis position” upon

cam startup. Slave real axis position instruction = Cam table meshing calculation value (cam slave axis
position) + Slave axis position at startup

Note: 1. In this case, if the start position of the master axis (real axis) is not at the cam master axis start
position, then a jump will be caused.

2. The master axis position must be within the position range of the cam master axis.

-208-



6. Common MC Instructions

1 | T
I | !
1 : <— Starited at risin% edge :
] | | I
0= : | I
»
20034 ,,-""/ :
2003 I j/ . i //f
W: I VIASLIET XIS (TEAUdRIS)
E { _./f /"/’
T o
o f
4 |
a0 J5mm] _,./""4 |
3 | " ///
2003 I S
B | ‘I_Caﬂ"nf;s'ter axis position—=» /,,/"
1003 et
0} r
1804 ! | !
120 ; #Cam:sloveaxis position =1 f
12031 | i
";"v; B I I I
e I I
407 17 I t
Pl R } e
| | |
frEdm— D e i i —— ‘
1603 i 7 Staveygxis | i
e 7 (Feal s pgtion ! ,
1003 i e 3 I 7z f
207 I I P, |
207 i ™, 5 i ;
B Sl 4 f
.,: E T b |
—— —— 7 ——
| 10s 20s 40s |

When both MasterAbsolute and SlaveAbsolute of the MC_CamTableSlect instruction are set to TRUE,
then the master and slave axes work in absolute mode. At the rising edge of Execute, the cam master
axis starts from the current  “master real axis position” upon cam startup. Slave real axis position
instruction = Cam table meshing calculation value (cam slave axis position)

Notes:

1. In this case, if the start position of the master axis (real axis) is not at the cam master axis start position
and the slave axis position is not at the cam slave axis start position, then a jump will be caused.

2. The master axis position must be within the position range of the cam master axis.

l
<-— Started-at ris’lng edge

_;wg M "/A
WE /M—-d'rﬁ"(""':%er ax)is /.-""'""/
==

0 i I
Jw% I ] % o i
wE : M/F am-master-axis positiog --"/'

w3 ;-«-"'/ e

180

Cam slave axis,position.——#-

¢ I
iy .
0 1 |
0 | v I
1503 I - : | i
103 1 it RlaveETExis = o
1209 . & (realaNs)-Dosition - &
04 I 7 )P ; & =
1003 p N l L
e \ = o | 7 =
1 17 S I i Y
ni= S =
Bl 1
t — T

L
20s

R SSRGS Pty S s Dy Ru G $5 IS R0 Sy SIS gt a3 S0 S O

-209-



6. Common MC Instructions

2) StartMode =1 (relative mode)

When MasterAbsolute of the MC_CamTableSlect instruction is set to FALSE and SlaveAbsolute is set to
TRUE or FALSE, then the master and slave axes work in relative mode. At the rising edge of Execute, the
cam master axis starts from the “cam table start position” upon cam startup. Slave real axis position
instruction = Cam table meshing calculation value + Cam table meshing calculation value (cam slave axis

position)
o0 | |
: <—-Started-atrising edge I
|
|
i |
! I
i | |
| i
%0 [ el i :
E MM <— Master axis (real-axis) I
- 1. . i M
200 | i MW
=i ] :
[ : |
5 | ;
| ‘ I
E i M
300 ! f i
E : Cam-master axis ;)OSM I
203 : I
| i ;
o0 i |
1 IM :
:: | ) :
| .
160 |

. Cam slave axis position—»

I
J
I
I
I
|
t
}
I
I
I
}
I
u

|
|
I
I
|
|
[ Slave axis {real-axis)- position-—m
{
[
|
I
i
I
f

When MasterAbsolute of the MC_CamTableSlect instruction is set to TRUE and SlaveAbsolute is set to
TRUE or FALSE, then the master axis works in absolute mode and the slave axis works in relative mode.
At the rising edge of Execute, the cam master axis starts from the “current master axis position” upon
cam startup. Slave real axis position instruction = Slave axis position upon startup + Cam table meshing
calculation value (cam slave axis position)

Notes:

1. In this case, if the start position of the master axis (real axis) is not at the cam master axis start
position, then a jump will be caused.

2. The master axis position must be within the position range of the cam master axis.

-210-



6. Common MC Instructions

10__ ..................... I ‘ .....
1 |
: <— Started atrising edge |
5 l i
] | |
4 | |
0 | i
E [ !
| ] i
] //:—’Masteeris(realaxis) |
e | T |
|
l |
3 |
l /’WM j
|
wlmdntr axis-position-[—" /,v""’ I
|
i |
w ! |
140 | '
[ Canstave axis position ===} t
1 I I
‘ i |
I
I |
i | fonert =
03 b — i !
160 7 N 7~ o !
P S N Z- ™~ |
1 ! 1 (Feal-aNE ) DOSItionN ——b- Pd !
| AL i Y !
‘ 1 Pl 'S |
Y S ra L
1 . i b !
- i Mo - s R

3) StartMode =2 (ramp-in mode)

When both MasterAbsolute and SlaveAbsolute of the MC_CamTableSlect instruction are set to TRUE,
then the master and slave axes work in absolute mode. At the rising edge of Execute, the cam master axis
starts from the “current master axis position” upon cam startup. The slave axis adds a compensation
motion through the set VelocityDiff, Acceleration, and Deceleration to avoid the potential jump during
switching. Slave real axis position instruction = Cam table meshing calculation value (cam slave axis

position) + f(VelocityDiff, Acceleration, Deceleration)

10

<— Started at rising edge

|
|
|
]
|
|
|
|

] ™

B

M

kMaSW

| M

M

kam masteraxis positM

Camslave axis peSition —»

T

it T

. ™S

P b

. . N -
Stave-axis (reataxis) pogifon == S

i
Pt o

i

P i i

}

f

I

il

f

I

I

=

|

ot |
|

I

I

!

|

|

i

T I
I

When MasterAbsolute of the MC_CamTableSlect instruction is set to FALSE and SlaveAbsolute is set to
TRUE, then the master axis works in relative mode and the slave axis works in absolute mode. At the
rising edge of Execute, the cam master axis starts from the “cam master axis start position” upon
cam startup. The slave axis adds a compensation motion through the set VelocityDiff, Acceleration, and

|
1
|
I
|
I
J
|
|
1
1
1
I
]
1
I
|
T — T T — T T T T
10s 20s |

-211-



6. Common MC Instructions

Deceleration to avoid the potential jump during insertion. Slave real axis position instruction = Cam
table meshing calculation value (cam slave axis position) + f(VelocityDiff, Acceleration, Deceleration)

R

< Started atrising edge

Bl M“* Master pxis (real axis)
200

S M
100

1 I
] |
] |
) |
] |
| |
} ]
T

] |
1 1
] |

Cam master axis ;)()S\U(W |
M '

i

M |

am slaye axis.position;==»

|
|
|
)
|
|
|
1
b

ve axis frealafis) position ==

|
|
!
|
|
|
1
|
|
!
|
]
}
|
|
[
|
I
|
]
1
]
1
|

4]

B~ m—
. ! |
—t

|

|
B!
|

T T T T T T T T T —T

[ 105 208

When MasterAbsolute of the MC_CamTableSlect instruction is set to TRUE and SlaveAbsolute is set to
FALSE, then the master axis works in absolute mode and the slave axis works in relative mode. At the
rising edge of Execute, the cam master axis starts from the “current master axis position” upon cam
startup. The slave axis adds a compensation motion through the set VelocityDiff, Acceleration, and
Deceleration to avoid the potential jump during switching. Slave real axis position instruction = Slave
axis current position + Cam table meshing calculation value (cam slave axis position) + f(VelocityDiff,
Acceleration, Deceleration)

Note: In this mode, the cam curve during the first master axis period may vary considerably from the
designed curve.

-212-



6. Common MC Instructions

When both MasterAbsolute and SlaveAbsolute of the MC_CamTableSlect instruction are set to FALSE,
then the master and slave axes work in relative mode. At the rising edge of Execute, the cam master axis
starts from the “cam master axis start position” upon cam startup. The slave axis adds a compensation
motion through the set VelocityDiff, Acceleration, and Deceleration to avoid the potential jump during
insertion. Slave real axis position instruction = Slave axis current position + Cam table meshing
calculation value (cam slave axis position) + f(VelocityDiff, Acceleration, Deceleration)

Note: In this mode, the cam curve during the first master axis period may vary considerably from the

designed curve.

g Started at'rising edgé

4 ! |
1.0: : T I
| ' I
o | I |
] | ' l
] | I |
o] | : |
|
E : - r axis {real axis) M|
3 |
Wug |
:M | :'|_....»~""'M’
4 | |
3 | e _...M”":
: Cammastdraxisposition—»- I/"'F
I M
J

]
I
|
|
Camslave axis-position —»
|
I
|
1
1

[avVe axis{redt-axis) position-g—m-

— T —
10s M5 s

-213-



-214-

6. Common MC Instructions

& Started atrising edge

<— Master W
e

3 /
1003

f
|
t
|
I
|
|

I
|
|
|
I
|
I
|
1
|
|

Cam master.axis positi

3 <

Cam:slavedxis position——»

Slavelaxis (real axis) postfon ——s

1 Tl el 1l

T
— 10s 20s

4) StartMode =3, 4 (ramp_in_pos, ramp_in_neg)

When the slave axis works in  “rotary mode” , compensation is performed only in positive direction
of the axis for ramp_in_pos and in negative direction for ramp_in_neg. When the axis works in linear
mode, the compensation direction is automatically adjusted for ramp_in_pos, ramp_in_neg, and ramp_
in, that is, if the axis is set to linear mode, it works in the same way for ramp_in_pos, ramp_in_neg, and
ramp_in.

Scaling ratio, master/slave axis offset:

According to the cam meshing formula: Input variables MasterOffset and MasterScaling change the
master axis position according to the following formula, and the electronic cams will calculate based on
the changed position X:

X = MasterScaling x MasterPosition + MasterOffset

Therefore, the electronic cam will run at the high velocity if the value of MasterScaling is larger
than 1 and run at the low velocity if the value is smaller than 1.

The SlaveOffset parameter makes the electronic cam move longitudinally (in the direction of the
slave axis),

and the SlaveScaling parameter stretches the electronic cam in the direction of the slave axis.
According to the following formula, the electronic cam is stretched in the first step

and then moves:
Y = SlaveScaling x CAM (X) + SlaveOffset

If SlaveScaling > 1, the electronic cam will be stretched and the motion range of the slave axis will
be increased. If SlaveScaling < 1,

the motion range of the slave axis will be decreased.

When MasterScaling = 1.0, SlaveScaling = 1.0, MasterOffset = 0, and SlaveOffset = 0, the cam curve



6. Common MC Instructions

is the planned one, as shown below:

T Cam slave axis

180 ==~~~ 77~

»
Ll

Cam master axis 360

When MasterScaling = 1.0, SlaveScaling = 2.0, MasterOffset = 0, and SlaveOffset = 0, the cam curve is
shown below:

Cam slave axis
A
360

»

Cam master axis 360

When MasterScaling = 2.0, SlaveScaling = 1.0, MasterOffset = 0, and SlaveOffset = 0, the cam curve is
shown below:

Cam slave axis
A

180

»
\

Cam master axis 1gg 360

When MasterScaling = 1.0, SlaveScaling = 0.5, MasterOffset = 0, and SlaveOffset = 0, the cam curve is
shown below:

Cam slave axis
A

N b

»
Ll

Cam master axis 360

When MasterScaling = 0.5, SlaveScaling = 1, MasterOffset = 0, and SlaveOffset = 0, the cam curve is shown

-215-



6. Common MC Instructions

below:

Cam slave axis
A

180

»
L=

Cam master axis 720

When MasterScaling = 1, SlaveScaling = 1, MasterOffset = 20, and SlaveOffset = 30, the cam curve is

shown below:

Cam slave axis
A

First master Second master
axis period

axis period

210

\/

3@-T1
;: Cam masteraxis 340 700

6) Timing Diagram:
The timing in periodical mode (MC_CamTableSelect.Periodic set to TRUE) is shown below:

Note: The MC_Camout instruction only cancels the cam coupling relationship between master and slave
axes. If the slave axis velocity is not 0 at the time of cancellation, the slave axis will not automatically
decelerate to 0. In this case, it must be used in conjunction with the MC_STOP instruction.

-216-



6. Common MC Instructions

/] /] 1
Master axis / / / ///

relative mode

N

Execute -|

Busy

Insync

EndofProfile

“ommandAb
orted

MC Camout
.Done

The timing in non-periodical mode (MC_CamTableSelect.Periodic set to FALSE) is shown below:

-217-



-218-

6. Common MC Instructions

Insync

EndofProfile

CommandAb
orted

Camout

€ Electronic cam restart:

7)

The two electronic cams can be switched at any time, but some conditions must be considered: In the
electronic cam editor, the slave axis position is defined as the calculated output of the electronic cam
function, which is calculated based on a master axis positions within the master axis range. Therefore,
this can be expressed by the following formula: SlavePosition = CAM(MasterPosition). Since the actual
period of the master axis drive is generally different from the master axis range defined by the electronic
cam, the master axis position must be scaled to the domain defined by the function to enable the
correct input of the electronic cam function: SlavePosition = CAM(MasterScale x MasterPosition +
MasterOffset). Similarly, if an electronic cam starts in absolute mode and produces an upward jump, the
function output (virtual slave position) will also be corrected proportionally: SlavePosition = SlaveScale
x CAM(MasterPosition) + SlaveOffset. In the worst case, both proportional corrections must be applied.
Therefore, the slave position (SlavePosition) is calculated based on a more complex formula:

Slaveposition = SlaveScale x CAM(MasterScale x Masterposition + MasterOffset ) + SlaveOffset

At the end of each electronic cam period, the scale and offset can be changed to obtain more
appropriate parameters. However, restarting the MC_CamIn module of the electronic cam will delete its
memory, including the scale and offset values. As a result, the defined electronic cam function will be
adapted to different slave axis values. For this reason, it is recommended to restart MC_CamIn-FB only
when another different electronic cam needs to be processed.

Note: See the motion control function part for electronic cam switching.
See the motion control function part for electronic cam samples.
See the motion control function part for the tappet function.

Error Description



6. Common MC Instructions

When an abnormality is detected when this instruction is activated, Error becomes TRUE.

You can check the output value of ErrorID.

MC_CamOut

This instruction cancels cam coupling of the slave axis. Note: After this instruction is executed, the slave
axis will continue to run at the same velocity as before decoupling. Therefore, this instruction must be
used in conjunction with an instruction such as MC_Stop.

1)

Instruction Format

Instruction Name Graphic Expression ST Expression
MC CamOut
Cam_outd ~
5 Slave:=
MC_CamOCut !
Instruction for Hajave Dane Execute:= ,
MC_CamOut canceling cam —Execute Busy Done=> ,
coupling Exoe Busy=> ,
ErrorlD rror=x ,
ErrorID=> );
2) Related Variables
€ Inputandoutput
| t/Output Initial
nri/uar/ial:lgu Name Data Type Value Range \7alllljae Description
Slave Reference to the axis, that is, an instance
Sl AXIS_REF_SM3 |- - ’ ’
ave axis —Er- of AXIS_REF_SM3
¢ Input
) Initial L
Input Variable Name Data Type | Value Range value Description
Instructi
Execute ns ruc. on BOOL - - Execute the instruction at the rising edge
execution
¢ Output
Output Initial "
N Data T V R D
Variable ame ata Type alue Range Value escription
ion of X
Done Completed | BOOL TRUE, FALSE FALGE | completion of cam decoupling
of the master axis
Busy Executing BOOL TRUE, FALSE FALSE Executing instruction
TRUE wh
Error Error BOOL TRUE, FALSE FaLsE | >ctto TRUEwhenan error
occurs
h
ErrorlD Error code SMC_ERROR See SMC_ERROR 0 Output an error code when an
error occurs
3) Function Description
€ Thisinstruction cancels cam coupling of the slave axis.
€ Attherising edge of Execute, the cam coupling of the slave axis will be canceled.
€ The slave axis may not stop after the cam coupling relationship is canceled.
€ [fthe slave axis velocity is not 0 before this instruction is executed, the cam coupling relationship will

be canceled after the completion of the DONE signal. However, the slave axis will still run at the original

velocity.

-219-



6. Common MC Instructions

€ [fthisinstruction is executed when the slave axis has no cam coupling relationship, an error will be
output.

4) Timing Diagram

I
Synchronous |
bperation |
< in O\ Decelé rate:
- Cam
to sto
é)uplinﬂx P
iscdnnected
>

Master axis position

v

v

Slave axis position

Execute

v

Busy

v

Done

v

Error

v

MC_StopExcute

5) Usage Example

This example applies the cam-related instruction. It describes the axis motion status when a cam
relationship is created, run, and canceled.

Create the following cam table in the cam editor:

am cam 3 B | iR

X Y A A ) TR min(P.. max(P.. max(|V.. max(|A..
0 0 0 0 0

& PolyS 0 180 1.8749... 0.0320...

Lo} 180 180 0 0 0

& Poly5 0 180 1.8749... 0.0320...
360 0 o 0 0

-220-



6. Common MC Instructions

6)

cam

an % | fiF | HEE

[n] uosod anes

201

e T
10
/ mas ition [u]
E|4 20 4‘0 60 80 1C‘VD 120 140 1éD 1éE‘ 200 22 240 260 280 3D‘D 320 240
o ——
-
112
et
=
= mister pobition [
2 10 L W 130 4o 10 10 e 230 290 280 250 300 :«a/;y
A
Program:
MPQ 7] MP1 =
MC_Power — MC_Power —
Virual_X T Status— Az s Status—
TRUE Enable bRegulatorRealStata— TRUE Enzble bRegulatorRealStata—
TRUE bRegulatorOn bDriveStartReal TRUE bRegulatorOn bDriveStartReal
TRUE bDriveS: Busy— TRUE bDriveS: Busy—
Emor— Emor—
EmorlD[- EmorlD[—
MC_Camin_0 ey
MC_Camin —
Virtual_X “Master InSyneg—
Az ASlave Busy—
Exacute CommandAborted—
0 MasterOffzat Emor—
0 ] Skavelffsat EmorlD—
MC_CamTablaSalect 0 5] 1 M Scali EndOfProfile—
MC_CamlableSek — i SlavaScali Tappets—
HMastar Done— 1 Mod
S lava Busy— CamTablell
2 CamTzhble Erar —VelocityDiff
CamSealact Exacuta EmorlD— —Accaleration
TRUE Periodic CamTablelD)| —{D=csh
FALSE MastarAbzolut: —eark
FALSE SlaveAbsal —{Tappetth
MC_MoveVelocity 0 (T Axis I
MC_MoveVelbcity — MC_Stopd
iz InVelocity— MC_CamOutd MC_Swp
MasterBun '— Executa Busy— MC_ CamOut Lz Donel
100 Velocity CommandAborted— Slave Exacute Busy|
300 Accal = Exacuts Deceleration Emor
300 Decal EmorlD — ek EmorlD
I—.Jerk
Diraction

The master and slave axes are automatically enabled after power-on. If MasterRun is set to TRUE, the
master axis runs at the velocity of 100.

Set CamSelect to TRUE, select the cam table and set CamIn to TRUE to start the electronic cam.

To disconnect the electronic cam, set MC_CamOut0.Execute to TRUE.

Notes:

See the motion control function part for online modification of the cam table.

Error Description

If an error occurs during instruction execution, Error outputs TRUE.

ERRORID can be checked.

-221-



-222-

6. Common MC Instructions

MC_Gearln
This instruction sets the gear ratio between the slave axis and the master axis to perform electronic
gearing.
1) Instruction Format
Instruction (Name Graphic Expression ST Expression
MC GearInl(
Master:= .
51 1=
MC_Gearln_0 ) e '
0 | Execute:= ,
“laster InGear— RaticNumerator:= ,
Electronic | RatioDenominator:= ,
HSlave Busy— i
MC_Gearln gear. —{Execute CommandAborted - Acceleram‘.cnf '
function —RatioMumerator Error— Deceleration:=,
block —RaticDenominator ErrorlD - Jerk:= ,
—{fcceleration InGear=> ,
—|Dieceleration Busy=> ,
—Jerk Commandiborted=» ,
Error=» ,
ErrorID=> ):
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable yp Range Value .
Master Reference to the axis, that is, an instance of
Master . AXIS_REF_SM3 |- -
axis AXIS_REF_SM3
Slave Reference to the axis, that is, an instance of
Slave AXIS_REF - - ’ ’
Y axis - AXIS_REF_SM3
€ InputVariable
) Initial .
Input Variable Name Data Type Value Range value Description
Execute the instruction at the
Execute Executed BOOL TRUE, FALSE FALSE | oY INStruct
rising edge
Gear ratio
RatioNumerator ! DINT Positive, negative- |1 — Gear ratio numerator
numerator
Gear ratio
RatioDenominator ,I UDINT Positive number |1 Gear ratio denominator
denominator
Acceleration Acceleration | LREAL Positive number |- Specify an acceleration rate
Deceleration Deceleration | LREAL Positive number |- Specify a deceleration rate
Jerk Jerk LREAL Positive or 0 - Jerk
€ Output Variable
. Initial _—
Output Variable Name Data Type Value Range value Description
G ti Set to TRUE when the sl i
InGear carratio - anor TRUE, FALSE | FALSE etto when the stave axis
reached reaches the target velocity
Set to TRUE when the instruction is
Busy Executing | BOOL TRUE, FALSE | FALSE , W instructiont
being executed
Set to TRUE when the instruction
CommandAborted| Aborting BOOL TRUE, FALSE FALSE is interrupted by other control
instructions




6. Common MC Instructions

4)

5)

Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
See SMC Output de wh

ErrorlD Errorcode |SMC_ERROR | oo 2= 0 utputan error code when an error
ERROR occurs

Function Description

Specify the object axis through Slave and specify RatioNumerator, RatioDenominator, ReferenceType,
Acceleration, and Deceleration to perform gearing.

The instruction position, feedback position, and latest instruction position can be specified for the
master axis (Master).

At the rising edge of Execute, the electronic gearing action starts.

After the start of the action, the slave performs acceleration and deceleration with the target velocity
obtained by multiplying the master axis velocity by the gear ratio.

To cancel coupling after running the electronic gear, execute the GearOut instruction.

This instruction is a velocity electronic gear, and the loss of synchronization distance caused by the
acceleration will not be automatically compensated.

When the Busy signal is TRUE during instruction execution, if the target velocity of the slave axis is not
reached, the new rising edge of Execute will not affect it.

When the Busy signal is TRUE during instruction execution, if the target velocity of the slave axis is
reached, the new rising edge of Execute will not affect it.

When the target velocity is reached, InGear is TRUE. Slave axis movement amount = Master axis
movement amount x RatioNumerator/RatioDenominator.

If the master axis velocity changes in real time, use this instruction with caution.
Precautions

* Do not use the MC_SetPosition instruction during the execution of this instruction; otherwise, an
accident may be caused by rapid motor operation.

*  Before using the MC_SetPosition (current position change) instruction for the master axis, cancel
the relationship between the master axis and the slave axis.

Timing Diagram:

The value of Busy changes to TRUE when Execute is started. The value of Active changes to TRUE in the
next period.

When the target velocity is reached, InGear changes to TRUE.

If this instruction is aborted by another instruction, CommandAborted becomes TRUE, and Busy, Active,
and InGear become FALSE.

To end the electronic gearing action midway, use the MC_GearOut or the MC_Stop instruction.

-223-



6. Common MC Instructions

Execute 44
[
InGear —" l

Busy 4|
Active

—

|
I
1 [

| |

|
\
CommandAborted } 1 |
|
Error : | %
ErroriD | 1640000 >< Error code ‘
T
|
Velocity f—

|

\

\ ¢ Aborted by other
\ instructions

€ Start of this instruction during the execution of other instructions

When this instruction is started for the currently executing instruction, it will be switched or cached to
this instruction.

The action when multiple instances of this instruction are started is determined by BufferMode.

Buffer Mode Description

Immediately aborts the currently executing instruction and switches to this
Aborting instruction.

If the direction of axis motion is reversed due to instruction switching, reverse
running is performed after the velocity is decelerated to zero.

The function block is started immediately after the last instruction motion is
terminated. No blending is performed here. When the end conditions (such as
Buffered Done, InVelocity, InEndVelocity, InGear, InSync, EndOfProfile) are reached, the
new motion starts at the velocity of the previous motion. If the previous motion
was MC_MoveAbsolute or MC_MoveRelative, the new motion will start in static
state.

€ Start of other instructions during the execution of this instruction
Multiple instances of the instruction can be executed in an interrupted manner for the slave axis.

In this case, stop the gear operation and start executing multiple instances.

It is not allowed to execute multiple instances of the instruction in a non-interruptive manner.

MC_GearOut

This instruction aborts the MC_Gearln and MC_GearlnPos instructions in execution.

1) Instruction Format

|Instruction |Name | Graphic Expression ST Expression

-224-



6. Common MC Instructions

Instruct MC_GearOut_0 0 lic_gearoutoq
nstruc |0T1 MC_GearOut Slave:= '
for canCt?llng —Hglave Done Execute:= ,
MC_GearOut |electronic _ Execute Busy Done=>
gear . Busy=> ,
couplin Error=r ,
Ping ErrorlD ErrorID=> ):
Related Variables
Input/Output Variable
Input/Output Value Initial .
Name Data Type Description
Variable ¥b Range Value P
Reference to the axis, that is, an instance
Sl Sl i AXIS_REF_SM3 |- - ’ ’
ave ave axis —Er- of AXIS_REF_SM3
Input Variable
. Initial A
Input Variable Name Data Type Value Range value Description
E te the instructi t the risi
Execute Executed | BOOL TRUE, FALSE  |FALSE | ccutetheinstruction atthe nsing
edge
Output Variable
Output Initial .
Name Data Type Value Range Description
Variable yp & Value P
Set to TRUE when the electronic
Done Completed |BOOL TRUE, FALSE FALSE gear coupling between the slave
axis and the main axis is canceled
Set to TRUE when the instruction is
Busy Executing BOOL TRUE, FALSE FALSE )
being executed
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
Output an error code when an error
ErrorlD Errorcode |SMC_ERROR See SMC_ERROR 0 occErs

Function Description

At the rising edge of Execute, execute the action of removing the electronic gearing.

If Execute is TRUE and ERROR is FALSE, then Busy and Done output TRUE.

The slave axis velocity is the same as that one before removal. Therefore, it is necessary to stop the
slave axis with the MC_Stop instruction.

At the falling edge of Execute, Done is FALSE.

The MC_Stop instruction resets the Busy signal.

-225-



-226-

6. Common MC Instructions

4)

1)

2)
.

Execute

Busy

Done

ERROR

ERRORID

16400

SLAVE_Velo

city

Error Description

An error in the parameter setting can cause an alarm.

An alarm will be caused if the axis is not disabled.

MC_GearlnPos

This instruction sets the electronic gear ratio between the master axis and the slave axis to perform

electronic gearing.

Specify the master axis position, slave axis position, and distance at which synchronization of the master
axis starts, and insert the electronic gear based on these values.

Instruction Format

Instruction Name Graphic Expression ST Expression
MC_GearInPos(
Master:= S5M Driwve Virtual,
MC_GearlnPos_0 Slave:= Rxis,
Execute:= ,
Instruction MC_GearlnPos RaticNumerator:= ,
f : EN ENO RatiocDenominator:= ,
or o = Master StartSync MasterSyncPoaition:= ,
MC SpeC”y|ng = Slave InSync SlaveSyncPositicn:= ,
Gea_rInPos the position| ] EXBFUtE E'Ll'sy MasterStartDistance:= ,
to insert the — RatioMumerator Active BufferMode:=
. —| RatioDenominator CommandAborted AvoidReversali= ,
electronic —| MasterSyncPosition Errar StartSynoc=s |
gear —{ SlaveSyncPosition ErrorlD TnSyne=> |
coupling —{ MasterStartDistance Busy=> ,
—| BufferMode Zctives=s |
— AvoidReversal CommandAborted=» |,
Error==> ,
ErrorIl=> ):
Related Variables
Input/Output Variable
Input/Output Value Initial L
. Name Data Type Description
Variable yp Range Value P
Master Reference to the axis, that is, an instance of
Master . AXIS_REF_SM3 |- - ’ ’
axis -~ AXIS_REF_SM3




6. Common MC Instructions

*

Input/Output Initial L
. Name Data Type Description
Variable yp Range Value P
Slave Reference to the axis, that is, an instance of
Sl AXIS_REF - - ’ ’
ave axis - AXIS_REF_SM3
Input Variable
. Initial L
Input Variable Name Data Type Value Range value Description
Instructi E te the instructi t
Execute nstruction s o1 TRUE, FALSE FALSE | ‘ecutethenstruction a
execution the rising edge
G ti N t f ter-sl
RatioNumerator ear ratio DINT i - umgra or.o master-slave
numerator velocity ratio
G ti D inat f ter-
RatioDenominator earra.lo DINT - 1 enomina F)ro mas er
denominator slave velocity ratio
Position of the Master axis position at the
MasterSyncPosition . LREAL - - time of master-slave gear
master axis . )
ratio coupling
Sync position Slave axis position at
SlaveSyncPosition | of the slave LREAL - - master-slave gear ratio
axis coupling
The slave axis calculates
a smooth curve based on
this position value and the
values MasterSyncPosition
. and SlaveSyncPosition
Master axis .
. so that the slave axis
. position . . .
MasterStartDistance for svnc LREAL - - is synchronized with
y . the master axis gear
execution .
at SlaveSyncPosition.
The master axis
range for the curve is
[MasterStartDistance,
MasterSyncPosition].
Set to FALSE
if reverse running is
performed when the
physical position of the
slave axis is overrun. Set to
MC Aborting =0 TRUE
BufferMode Buffer mode B Buffered=1 0 if reverse runrnng Is not
BUFFER_MODE ) . allowed physically or a
BlendingPrevious=3 danger will be caused. It
applies only to modulo
axes. If reverse running
cannot be avoided,
the axis will stop with an
error.

-227-



-228-

6. Common MC Instructions

) Initial _—
Input Variable Name Data Type Value Range value Description
Set to FALSE if reverse
running is performed when
the physical position of the
slave axis is overrun. Set
Reverse to TRUE if reverse running
AvoidReversal running BOOL TRUE, FALSE FALSE | is not allowed physically
inhibited or danger will be caused.
It applies only to modulo
axes. If reverse running
cannot be avoided, the axis
will stop with an error.
€ Output Variable
. Initial L
Output Variable Name Data Type Value Range value Description
Coupling Set to TRUE if the electronic
StartSync processing BOOL TRUE, FALSE FALSE | gear coupling processing is
started started
Set to TRUE when the
- electronic gear couplin
Couplingin e g pling
InSync rooress BOOL TRUE, FALSE FALSE | processingis completed
prog and master-slave gear ratio
coupling is in progress.
Instruction in Set to TRUE when the
Busy ) BOOL TRUE, FALSE FALSE |instructionis being
execution
executed
Set to TRUE wh troli
Active Controlling | BOOL TRUE, FALSE FALSE | € 10 TTHE When controtis
being performed
| i I h
CommandAborted | orruction BOOL TRUE, FALSE FALSE |nterrupted by other control
aborted instructions
TRUE wh
Error Error BOOL TRUE, FALSE FALSE | >ctto TRUE when anerror
occurs
Output de wh
ErrorID Error code SMC_ERROR | See SMC_ERROR 0 utputan error code when
an error occurs

3)

Function Description

Specify the object axis through Slave and specify RatioNumerator, RatioDenominator, ReferenceType,
Acceleration, and Deceleration to perform gearing.

The instruction position, feedback position, and latest instruction position can be specified for the
master axis (Master).

Start the instruction at the rising edge of Execute.

After the start of the action, the slave performs acceleration and deceleration with the target velocity
obtained by multiplying the master axis velocity by the gear ratio.

The whole synchronization process of this function block is essentially an electronic cam, in which the
slave axis follows the master axis during the synchronization interval. Based on the range of the master
axis (MasterSyncPosition-MasterStartDistance, MasterSyncPosition), the range of the slave axis (Current
position, SlaveSyncPosition), as well as the set gear ratio, the instruction automatically designs a cam
curve, and the slave axis follows the master axis to complete the cam action during the synchronization.

Note: If the master and slave axes are working in linear mode, ensure that the above parameters are set
properly; otherwise, the gearing action cannot be carried out correctly. Therefore, it is recommended
that the master and slave axes work in cyclic mode when this instruction is used.



6. Common MC Instructions

For example, when the master and slave axes work in linear mode and both move in positive
direction, if Master axis position > MasterSyncPosition - MasterStartDistance or Slave axis position
> SlaveSyncPosition when this instruction is executed, then the electronic gearing action cannot be
inserted.

Sample timing diagrams for different parameters are given below:
When the master and slave axes work in cyclic mode (360):

1) MasterSyncPosition =280, MasterStartDistance = 50, SlaveSyncPosition = 60, Master axis velocity =
50, AvoidReversal = FALSE

A
Execute

>

StartSync >

InSync »

280
50| LB
100 /
Master axis position 1 1 »
| el / _______

Slave axis position '

Slave axis velocity '

ERROR >
ERRORID e ¢

2) MasterSyncPosition = 300, MasterStartDistance = 370, SlaveSyncPosition = 60, Master axis velocity =
50, AvoidReversal = FALSE

-229-



6. Common MC Instructions

A
»
»
»
»
|-
»
Master axis distance
of 370 between two points
360 -
Master axis position »
360
Slave axis position |
___0_ _:_ _ _____
Slave axis velocity / >
»
Ll
‘ 16#00 ‘ t

3) MasterSyncPosition = 300, MasterStartDistance = 50, SlaveSyncPosition = 60, Master axis velocity =
50, AvoidReversal = FALSE, Slave axis start position > 60

A
Execute

| -
>
StartSync »
>
InSync >

360
Master axis position >

360
Slave axis position F

_ __wo_ _:_J __ ____

Slave axis velocity ?
ERROR ;

-230-



6. Common MC Instructions

4)

5)

The target velocity will be reached when the synchronization is completed (InSync = TRUE). Slave axis
movement amount = Master axis movement amount x RatioNumerator/RatioDenominator

AvoidReversal: If the slave axis is a modulo axis and the master axis velocity (in a multiple relationship
with the gear ratio) is not relative to the slave axis velocity, then MC_GearInPos tries to avoid reverse
running of the slave axis. It triesto  “stretch” the motion of the slave axis by adding 5 slave periods.

If this “stretching” isinvalid, then an error occurs and the slave axis stops. If the slave axis velocity is
related to the major axis velocity (which is a multiple of the gear ratio), then an error occurs and the axis
stops. If the slave axis is a linear one, an error is generated at the rising edge of Execute.

Precautions

Before using the MC_SetPosition (current position change) instruction for the master axis, cancel the
relationship between the master axis and the slave axis.

Timing Diagram
At the rising edge of Execute, the electronic gearing action starts.

The value of Busy changes to TRUE when Execute is started. After the start of the action, the gearing
action is started by Active and StartSync.

When MasterSyncPosition and SlaveSyncPosition are reached, InSync changes to TRUE.

When this instruction is aborted by another instruction, the value of CommandAborted changes to TRUE
and those of Busy, Active, StartSync, and InSync change to FALSE.

A
Execute
Pt
Busy
Pt
StartSync >t
InSync >t
! MasterStart} ~ MasterSync
Masterposito i Distance |  Position
np b : |
SlaveSyncP
osition
Slavepositon >t
ERROR > ¢

-231-



-232-

6. Common MC Instructions

€ Motion re-execution instruction

This instruction cannot be re-executed.

€ Start of this instruction during the execution of other instructions

When this instruction is started for the currently executing instruction, it will be switched or cached to

this instruction.

The action when multiple instances of this instruction are started is determined by BufferMode.

Buffer Mode

Description

Aborting

Immediately aborts the currently executing instruction and switches to this
instruction.

If the direction of axis motion is reversed due to instruction switching, reverse
running is performed after the velocity is decelerated to zero.

Buffered

The function block is started immediately after the last instruction motion is
terminated. No blending is performed here. When the end conditions (such as
Done, InVelocity, InEndVelocity, InGear, InSync, EndOfProfile) are reached, the
new motion starts at the velocity of the previous motion. If the previous motion
was MC_MoveAbsolute or MC_MoveRelative, the new motion will start in static
state.

MC_Phasing

This instruction specifies the phase shift between the master axis and the slave axis.

1) Instruction Format

Instruction] Name Graphic Expression ST Expression
MC_Fhasing 0 MC Phasingl(
- Master:= .
MC Phasing =1 L
—SMaster Done [— Bvei=
—s5lave Buay — Execute:= ,
) CommandAborted — I—‘_hase?hl:t:= !
MC_ Main- . Trror -.-'ElEE‘.lE}..— .
Phasing slave axis — | execute ErrorID Acceleration:= ,
phase —{Phagsesnift Deceleration:= ,
shift . o Jerk:= ,
— Velocity
» : Done=> ,
—Acceleration
—Deceleraticn Busy=> ,
—Jerk CommandAborted=> ,
Error=> ,
ErrorID=> ) ;
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial L
Name Data Type Description
Variable yp Range Value P
Master Reference to the axis, that is, an instance
Master AXIS_REF_SM3 | - - ’ ’
axis -~ of AXIS_REF_SM3
Slave Reference to the axis, that is, an instance
Slave AXIS_REF - - ’ ’
axis - of AXIS_REF_SM3

€ InputVariable




6. Common MC Instructions

) Initial _—
Input Variable Name Data Type Value Range value Description
Execute Instruc.tlon BOOL TRUE, FALSE FALSE Execute the instruction at the rising
execution edge
PhaseShift Master-sl?ve LREAL i 0 A positi\{e number indicates that the
phase shift slave axis lags.
Maximum velocity when the phase
Velocity Velocity LREAL |- 0 Ximum vetocity w P
shift is executed
Maxi lerati te when th
Acceleration Acceleration | LREAL - 0 axmum aFce eration rate when the
phase shift is executed
Maxi decelerati te when th
Deceleration Deceleration | LREAL - 0 axmum .ece eration rate when the
phase shift is executed.
Second Maximum jerk when performin
Jerk derivative of | LREAL - 0 . J . P &
) phase shift is executed
velocity
€ Output Variable
) Initial .
Output Variable Name Data Type Value Range value Description
Set to TRUE when th
Done Completed | BOOL TRUE, FALSE FALSE | >SttotrvEwhenthe
phase shift is completed
Instruction Set to TRUE when the
Busy . ; BOOL TRUE, FALSE FALSE instruction is being
in execution
executed
Instructi Int ted by oth
CommandAborted NStUEtion 1 gaoL TRUE, FALSE FALSE | ierrupted by other
aborted control instructions
Set to TRUE wh
Error Error BOOL TRUE, FALSE FALSE | >StTO TRYUEWRenan error
occurs
Output d
ErroriD Errorcode | SMC_ERROR |See SMC_ERROR |0 utputan errorcode
when an error occurs

3)

Function Description

This instruction executes phase shift at the rising edge of Execute. The slave axis automatically

calculates a smooth curve to complete phase shift from the slave axis to the master axis, which is
specified by PhaseShift. A positive value indicates that the slave axis lags behind the master axis.

The Done signal outputs TRUE after phase shift is completed.

The master-slave phase shift is compensated based on the value of PhaseShift, Velocity, Acceleration

and Deceleration.

When the phase shift between the master axis and the slave axis reaches PhaseShift, the Done signal is

output.

When the instruction is executed, the instruction position and feedback position of the master axis
remain unchanged, and the slave axis is adjusted. The phase shift between the slave axis and the master
axis is the value of PhaseShift.

The final result of this instruction is the phase shift between the set values of the axes. Therefore, the
actual feedback value of the real axis may not be the same as the final shift.

This instruction is used in conjunction with the MC_Gearln instruction as follows: The master axis is
Virtual_x, and the slave axis is Virtual_y. At the rising edge of EX12, master axis velocity control and
master-slave electronic gearing are performed, and then the phase shift is performed. In addition, it can
be used in conjunction with an electronic cam. The slave axis acts as an “electronic cam master axis”

to achieve the phase shift effect of an electronic cam master axis.




6. Common MC Instructions

MC MoveVeleocity
Virtual X —Saxis B InVelocity —
Busy —
CommandAborted —
Execute Error
Velocity ErrorID—
Acceleration
Deceleration
Jerk
—Directicn
MC
MC GearIn
Virtual ¥ —SMaster B InGear ——
Virtual ¥ —Hs5lave Busy
CommandAborted —
EX12 Error—
ﬂ H Execute ErrorID—
1 —RaticNumerator
RaticDenominator
Acceleration
Deceleration
Jerk
MC_Fhasing_ 0
MC Phasing
Virtual X —Suaster B Done ——
Virtual ¥ —Hslave Busy—
Commandiborted —
PHASING EXCUTE Error—
ﬂ H Execute ErrorID
PhaseShift
Velocity
Acceleration
Deceleration
Jerk
4 . phase shift t ition " "hy sl
position master position "seen” by slave
360 N
H N A o
- - : ¥ - -
| L
| o
| o
L
I L
| L
i -7
. physical master position
velocity iphase velocity
T mastervelocity
0
Fy
Execute
L
F 3
Done

4) Timing Diagram

-234-



6. Common MC Instructions

When the master and slave axes move in 360 cycles, adjustment is performed at the rising edge of the
Execute signal. After the adjustment, phase shift between the slave axis and the master axis is the value
of PhaseShift.

T t

Execute >
Busy t
>
Done > i
360
Slavepositon » t

360 /

e

Masterpositon O, O >t
PhaseShift

ERROR Pt
5) Error Description

€ [fthe Error outputs TRUE when the instruction is started, an error occurs.
@ Check ErrorlD and check SMC_ERROR in the help to determine the alarm information.

SMC_CAMBounds

This function block calculates the maximum position, velocity, and acceleration rate of the
slave axis when the slave axis is cam-coupled to the master axis.

The master axis moves under the input maximum velocity and acceleration/deceleration limits.
This instruction can be used to check the correctness of the curves for cam table designs, pro-
vided that the maximum acceleration/deceleration rate and velocity are known.

1) Instruction Format

| Instruction | Name Graphic Expression | ST Expression

-235-



6. Common MC Instructions

SMC_CZMBounds_0(
CAM:= .
SMC_CiMBounds_0 bBExecute:= ,
SMC_CAMBounds dMasterVelMax:= ,
—=caM bDone — dMastericcMax:= ,
bBusy — dMasterScaling:= ,
bBError — d3lawveScaling:= ,
SMC_CAMBounds Cam upper and —kExecute nErrorID— bDone=> ,
l limit —dMasterVelMax dMaxFos — bBusy=> ,
ower imits —dMasterhccMax dMinPos — bError=> ,
—dMasterScaling dMaxVel — nErrcrIf=> '
—d51aveScaling dMinVel - dMaxPos=> ,
. | dMinPos=> ,
dl'.'h-a::r_ccjec dMaxVel=s
dMinlcclec — dMinVel=s ,
dMaxtccDec=> ,
dMinkccDec=> ):
2) Related Variables
€ Input/Output Variable
Input/Output Value | Initial L
Name Data Type Description
Variable yp Range | Value P
CAM Cam MC_CAM_REF | - ) Reference to the cam, that s, an
instance of MC_CAM_REF
€ InputVariable
Data Initial
Input Variable Name Value Range Description
Type Value
Instruction Execute the instruction at the risin
bExecute R BOOL TRUE, FALSE FALSE &
execution edge
Maximum Maximum master axis velocity in
dMastervelMax | MUl REAL |- 1 ximd Xisvelociyt
velocity absolute mode
Maxi Maxi i i
dMasterAccMax aX|murr_1 LREAL ) 0 ! aximum master axis acceleration
acceleration in absolute mode
Scalin Scaling factor in master axis cam
dMasterScaling & LREAL |- 1 . & .
factor application
Scalin Scaling factor in slave axis cam
dSlaveScaling & LREAL |- 1 ) & .
factor application
€ Output Variable
Output Initial
Name Data Type Value Range Description
Variable yp & Value P
Set to TRUE when the
bDone Completed |BOOL TRUE, FALSE FALSE .
calculation is completed
Instruction Set to TRUE when the
bBusy . ) BOOL TRUE, FALSE FALSE ) . .
in execution instruction is being executed
Set to TRUE when an error
bError Error BOOL TRUE, FALSE FALSE

occurs

Output an error code when an
error occurs

nErrorlD Error code SMC_ERROR | See SMC_ERROR |0

Calculate the maximum
position of the slave axis
according to the cam table

Maximum
dMaxPos . LREAL
position

|
o

Calculate the minimum

. Minimum . .
dMinPos . LREAL - 0 position of the slave axis
position .
according to the cam table.
Maximum Calculate the maximum
dMaxVel . LREAL - 0 .
velocity velocity

-236-




6. Common MC Instructions

Output Initial
Variapble Name Data Type Value Range Value Description
Mini he mini
dMinvel |n|mum LREAL i 0 Calcu.latet e minimum
velocity velocity
dMaxAccDec Maximum LREAL i 0 Calculate‘themaximum
acceleration acceleration
ini e mini
dMinAccDec |n|mumv LREAL i 0 Calculate't e minimum
acceleration acceleration
3) Function Description
€ Attherising edge of bExecute, the “maximum position” , “minimum position” and other values

of the slave axis are calculated based on dMasterVelMax, dMasterAccMax, dMasterScaling, and

dSlaveScaling as well as the cam table data. For example, if the master axis has a period of 360 and the
cam table is a straight line with a slope of 2, the result of the calculation is shown in the figure below:

This instruction can be used when the master axis works in absolute mode, the master axis is set to
cyclic mode, or the modulus value is set to the master axis period.

The cam table is XYVA, which is valid in polynomial mode and not valid for 1D or 2D arrays.

CaM3

teatl

SMC_ChMBounds 0

SMC CAMBounds

il
500

10ad

4) Timing Diagram

A

bERROR

—caM bhone iy —
bBuay M=
bError = Py
bExecute nErrorID —
—dMasterVelMax dMax Pos [— T20
—dMastericcMax dMinPos -
—dMasterScaling dMaxVel —
—d5laveScaling dMinVel |-
dMaxkecDec —
dMinkccDec —

-237-



6. Common MC Instructions

5) Error Description

The cam table format is not polynomial mode.

The MC_CAM_REF set value of the cam table does not match the actual cam table.

SMC_CAMBounds_Pos

This function block calculates the maximum and maximum positions of the slave axis when the slave
axis is cam-coupled to the master axis. This function block does not calculate the maximum acceleration.
Its other functions are the same as those of the SMC_CAMBounds instruction.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
SMC MBounds Pos0 (
SMC_CAMBounds Pos 0 CrM:= '
SMC_CAMBounds _Pos bExecute:= ,
—ScaM bDcne = dMasterVelMax:= ,
bBusy = dMaste
SMC- E)Teircaanr: bError = '
CAMBounds_Pos o =——bExecute nErrorID|—
POSItIOI’I —dMasterVe 1Max dMaxPos —
limits —dMastericcMax dMinPos —
—1dMasterScaling
—1dSlaveScaling
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable o Range Value .
Reference to the cam, that is, an instance of
AM M AM_REF |- -
¢ cam C_CAM MC_CAM_REF
€ InputVariable
. Initial _—
Input Variable Name Data Type Value Range value Description
Instruction Execute the instruction at the
bExecute . BOOL TRUE, FALSE FALSE L.
execution rising edge
dMasterVelMax MaxirTwm LREAL i 1 Maximum master axis velocity in
velocity absolute mode
dMasterAccMax Maximurr? LREAL i 0 Maximum master axis acceleration
acceleration in absolute mode
. . Scaling factor in master axis cam
dMasterScaling | Scaling factor | LREAL - 1 . & )
application
. . Scaling factor in slave axis cam
dSlaveScaling | Scaling factor | LREAL - 1 . & )
application
€ Output Variable
) Initial i
Output Variable Name Data Type Value Range value Description
Set to TRUE when the
bDone Completed |BOOL TRUE, FALSE FALSE .
calculation is completed

-238-



6. Common MC Instructions

4)

Instructi Set to TRUE when th
bBusy Ans fue Io.n BOOL TRUE, FALSE FALSE -e © . .W e.n N
in execution instruction is being executed
Set to TRUE when an error
bError Error BOOL TRUE, FALSE FALSE N W '
occurs
Output an error code when an
nErroriD Errorcode | SMC_ERROR | See SMC_ERROR 0 utpu "
error occurs
Maximum Calculate the maximum
dMaxPos . LREAL - 0 position of the slave axis
position .
according to the cam table
Minimum Calculate the minimum
dMinPos . LREAL - 0 position of the slave axis
position .
according to the cam table.

Function Description

At the rising edge of bExecute, the “maximum position” and “minimum position” of the slave axis
are calculated based on dMasterVelMax, dMasterAccMax, dMasterScaling, and dSlaveScaling as well as

the cam table data.

This instruction can be used when the master axis works in absolute mode, the master axis is set to

cyclic mode, or the modulus value is set to the master axis period.

The cam table is XYVA, which is valid in polynomial mode and not valid for 1D or 2D arrays.

Error Description

The cam table format is not polynomial mode. The MC_CAM_REF set value of the cam table does not

match the actual cam table.

SMC_WriteCAM

1)

2)
.

This instruction stores the edited cam table as a file when the program is running. It allows the cam table
to be used by instructions such as MC_Camln. For details on the content of the generated file, see “Cam

Format” .

This instruction can be used in conjunction with SMC_ReadCAM.

Instruction Format

Instruction Name Graphic Expression ST Expression
SMC WriteCRAM O
SMC WriteCAM
—caM blcne =
. Cam upper hEngy -
SMC_WriteCAM |and lower
o bError =
limits
= hExecute ErrorID—
—3FileName
Related Variables
Input/Output Variable
Input/Output Value Initial L
N Data T D t
Variable ame ata lype Range Value escription

-239-



6. Common MC Instructions

Reference to the cam, that is, an instance

CAM Cam MC_CAM_REF
of MC_CAM_REF

€ InputVariable

Input Data Value Initial .
. Name Description
Variable Type Range Value
Instruction TRUE
bExecute . BOOL ’ FALSE Execute the instruction at the rising edge
execution FALSE
. Document o File name in ASCII format containing a cam
sFileName STRING |- . . " w.
Name description. For details, see "Cam Format" in Help.

€ Output Variable

. Initial .
Output Variable Name Data Type Value Range Value Description
Set to TRUE when th
bDone Completed | BOOL TRUE, FALSE FALSE etto when the cam
has been written to the file
Instruction Set to TRUE when the
bBusy . . BOOL TRUE, FALSE FALSE instruction execution is not
in execution
completed
Set to TRUE wh
bError Error BOOL TRUE, FALSE FALSE | oL TR Whenan error
occurs
Output de wh
nErroriD Errorcode |SMC_ERROR | See SMC_ERROR 0 utputan errorcode when
an error occurs

3) Function Description

€ Thisinstruction is executed at the rising edge of bExecute. The cam information of the “Cam”
connection is stored in the file connected by the name “sFileName” .

€ When the storage is complete, the bDone signal outputs TRUE.

2

The stored cam table information is limited by the hardware memory.

€ Note: This function is executed while the program is running. The cam table information can also be
manually stored offline.

= Untitled1.project - InoProShop(V0.0.9.10)

File Edit WVew Project | Cam | Buld Online Debug Tools Window Help

= = E % Read Cam Data from ASCII Table _.T :g -
| \Urite CamData into ASCIT Table |
(|| T cEAr_mros Read Cam Oniine File {VA_TEST @ Trace &L, cam2 x
. o
§ Cam table | Tapt Write Cam Online File
o i Display generated Code
4 15
o
E 300 E
= 1L
ﬁ Ny Q|

4)  Error Description

€ Thisinstruction can only complete the cam table of XYVA polynomial mode. For 1D or 2D mode, an error
will be output.

€ Thefile name connected by “sFileName” does not exist or the information is wrong.

6.3 Other Functional Specifications

-240-



6. Common MC Instructions

6.3.1 Instruction Cache

1)  Aborting and buffered mode

Some function blocks (FBs) have a “BufferMode” input, which enables the FB to work in buffered or
non-buffered (default) mode. The difference between the modes lies in when the motion is started.

€ Non-buffered mode: The motion instruction takes effect immediately, even if it interrupts another
motion. The buffering area for the instruction movement is deleted.

€ Buffered mode: The motion instruction waits until the current function block sets its output to Done,
InPosition, or InVelocity. Buffered mode is also used to define the velocity curve during motion

blending.

Some buffer modes are shown below:

Buffer Mode

Description

Aborting

Default mode without buffering. The function block is started immediately and
aborts the active motion. This instruction takes effect immediately for the axis.

Buffered

The function block is started immediately after the last instruction motion is
terminated. No blending is performed here. When the end conditions (such
as Done, InVelocity, InEndVelocity, InGear, InSync, EndOfProfile) are reached,
the new motion starts at the velocity of the previous motion. If the previous
motion was MC_MoveAbsolute or MC_MoveRelative, the new motion will start
in static state.

(BlendinglLow)

Blend at the low velocity

The function block is started immediately after the last instruction motion
is terminated. The axis does not stop between motions but passes through
the end position of the first motion at the lower velocity of the two motion
instructions.

(BlendingPrevious)

Blend at the previous velocity

The function block is started immediately after the last instruction motion is
terminated. The axis does not stop between motions but passes through the
end position of the first motion at the velocity of the first motion instruction.

(BlendingNext)

Blend at the next velocity

The function block is started immediately after the last instruction motion
is terminated. The axis does not stop between motions but passes through
the end position of the first motion at the velocity of the second motion
instructions.

(BlendingHigh)

Blend at the high velocity

The function block is started immediately after the last instruction motion
is terminated. The axis does stop between motions but passes through the
end position of the first motion at the higher velocity of the two motion
instructions.

2) Impact of buffering modes on defined function blocks

. Defined as a Buffering/ Follow a Buffering/ Signal for Activating the
Function Block . : : A . .
Blending Instruction Blending Instruction Buffering/Blending FB
MC_Power No No -
MC_Home No No -
MC_Stop No No -
MC_Halt No No -
MC_MoveAbsolute
Yes Yes Done
MC_MoveRelative
MC_MoveAdditive No No -
MC_MoveSuperimposed No No -

-241-



-242-

6. Common MC Instructions

3)

Function Block

Defined as a Buffering/
Blending Instruction

Follow a Buffering/
Blending Instruction

Signal for Activating the
Buffering/Blending FB

MC_MoveVelocity Yes Yes (Buffered only) InVelocity
SMC_
MoveContinuousAbsolute

No Yes (Buffered only) InEndVelocity
SMC_
MoveContinuousRelative
MC_PositionProfile
MC_VelocityProfile No No -
MC_AccelerationProfile
MC_Camin No Yes, also if periodic (only EndOfProfile

Buffered)

MC_CamOut No Yes (Buffered only) Done
MC_Gearln Zisly()BlendingPrevious Yes (Buffered only) InGear
MC_GearOut No Yes (Buffered only) Done
MC_GearInPos No Yes (Buffered only) InSync
SMC_FollowPosition
SMC_FollowVelocity
SMC No No -
Follo_wPositionVelocity
SMC_FollowSetValues
SMC_SetTorque No Yes -
MC_Phasing No No -
MC_Jog Yes (Buffered only) Busy
SMC_Inch No Yes (Buffered only) Busy
SMC_ No No -

BacklashCompensation

Execution order of cached function blocks

In buffered motion or blending motion mode, the FB instances of the next instruction motion must not
be executed earlier than the FB instance of the previous instruction motion (the execution order in the

main program). If this rule is violated, a new error SMC_MOVING_WITHOUT_ACTIVE_MOVEMENT will be
reported and the axis will switch to the Errorstop status.

Specific features of the mixed state

The buffering mode does not change the drive position characteristics. Rules of its valid blending
velocity are as follows:

If the blending velocity cannot be reached (without position overshoot), the valid blending velocity is
the next velocity that can be reached (without overshoot).

[Note]: The valid blending velocity can be higher or lower than the blending velocity.

If the second motion instruction starts in a direction opposite to that of the first motion instruction, the
valid blending velocity is set to 0. This prevents the position from going beyond its target position in the
direction of the first motion.

If the path of the second motion is too short to decelerate from blending velocity to 0, the valid blending
velocity will be adjusted. It is set to the maximum velocity that is allowed for safe braking to a standstill



6. Common MC Instructions

5)

status on the path of the second motion.

In the case of a rotary axis, the result of the input direction of MC_MoveAbsolute is not affected by
blending to the second motion. This means that the target position of the first motion is always in the
same modulus period, regardless of whether it follows the blending motion.

In the case of a rotary axis and a second motion of the MC_MoveAbsolute type, the blending velocity
does not affect the modulus period of the target position of the second motion instruction when
Direction = Fastest. This means that the target of the same period will be selected, regardless of whether
the second motion instruction uses buffered or blending mode.

Precautions for buffering mode

An instruction with a buffering area cannot be repeatedly triggered in the buffering area (during
execution in the non-aborting status). It can be repeatedly triggered if not in the buffering area (in
aborting status, when the instruction is complete, or in non-active status in Busy mode). That is, there
can only be one buffer instance with the Buffered/Blending function block.

During the execution of the buffer instruction, if the motion parameters are modified, there is no impact
on the original instruction. If the parameters are modified and re-triggered, only the modification to
aborting mode is supported.

6.3.2 Hitting Limit

1) Determination of hitting limit; processing rule for hitting the negative limit in positive direction: For
positive motion, only the positive limit is judged, and an error is reported when the motion goes
beyond the positive limit. For negative motion, only the negative limit is judged, and an error is
reported when the motion goes beyond the negative limit.

2) Rules of changes in the status bit, axis status, and instruction output flag bit of hitting limit: When
the axis starts to decelerate upon software limit, it directly switches into the ErrorStop status and
the instruction enters the Error status.

3) Processing rule for hitting the limit switch: The instruction determines whether it will cross the limit
during the movement. If the trajectory of the current instruction will decelerate upon software limit
only after crossing the limit, then it will interrupt the current controlled instruction within the limit
and finally stop at the limit boundary through the deceleration parameter set in the background.

4) Stopping rule for hitting the software limit: If fSwLimitDeceleration is smaller than
fSWMaxDeceleration, it will stop based on fSWMaxDeceleration. If the distance of stopping
based on the maximum deceleration rate is larger than fSWErrorDistance, it will stop based on
fSWErrorDistance. The current velocity and position to the limit are calculated based on the
software maximum deceleration (fSWMaxDeceleration), software limit maximum deceleration
(fSwLimitDeceleration) and deceleration distance (fSWErrorDistance). The parameter for
deceleration will be the one that allows the minimum deceleration distance (maximum deceleration
rate), among the maximum software limit deceleration, software limit deceleration and the
maximum software limit deceleration. The software limit deceleration process is a T-curve, that is,
after deceleration upon soft limit is triggered, the acceleration rate jumps directly to the software
limit deceleration rate/maximum software limit deceleration rate/deceleration rate calculated based
on the maximum software limit deceleration distance.

5) If theinitial position is beyond or on the limit and the axis moves in the direction of the limit, the
axis processing logic and function block output flag bit change as follows: the axis directly enters
the ErrorStop status and the instruction is set to Error.

6) Added an option to make the axis that hits the limit not enter the ErrorStop status

For the above item 2/5, when the axis enters the software limit, it will switch to the ErrorStop status and

-243-



-244-

6. Common MC Instructions

the instruction enters the Error status. The option Axis.bSWLimitNotErrorStopEnable is added so that:

If Axis.bSWLimitNotErrorStopEnable is TRUE, when the axis starts to decelerate upon software limit,
there is an option of not reporting an error, that is, the axis will be in non-ErrorStop status, making
it possible to reverse the movement away from the limit when a new instruction is triggered. If Axis.
bSWLimitNotErrorStopEnable is FALSE, the function of the above item 2 is kept.

Similarly for item 5, if Axis.bSWLimitNotErrorStopEnable is TRUE, when the initial position is beyond or
on the limit and the axis moves in the direction of the limit, there is an option of not reporting an error,
that is, the axis will be in non-ErrorStop status, making it possible to reverse the movement away from
the limit when a new instruction is triggered. If Axis.bSWLimitNotErrorStopEnable is FALSE, the function
of the above item 5 is kept.

6.3.3 Defaults of Motion Control Function Blocks

The default values of the motion variable input limits, that is, the velocity limit, acceleration limit,
deceleration limit and jerk limit, for any current motion instruction are all 0. However, during the
execution of the instruction, none of the limit input values can be 0. When the input values are not
assigned, the default values will be adopted. In this case, if the instruction is triggered directly, an error
will be reported.

Users can avoid the error that is reported when the limit value of the motion variable input of an
instruction is 0 or less than 0. That is, if the parameter Velocity, Acceleration, Deceleration or Jerk for
the motion control instruction exceeds the value range, a new default value will be used, which is in the
structure stDynamicDefault.

stDynamicDefault description:

Structure Element Data Type valauu;t Description
fDefaultVelocity LREAL 10 \'j;‘gc?t?fau“ value of
fDefaultAcceleration LREAL 100 New defa.ult value of

stDynamicDefault acceleration rate
fDefaultDeceleration LREAL 100 New defa.ult value of
deceleration rate
fDefaultJerk LREAL 10000 New default value of jerk
The following instructions are involved:

Instruction Involved Velocity Acceleration Deceleration Jerk
MC_MoveAbsolute Velocity <0 Acceleration rate < 0 | Decelerationrate <0 | Jerk <0
MC_MoveAdditive Velocity <0 Acceleration rate < 0 | Decelerationrate <0 | Jerk <0
MC_MoveRelative Velocity <0 Acceleration rate < 0 | Decelerationrate <0 | Jerk <0
MC_MoveSuperimposed Velocity <0 Acceleration rate < 0 | Decelerationrate <0 | Jerk <0
MC_MoveVelocity Velocity <0 Acceleration rate < 0 | Decelerationrate <0 | Jerk <0
SMC_MoveContinuousAbsolute | Velocity <0 Acceleration rate < 0 | Decelerationrate <0 | Jerk <0
SMC_MoveContinuousRelative | Velocity <0 Acceleration rate < 0 | Decelerationrate <0 | Jerk <0
MC_Jog Velocity <0 Acceleration rate < 0 | Decelerationrate <0 | Jerk <0
SMC_Inch Velocity <0 Acceleration rate < 0 | Decelerationrate <0 | Jerk <0
MC_Halt - - Decelerationrate <0 | Jerk <0
MC_Stop - - Decelerationrate <0 | Jerk <0




6. Common MC Instructions

*

*

The default values will be assigned to the input variables of the above instructions within the ranges
shown in the table. However, there are two special cases:

If the velocity is 0 in the position-related instruction but the desired displacement is not 0, an error will
be reported.

If the velocity at the end of continuous motion is smaller than 0, the end velocity is set to 0.

6.3.4 Curve Reversal Prevention

*

*

If Axis.bCurvelnvertedEnable is TRUE, the current motion is interrupted by another motion, and the
displacement generated in the transition process between the velocity at the interruption and the target
velocity is larger than the relative displacement of the motion to the target position, the deceleration
rate will be automatically adjusted to avoid curve reversal.

If Axis.bCurvelnvertedEnable is FALSE, the original reversal phenomenon will be maintained.

When the target displacement is very small and the difference between the breakpoint velocity and the
target velocity is large, the velocity demand may not be satisfied at the target displacement because
the deceleration rate is too small, resulting in velocity reversal. The reversal is not acceptable in many
situations. Examples are shown below:

The parameters of continuous relative motion are as follows: initial velocity (breakpoint velocity) = 0,
end velocity = 10, target displacement when the end velocity is reached = 10 Based on this velocity and
acceleration/deceleration rate, the running displacement when the end velocity is reached in the fastest
manneris v’ _ ﬁ _os5 which is greater than the target displacement of 10. In this case, there will
2%2 4
be a reversal, as shown in the figure:

e AT Add variable
] M m ais fSetPosition
ment B S Md’f 10.108250650541331
M Power 0 apd mm axis.fActPosition
Né = E‘ 1007 e |9671551704406738
h 1 e = axisfSetVelocity
—{EN ENO 1 o
4 Avis Status | VG s — 10
I- Enable bRequlatorRealState m YIRS ] NP . axisfAcVelocity
= bRegulatorOn bbriveStartResiState ( |VER . e Ry 9986162
[ bDrivestart Busy [~ [T -
EH(’I 5 L-E 10 + mm axis.fSetAcceleration
Sl FALS
ErrorlD [~ 0
m axis.fActAcceleration
ment i } 7.8678131
SMC_MoveContinuousRelative 0 LT e
SMC_MoveContinuousRelative 10 o
—eN enol S
—iAvis InEndVelocity el
o Brecute DistanceTravelled = W o
~ ] pistance Busy | i "
—J Velodity CommandAborted = oVt
—JEndVelocity Errorim
— EndVelocityDirection ErrorlDi4
—JiAcceleration
—{ Deceleration
—Jerk
I- AdaptEndVelToAvoidOvershoot

That s, if the straight drop displacement of the initial and end velocity at the breakpoint is larger than
the total relative displacement, then there will be velocity reversal after the interruption.

To avoid the reversal, consider optimization within the algorithm to automatically change the
deceleration rate and take the smallest acceleration/deceleration value.

Examples are shown below:

-245-



-246-

6. Common MC Instructions

Similar to the above case, it is known that the straight drop displacement is larger than the total relative
displacement. If bCurvelnvertedEnable is set to TRUE, the acceleration rate will be automatically

adjusted as follows: v _ E _10-As A=5 thevelocity reversal is avoided, as shown in the figure.
2% 4 2%4

smiEe [y ruv A
400 M Configure
i e Add variable
1C_Power_0 g
Bl M" = axis fSetPosition =
_ﬂ,,,,—-*"""'w 346.1539011001587 | 356.1138411001587 | 49860038999
Net comment 1 e - axis fActPosition
MG Bower0) 0 346.] | 355.6860207027588 | A9.53303241
WC Power b ™
- it = s foetvelacity
PO M»"" 0 | 2.980000000000008 | £9.960000000000008
is — 1
[FaLse [n ERS bRegulatorReq preiser i - s fActvelocity
bRegulatorOn bDriveStartRed M.,u-v""‘ -0.0007152557373046875 | 8.754657745361328 | 09.755)
bDriveStart = as fsetacceleration
] 104 ! 0158
{ - ais fActAcceleration
il i -0.4172325134277344 | -11.026859283447266 | 4-10.609!
Net comment ] I
SMC_MoveContinuo o
SMC MoveContinu
EN Bl
Asis —= Avis ] -
B ] =~
10 —| Distance +]
20 —] Velocity 1 e
10 — EndVelocity
1 —] EndVelocityDirection 4
2 —| Acceleration .
2 — Deceleration
1 —lerk
EIER - AdaptEndVelToAvoidOversho
3 i
1 SENPYS —
»Config_Globals.Axis.nxisSate 1
Config_Globals.Axis.by ControlletMode i T h
sConfig_Globals.Axis.byRealCortrollstiode 7 T ! M I i} AN Ll M
1Config_Globals.Axis.iOwmer : : : : . T : . : . .
sConfig_Globals.Axis.iNoOvner s 4 8 8 T & 9 10s [« [ n D




6. Common MC Instructions

7. Simulation and Commissioning

7.1 Simulation Controller

If no AM600 controller hardware is available for user program commissioning, users can use the
simulation function of InoProShop to debug the logic of the user program. In the simulation state, there
is a reminder of simulation state in red at the bottom of the programming software.

In the simulation state, you can also compile the user program and "log in" to the controller. By
loading the user program into the PC simulator, you can monitor the user program, forcibly modify
the parameters, and observe the execution result of the user program as if you have connected to the
controller:

Although it is not possible to simulate the operation of the network bus, users can observe the execution
logic of the program and check the execution result after the data structure parameters of the servo axis
are forcibly modified.

The steps of the simulated monitoring and commissioning program are the same as those in the
scenario with AM600. After "logging in", users can click "Run" or "Stop" to execute or stop the user
program. Before modifying the user program, users need to "log out".

7.2 Simulation Servo Drive

If the AM600 controller is available but no servo drive is available or the servo drives are insufficient
during MC application commissioning, users can use the "virtual axis" instead of the servo drive axis.

Check the "Virtual Axis Mode" option. During controller commissioning, the servo drive axis will be
simulated. If a physical servo is available, you can uncheck this option.

During programming commissioning, if the number of connected servo axes is different from the number
configured in the user program, the system will generate an alarm and the commissioning will fail. After
the virtual axis is connected, the system will not generate an alarm, but will run by simulating the servo
through the software. You can visualize the "running" state of the axis to check the correctness of the MC
program.

Virtual axes are also axes. Although it is a "virtual axis", the axis status operation logic must be designed
in accordance with the PLCopen Specification. For example, run MC_Power before the operation. After
an error occurs, MC_Reset must be run. This can help debug and eliminate the logic errors in the user
program.

If a physical servo axis is connected, just uncheck the "Virtual Axis Mode" option.

-247-



6. Common MC Instructions

Appendix A Homing Modes Supported by 1IS620N

A.1 Description of Homing Modes:

1)

6098h =1

Mechanical home: motor Z signal

Deceleration point: negative limit switch

€ Deceleration point signal inactive at start of homing

-248-

Negative limit

@g (qaddd ([daddddad

Motion profile C 1
L—h

Motor Z signal |_|

Negative limit signal

Note: In the figure, "H" represents 6099-1h (Speed during search for switch), which is high speed, and "L
represents 6099-2h (Speed during search for zero), which is low speed.

The N-OT signal is inactive initially, and the motor starts homing in negative direction at the high
velocity. After reaching the rising edge of the N-OT signal, the motor decelerates and changes to run in
positive direction at the low velocity. After reaching the falling edge of the N-OT signal, the motor stops
at the first motor Z signal.

Deceleration point signal active at start of homing

Negative limit

| E—
@ [T @@a@@dddaadaaad d@dao

Motion profile | >

Motor Z signal

Negative limit signal

The N-OT signal is active initially, and the motor directly starts homing in positive direction at the low
velocity. After reaching the falling edge of the N-OT signal, the motor stops at the first motor Z signal.

6098h =2

Home: Z signal

Deceleration point: positive limit switch



6. Common MC Instructions

€ Deceleration point signal inactive at start of homing

3)

Positive limit

| I—
@(i daqdadadaad ([(da@a@ad adaon

Motion profile D

Motor Z signal

Positive limit signal

The P-OT signal is inactive initially, and the motor starts homing in positive direction at the high velocity.
After reaching the rising edge of the P-OT signal, the motor decelerates and changes to run in negative
direction at the low velocity. After reaching the falling edge of the P-OT signal, the motor stops at the first
motor Z signal.

Deceleration point signal active at start of homing

Positive limit

|
Motor Z signal t
|

Positive limit signal

The P-OT signal is active initially, and the motor directly starts homing in negative direction at the low
velocity. After reaching the falling edge of the P-OT signal, the motor stops at the first motor Z signal.

6098h =3

Home: Z signal

Deceleration point: home switch (HW)

€ Deceleration point signal inactive at start of homing

Home switch

© o

‘%(?(?(?(? Taqdaa

Motion profile

N
N
N
N
N

Motor Z signal

Home switch signal I_l—

-249-



6. Common MC Instructions

The HW signal is inactive initially, and the motor starts homing in positive direction at the high velocity.
After reaching the rising edge of the HW signal, the motor decelerates and changes to run in negative
direction at the low velocity. After reaching the falling edge of the HW signal, the motor stops at the first
motor Z signal.

€ Deceleration point signal active at start of homing

Home switch

Motor Z signal

Home switch signal

The HW signal is active initially, and the motor directly starts homing in negative direction at the
low velocity. After reaching the falling edge of the HW signal, the motor stops at the first motor Z signal.

4) 6098=4

Home: Z signal

Deceleration point: home switch (HW)

€ Deceleration point signal inactive at start of homing

Home switch
C
=
.
|
‘%(? qadaqdq (@ daaadddda

Motion profile | L -

Motor Z signal

Home switch signal

The HW signal is inactive initially, and the motor directly starts homing in positive direction at the low
velocity. After reaching the rising edge of the HW signal, the motor stops at the first motor Z signal.

€ Deceleration point signal active at start of homing

-250-



6. Common MC Instructions

*

L 4

Home switch

@ﬂﬂ((ﬂﬂﬂﬂﬂﬂﬂ

an

Motor Z signal ﬂ

Home switch signal

i |

The HW signal is active initially, and the motor starts homing in negative direction at the high velocity.
After reaching the falling edge of the HW signal, the motor decelerates and changes to run in negative
direction at the low velocity. After reaching the rising edge of the HW signal, the motor stops at the first
motor Z signal.

6098h =5

Home: Z signal

Deceleration point: home switch (HW)

Deceleration point signal inactive at start of homing

Home switch

P
=

@g (aqaddadd ([faaaad

Motion profile CH%
L

Motor Z signal

Home switch signal

The HW signal is inactive initially. The motor starts homing in negative direction at the high velocity.
After reaching the rising edge of the HW signal, the motor decelerates and changes to run in positive
direction at the low velocity. After reaching the falling edge of the HW signal, the motor stops at the first
motor Z signal.

Deceleration point signal active at start of homing

-251-



6. Common MC Instructions

Home switch

]
@m{ ([@aacaaaaaa@®

Motion profile } >

Motor Z signal

Home switch signal

The HW signal is active initially, and the motor directly starts homing in positive direction at the
low velocity. After reaching the falling edge of the HW signal, the motor stops at the first motor Z signal.

6) 6098=06

Home: Z signal

Deceleration point: home switch (HW)

€ Deceleration point signal inactive at start of homing

Home switch

c o

==
@ﬂ qaaaaaaadd (([Faaaa

Motion profile

A

Motor Z signal

Home switch signal

The HW signal is inactive initially, and the motor directly starts homing in negative direction at the
low velocity. After reaching the rising edge of the HW signal, the motor stops at the first motor Z signal.

€ Deceleration point signal active at start of homing

-252-



6. Common MC Instructions

Home switch

e

Motion profile

Motor Z signal

Home switch signal

The HW signal is active initially, and the motor starts homing in positive direction at the high velocity.
After reaching the falling edge of the HW signal, the motor decelerates and changes to run in negative

direction at the low velocity. After reaching the rising edge of the HW signal, the motor stops at the first
motor Z signal.

7) 6098=7

Home: Z signal

Deceleration point: home switch (HW)

€ Deceleration point signal inactive at start of homing, not reaching positive limit switch

Home switch
— Positive limit
v
| E—
‘%(7 qd ([fdd@dadadaaddd @ do
H
Motion profile ———
D)
Motor Z signal
Home switch signal

Positive limit switch

The HW signal is inactive initially, and the motor starts homing in positive direction at the high velocity.
If the motor does not reach the limit switch, it decelerates and changes to run in negative direction at

the low velocity after reaching the rising edge of the HW signal. After reaching the falling edge of the HW
signal, the motor stops at the first motor Z signal.

€ Deceleration point signal inactive at start of homing, reaching the positive limit switch

-253-



6. Common MC Instructions

Home switch

Positive limit

;

@ﬂﬂ((ﬂﬂﬂ qaqaad (@a@ao

Motion profile

Motor Z signal |_|

Home switch signal

Positive limit switch

The HW signal is inactive initially and the motor starts homing in positive direction at the high velocity.
If the motor reaches the limit switch, the motor automatically runs in negative direction at the high
velocity. After reaching the rising edge of the HW signal, the motor decelerates and continues to run in

negative direction at the low velocity. After reaching the falling edge of the HW signal, the motor stops at
the first motor Z signal.

€ Deceleration point signal active at start of homing

Home switch
O © Positive limit
v
[ ]
@W(fﬂ((’((ﬂ (@ a@aaa@a@ad

Motor Z signal

Home switch signal

Positive limit switch

The HW signal is active initially, and the motor directly starts homing in negative direction at the low
velocity. After reaching the falling edge of the HW signal, the motor stops at the first motor Z signal.

8) 6098=28

Home: Z signal

Deceleration point: home switch (HW)

€ Deceleration point signal inactive at start of homing, not reaching positive limit switch

-254-



6. Common MC Instructions

Home switch
T o Positive limit
LI
| E—
@W leaqaaaaaaaa aao
D
Motor Z signal C*Ll_l
Home switch signal
Positive limit switch

The HW signal is inactive initially, and the motor starts homing in positive direction at the high velocity.
If the motor does not reach the limit switch, it decelerates and changes to run in negative direction at
the low velocity after reaching the rising edge of the HW signal. After reaching the falling edge of the HW
signal, the motor changes to run in positive direction at the low velocity, and stops at the first motor Z

signal.

€ Deceleration point signal inactive at start of homing, reaching the positive limit switch

Home switch Positive limit
— [==]
T | —
@ﬂﬂﬂﬂﬁﬂﬂ?ﬂﬂ (@@ @a@o

Motion profile

=

Motor Z signal

Home switch signal

Positive limit switch

The HW signal is inactive initially, and the motor starts homing in positive direction at the high velocity.
If the motor reaches the limit switch, it automatically changes to run in negative direction at the high
velocity. After reaching the rising edge of the HW signal, the motor decelerates and continues to run in
negative direction at the low velocity. After reaching the falling edge of the HW signal, the motor changes
to run in positive direction at the low velocity, and stops at the first motor Z signal.

€ Deceleration point signal active at start of homing

-255-



-256-

6. Common MC Instructions

Home switch
Negative limit Positive limit
I
@((ﬂﬁﬂ((ﬂﬁ aaa@aaa @ao

Motor Z signal

(

=

Home switch signal

Positive limit switch

The HW signal is active initially, and the motor directly starts homing in negative direction at
the low velocity. After reaching the falling edge of the HW signal, the motor changes to run in positive
direction at the low velocity. After reaching the rising edge of the HW signal, the motor stops at the first

motor Z signal.

9) 6098=9

Home: Z signal

Deceleration point: home switch (HW)

€ Deceleration point signal inactive at start of homing, not reaching positive limit switch

Home switch

Negative limit

o]

Positive limit

qaaaaaa

ao

@Wﬁmmm

| H

I

Motor Z signal

Iy

Home switch signal

Positive limit switch

—

The HW signal is inactive initially, and the motor starts homing in positive direction at the high velocity.
If the motor does not reach the limit switch, it decelerates and changes to run in positive direction at
the low velocity after reaching the rising edge of the HW signal. After reaching the falling edge of the HW
signal, the motor changes to run in negative direction at the low velocity, and stops at the first motor Z

signal.

€ Deceleration point signal inactive at start of homing, reaching the positive limit switch



6. Common MC Instructions

*

10)

*

H(?me switch Positive limit
e
T
@m dadaaadd mﬂmg%m
}—H

Motion profile

e O A

Motor Z signal

Home switch signal

Positive limit switch

The HW signal is inactive initially, and the motor starts homing in positive direction at the high velocity.
If the motor reaches the limit switch, it automatically changes to run in negative direction at the high
velocity. After reaching the rising edge of the HW signal, the motor decelerates and resumes running in
positive direction at the low velocity. After reaching the falling edge of the HW signal, the motor changes
to run in negative direction at the low velocity, and stops at the first motor Z signal.

Deceleration point signal active at start of homing

Home switch
° ° Positive limit
v

| I —
@% daaada (Waadaadad @ @o
)

Motor Z signal |—|

Home switch signal

Positive limit switch

The HW signal is active initially, and the motor directly starts homing in positive direction at the low
velocity. After reaching the falling edge of the HW signal, the motor changes to run in negative direction
at the low velocity. After reaching the rising edge of the HW signal, the motor stops at the first motor Z
signal.

6098 =10

Home: Z signal

Deceleration point: home switch (HW)

Deceleration point signal inactive at start of homing, not reaching positive limit switch

-257-



-258-

6. Common MC Instructions

I

me switch

Positive limit
—

C— T
‘%(?(? (@ aqadda@adaad @ a@o

Motor Z signal

Home switch signal

Positive limit switch

The HW signal is inactive initially, and the motor starts homing in positive direction at the high velocity.
If the motor does not reach the limit switch, it decelerates and continues to run in positive direction at

the low velocity after reaching the rising edge of the HW signal. After reaching the falling edge of the HW
signal, the motor continues to run in positive direction at the low velocity, and stops at the first motor Z

signal.

€ Deceleration point signal inactive at start of homing, reaching the positive limit switch

Home switch

Negative limit

1
[° °]
I
Positive limit

@ﬂﬂ((ﬂﬂﬂﬁ/fﬂ((ﬂﬂ (raa@o

Motion profile

Motor Z signal

Home switch signal

Positive limit switch

The HW signal is inactive initially, and the motor starts homing in positive direction at the high velocity.
If the motor reaches the limit switch, it automatically changes to run in negative direction at the high
velocity. After reaching the rising edge of the HW signal, the motor decelerates and resumes running in
positive direction at the low velocity. After reaching the falling edge of the HW signal, the motor stops at

the first motor Z signal.

€ Deceleration point signal active at start of homing



6. Common MC Instructions

(Caccnaai

Motor Z signal

Home switch

Positive limit

(e @@@@ @@

\4

Home switch signal

Positive limit switch

The HW signal is active initially, and the motor directly starts homing in positive direction at the
low velocity. After reaching the falling edge of the HW signal, the motor stops at the first motor Z signal.

11) 6098h = 11&12&13&14

Similar to the profile when 6098 = 7 to 10, opposite in the initial running direction only

12) 6098h =17to0 30

Same profiles as 6098 = 1 to 14, without the step of searching for motor Z signal. The motor stops
immediately at receiving the following home signal.

Homing mode 6098

Home signal

17 N-OT falling edge
18 P-OT falling edge
19 HW falling edge
20 HW rising edge
21 HW falling edge
22 HW rising edge
23 HW falling edge
24 HW rising edge
25 HW rising edge
26 HW falling edge
27 HW falling edge
28 HW rising edge
29 HW rising edge
30 HW falling edge

13) 6098h =31to 32

This mode is not defined in the standard 402 protocol.

14) 6098h =33 and 34

It can be used for expansion purpose.

-259-



6. Common MC Instructions

Home: Z signal

Deceleration point: None

Homing mode 33: The motor runs in negative direction at the low velocity, and stops at the first motor Z
signal.

Homing mode 34: The motor runs in positive direction at the low velocity, and stops at the first motor Z

signal.
‘%(7 daadaad (da@addada

i
| F—34—

Motor Z signal |_,

15) 6098h =35

Homing mode 35: The current position is the home. After the homing signal is triggered (6040 control
word: 0xOF>0x1F), the current position 6064 = 607C.

-260-



6. Common MC Instructions

Appendix B: CiA402 Common Data Objects Supported by
IS620N

Sub- .
Index index Name Access Size Unit Setting Default Value PDC_)
(HEX) Range Mapping
(HEX)
603F 00 Error code RO UINT16 - TPDO

This object gives the most recent error code or alarm code of the drive. The corresponding lowest 12 bits indicate the fault code.
For the code definitions, see the 1S620 guide. Use 200B:22 or 23 to view up to 10 latest fault log codes.

6040 |00 | Control word [Rw  [uinTie |- l0to65535 | 0o  |RPDO

Status guidance after servo power-up, instruction control in each servo mode

6041 |00 | status word RO |UINT16 : | | | TPDO

Indicate the servo drive running status.

Quick stop option

605A 00
code

RW INT8 Oto7 2 -

Oto7

Select the drive quick stop mode

60sD |00 |Haltoptioncode ~ |[RW  |INT8 | [1t03 | 1

Select the drive halt mode

6060 |00 | Modes of operation  |[RW  |INT8 : [0to 10 | o [RrPDO

1 Profile Position (PP) mode

3 Profile Velocity (PV) mode

4 Profile Torque (PT) mode

6 Homing Mode (HM)

8 Cyclic Synchronous Position (CSP) mode
9 Cyclic Synchronous Velocity (CSV) mode
10 Cyclic Synchronous Torque (CST) mode

Servo operation mode

6061 00 N

RO INT8 = TPDO

Actual operation mode

Ref
6062 00 Position reference RO INT32 uiifrence TPDO

Position instruction value during each position loop period time, reference unit

E
6063 00 Position feedback RO INT32 u:iCtOder TPDO

The current position of the motor as fed back from the motor encoder

Ref
6064 00 Position feedback RO INT32 u:iterence TPDO

Position feedback value after inverse gear ratio calculation 6063 = 6064 x Gear ratio

Following error RW UINT32 Reference 0to232-1 3145728 |RPDO

6065 00 . .
window unit

When the position deviation 60F4 is greater than £6065, the drive reports an excessive position deviation (Er.B00) error. If bit 13
of 6041 is 1 in PP mode, this fault can be reset.

6067 00 Position window RW UINT32 szfrence 0 to 65535 7 RPDO

When the position deviation 60F4 is less than this value, and the time reaches 6068, the servo drive considers that the position is
reached, and sets status word 6041 bit 10 = 1. When either condition is not met, the position window is invalid.

6068 00 Position window time | RW UINT16 ms 0to 65535 0 RPDO

When the position deviation 60F4 is less than this value, and the time reaches 6068, the servo drive considers that the position is
reached, and sets status word 6041 bit 10 = 1. When either condition is not met, the position window is invalid.

-261-



-262-

6. Common MC Instructions

Sub- .
Index index Name Access Size Unit setting Default Value PDC,)
(HEX) Range Mapping
(HEX)
Ref
606C 00 Actual velocity RO INT32 uiif/r:nce T

The object indicates the position feedback per second (reference unit).

606D |00 |Velocitywindow ~ |[RW  |UINT32  |rpm l0to65535 | 10 |RPDO

When the difference between the motor velocity feedback and the velocity instruction is within 606D, and the time reaches
606E, the servo drive considers that the velocity is reached, and sets status word 6041 bit 10 = 1. When either condition is not
met, the velocity window is invalid.

606E |00 | Velocity window time | RW |UINT16 | ms l0to65535 | 0o |RPDO

When the difference between the velocity feedback and the velocity instruction is within =606D, and the time reaches 606E,
the servo drive considers that the velocity is reached, and sets status word 6041 bit 10 = 1. When either condition is not met, the
velocity window is invalid.

6071 |00 | Target torque [RW  [INT16 0.1% |-5000t05000 0  |RPDO
Target torque setting in torque mode
6072 |00 | Max. torque RW  [uiNTiE  |0.1% loto5000 | o  |RPDO
Maximum torque limit
6074 |00 | Torquereference | RO INT16 [0.1% -5000t05000] 0  |TPDO
Torque output instruction after internal calculation of the drive
6077 |00 | Actual torque RO [INT16 [0.1% |-5000t05000] 0 |TPDO
Feedback torque value acquired by the drive
Ref
607A 00 Target position RW INT32 u‘;ifrence -231-(231-1) 0 RPDO
Servo target position in profile position mode and cyclic synchronous position mode
Ref
607C 00 Home offset RW INT32 uiifrence -231-(231-1) 0 RPDO
Position of the mechanical home offset from the mechanical zero
Software absolute position limit
00 Highest sub-index RO UINTS ] 5 5 i
supported
User
607D 01 Min. position limit RW INT32 position -231-(231-1) -231 RPDO
unit
User
02 Max. position limit RW INT32 position -231-(231-1) 231-1 RPDO
unit

After homing is complete, set the minimum and maximum position limits for running by combining with 607C. Position
commands exceeding the limit will stop when the limit is reached.

607E 00 Polarity RW UINTS : loto2s5 | o  |RPDO

Bit 7 - Position reference polarity: 0: Keep original polarity; 1: Reverse polarity
Bit 6 - Velocity reference polarity: 0: Keep original polarity; 1: Reverse polarity

Bit 5 - Torque reference polarity: 0: Keep original polarity; 1: Reverse polarity

Refi
607F 00 Maximum velocity | RW UINT32 usif/r:nce 0t0232-1 | 104857600 |RPDO
Maximum velocity limit
Setting:
607F = Maximum allowable motor velocity (rpm) x Encoder resolution/60
u
6081 00 Profile velocity RW UINT32 S 10t0232-1 0  |RPDO
velocity unit
Setting of the uniform motor running velocity for the displacement in profile position mode
6083 00 Profile acceleration | RW UINT32 EET: /rfznce 1t0232-1 | 1747626667 RPDO

Acceleration in PP, CSV, or PV mode

Default value: 1747626667; Reference unit: /s2, indicating that the motor accelerates from 0 rpm to 1000 rpm in 10 ms.




6. Common MC Instructions

Sub- .
Index index Name Access Size Unit setting Default Value PD(,)
(HEX) Range Mapping
(HEX)
Ref
6084 00 Profile deceleration | RW UINT32 ui ite /rfznce 1t0232-1  |1747626667 RPDO
Deceleration in PP, CSV, or PV mode
Default value: 1747626667; Reference unit: /s2, indicating that the motor decelerates from 1000 rpm to 0 rpm in 10 ms.
Deceleration rate for User
6085 00 . RW UINT32 acceleration | 1 to 232-1 1747626667 | RPDO
quick stop unit

Acceleration of deceleration section if 605A = 2 when a quick stop command (bit 2 of 6040 = 0) is issued by the host controller.

Default value: 1747626667; Reference unit: /s2, indicating that the motor accelerates from 0 rpm to 1000 rpm in 10 ms.

6086 |00 | Motion profiletype  |[RW  |INT16 : o | o [RrPDO
Set the motor running curve in profile position mode.
Currently, only linear motion is supported.
6087 |00 | Torque slope [Rw  [uNT32  Joa%/s o | OXFFFFFFFF| RPDO
Set the torque command increment per second in profile torque mode.
Gear ratio
00 Highest sub-index RO UINTS 5 5
6091 supported
01 Motor revolutions RW UINT32 - 0to232-1 1 RPDO
02 Shaft revolutions RW UINT32 - 1-232-1 1 RPDO
Establish the proportionality between the encoder unit and the reference unit.
6098 00 Homing method RW INT8 - 0-35 0 RPDO
Support 35 homing methods specified by DS402 protocol.
High velocity value
f hing for th Ref
01 of searchingforthe ), UINT32 CITeNce 1 0t0232-1 1747626 |RPDO
deceleration point unit/s
6099 .
signal
02 Low speed during RW UINT32 Reference | 015 932-1 174762 |RPDO
search for zero unit/s
Ref
609A |00 Homing acceleration | RW UINT32 u:if/rseznce 1t0232-1 1747 |RPDO
Acceleration in variable velocity section in homing mode.
Default value: 1747; Reference unit: /s2, indicating that the motor accelerates from 0 rpm to 1000 rpm in 10 ms.
Ref
60BOh |00 Position offset RW INT32 uiifrence -231-(231-1) 0 RPDO
Ref
60Blh |00 Velocity offset RW INT32 uiite/r:nce -231-(231-1) 0 RPDO
60B2h 00 Torque offset RW INT32 0.1% -5000 to 5000 0 RPDO
60B8h 00 Touch probe function |RW UINT16 - 0to 65535 0 RPDO
60B9h 00 Probe status RW UINT16 - 0to 65535 0 RPDO
Touch probe 1 risi Ref
60BAh |00 OUCN Probe ZTISNE | pyy INT32 CIETENCe | 531-(231-1) 0 |RPDO
edge unit
Touch probe 1 falli Ref
60BBh |00 ouch probe ~1ating | py INT32 CITENCe | 531-(231-1) 0 |RPDO
edge unit
Touch be 2 risi Ref
60BCh |00 OUCN PTObE ZTISINE | piy INT32 CITeNCce | 531-(231-1) 0 |RPDO
edge unit
Touch 2 falli Ref
60BDh |00 ouch probe 2falling |, INT32 CITENCe | 531-(2311) 0 RPDO
edge unit
60EOh 00 Positive torque limit | RW UINT16 0.1% 0 to 5000 2000 RPDO
60E1lh 00 Negative torque limit | RW UINT16 0.1% 0 to 5000 2000 RPDO
60E3h |00 Supported homing | o\, UINT16 - . - -
method

-263-



-264-

6. Common MC Instructions

Sub-

Ind i
naex index Name Access Size Unit Setting Default Value PD(,)
(HEX) Range Mapping
(HEX)
60EGh |00 Position calculation | o, UINT16 - Oto1l o |-
method
Refi
60F4h |00 Position deviation | RO INT32 u;terence 231-(231-1) 0  |TPDO
Position deviation, reference unit
E
60FC 00 Position reference RO INT32 uzictoder -231-(231-1) 0 TPDO
Position reference, encoder unit
60FDh 00 DI status RO UINT32 - 0to232-1 0 RPDO
60FEh 00 DO status RO UINT32 - 0to232-1 0 RPDO
Refi
60FFh |00 Target velocity RW INT32 u:if/rsence 231-(231-1) 0  |RPDO
Velocity reference setting in Synchronous Cyclic Velocity mode
Supported drive 0000
2 R INT32
650 00 modes (0] UINT3 03ADhex TPDO

Display the modes supported by the drive.




6. Common MC Instructions

Appendix C Error Codes

SMC_ERROR: Records the error ID returned by the motion control function block.

Error Generation Source Variable Error Cause
code
0 Al SMC_NO_ERROR No error
1 | Drive interface SMC_DI_GENERAL_COMMUNICATION_ERROR | Communication error (such as a broken
Sercos ring)
Drive interface SMC_DI_AXIS_ERROR Axis error
Drive interface SMC_DI_FIELDBUS_LOST_SYNCRONICITY Loss of bus DC synchronization
Software limit switch is activated
After bSWLimitEnable is enabled, the current
10 |Drive interface SMC_DI_SWLIMITS_EXCEEDED position of the axis is not within
the range of fSWLimitPositive and
fSWLimitNegative range
11 | Drive interface SMC_DI_HWLIMITS_EXCEEDED Hardware limit switch is activated
13 | Drive interface SMC_DI_HALT_OR_QUICKSTOP_NOT_ Drive status stopped or quick stop is not
SUPPORTED supported
14 | Drive interface SMC_DI_VOLTAGE_DISABLED Drive is not enabled
Position fi i ive i
15 | Drive interface SMC_DI_IRREGULAR_ACTPOSITION Position format currently given by drive s
incorrect. Check communication
Positi . iti
16 | Drive interface SMC_DI_POSITIONLAGERROR osition lag error. Set and current positions
exceed limit
17 | Drive interface SMC_DI_HOMING_ERROR Drive homing error
All modul ted b
20 mo ules created by SMC_REGULATOR_OR_START_NOT_SET Controller is not enabled or brake is closed
motion control
21 :‘c';'; wrongcontrol | ¢\ \RONG_CONTROLLER_MODE Axis is not in correct control mode
30 | Drive interface SMC_FB_WASNT_CALLED_DURING_MoTIoN | Modules created by motion control are not
called until the end of motion
31 | Allmodules SMC_AXIS_IS_NO_AXIS. REF The given AXIS_REF variable is not of the
AXIS_REF type
3 Axis is in incorrect control | SMC_AXIS_REF_CHANGED_DURING_ Return value of the AXIS_REF variable is
mode OPERATION processed before the module is activated
33 | Drive interface SMC_FB_ACTIVE_AXIS_DIABLED Axis Is not activated during movement (MC_
Power.bRegulatorOn)
All modules created by Axis cannot process the current instruction in
34 . SMC_AXIS_NOT_READY_FOR_MOTION
motion control the current status
All modul ted b
35 |/ moduiescreatedby gy e AXIS_ERROR_DURING_MOTION Axis error during motion
motion control
40 | Virtual drive SMC_VD_MAX_VELOCITY_EXCEEDED Maximum velocity (fMaxVelocity) reached
41 | Virtual drive SMC_VD_MAX_ACCELERATION_EXCEEDED Maximum acceleration (fMaxAcceleration)
reached
42 | Virtual drive SMC_VD_MAX_DECELERATION_EXCEEDED Maximum deceleration (fMaxDeceleration)
reached
50 | SMC_Homing SMC_3SH_INVALID_VELACC_VALUES Invalid velocity or acceleration value
End limit switch ired f fi
51 | SMC_Homing SMC_3SH_MODE_NEEDS_HWLIMIT u::) limit switch required for module (safety
70 | SMC_SetControllerMode | SMC_SCM_NOT_SUPPORTED Mode is not supported
Control mod di t mode is not
71 | SMC_SetControllerMode | SMC_SCM_AXIS_IN_WRONG_STATE S:’;‘p:’rt;‘;‘) € usedin current mode s no

-265-



-266-

6. Common MC Instructions

Error
Generation Source Variable Error Cause
code
Axis is in an incorrect control mode; this
75 | SMC_SetTorque SMC_ST_WRONG_CONTROLLER_MODE function block needs to be enabled in torque

mode

80 | SMC_ResetAxisGroup SMC_RAG_ERROR_DURING_STARTUP Error during axis group startup

90 SMC_ . . SMC_CGR_ZERO_VALUES Incorrect variable
ChangeGearingRatio

o1 SMC_ _ - SMC_CGR_DRIVE_POWERED Trénsmission ratio cannot be changed in
ChangeGearingRatio drive control mode

92 SMC_ . . SMC_CGR_INVALID_POSPERIOD Incorrect position period (<=0)
ChangeGearingRatio

110 | MC_Power SMC_P_FTASKCYCLE_EMPTY Axi§ contains no information during the scan

period (fTaskCycle = 0)

120 | MC_Reset SMC_R_NO_ERROR_TO_RESET Axis has no error reset

121 | MC_Reset SMC_R_DRIVE_DOESNT_ANSWER Axis did not perform an error reset

122 | MC_Reset SMC_R_ERROR_NOT_RESETTABLE Error cannot be reset

123 | MC_Reset SMC_R_DRIVE_DOESNT_ANSWER_IN_TIME No response to communication with the axis

130 MC_ReadParameter, MC_ SMC_RP_PARAM_UNKNOWN Parameter number position
ReadBoolParameter

An error occurred during the parameter
MC_ReadParameter, MC_ transfer to drive. See error in function
131 ReadBoolParameter SMC_RP_REQUESTING_ERROR block example ReadDriveParameter (SM_
DriveBasic.lib)

140 MC._WriteParameter, MC_ SMC_WP_PARAM_INVALID Param(.eter.number position or write
WriteBoolParameter operation is not allowed
MC_WriteParameter, MC_ See error in module example

141 WriteBoolParameter SMC_WP_SENDING_ERROR WriteDriveParameter (Drin_Basic.lib)

170 | MC_Home SMC_H_AXIS_WASNT_STANDSTILL Axis not in standard state

171 | MC_Home SMC_H_AXIS_DIDNT_START_HOMING An error occurred during homing execution

172 | MC_Home SMC_H_AXIS_DIDNT_ANSWER Communication error

173 | MC_Home SMC_H_ERROR_WHEN_STOPPING Homing stopped due to an error. Check

whether deceleration is set.

180 | MC_Stop SMC_MS_UNKNOWN_STOPPING_ERROR An unknown error occurred during stopping

181 | MC_Stop SMC_MS_INVALID_ACCDEC_VALUES Invalid velocity or acceleration values

182 | MC_Stop SMC_MS_DIRECTION_NOT_APPLICABLE Direction = shortest unavailable

183 | MC_Stop SMC_MS_AXIS_ IN_ERRORSTOP Axis in stopping error status. Stopping cannot

be processed.
An instance of MC_Stop, which locks the axis

184 | MC_Stop SMC_BLOCKING_MC_STOP_WASNT_CALLED (Execute = TRUE), cannot be called. Call MC_

Stop (Execute = FALSE).

201 | MC_MoveAbsolute SMC_MA_INVALID_VELACC_VALUES Invalid velocity or acceleration values

202 | MC_MoveAbsolute SMC_MA_INVALID_DIRECTION Direction error

226 | MC_MoveRelative SMC_MR_INVALID_VELACC_VALUES Invalid velocity or acceleration values

227 | MC_MoveRelative SMC_MR_INVALID_DIRECTION Direction error

251 | MC_MoveAdditive SMC_MAD_INVALID_VELACC_VALUES Invalid velocity or acceleration values

252 | MC_MoveAdditive SMC_MAD_INVALID_DIRECTION Direction error

276 | MC_MoveSuperlmposed | SMC_MSI_INVALID_VELACC_VALUES Invalid velocity or acceleration values

277 | MC_MoveSuperlmposed | SMC_MSI_INVALID_DIRECTION Direction error

301 | MC_MoveVelocity SMC_MV_INVALID_ACCDEC_VALUES Invalid velocity or acceleration values

302 | MC_MoveVelocity SMC_MV_DIRECTION_NOT_APPLICABLE Direction=shortest/fastest not supported

325 | MC_PositionProfile SMC_PP_ARRAYSIZE Wrong alignment size

326 | MC_PositionProfile SMC_PP_STEPOMS Step time = t#0s

350 | MC_VelocityProfile SMC_VP_ARRAYSIZE Wrong alignment size

351 | MC_VelocityProfile SMC_VP_STEPOMS Step time = t#0s




6. Common MC Instructions

Error Generation Source Variable Error Cause
code
375 | MC_AccelerationProfile | SMC_AP_ARRAYSIZE Wrong alignment size
376 | MC_AccelerationProfile | SMC_AP_STEPOMS Step time = t#0s
400 | MC_TouchProbe SMC_TP_TRIGGEROCCUPIED Trigger condition has been activated
Wi fi ioni h
401 | MC_TouchProbe SMC_TP_COULDNT_SET_WINDOW Indow function is not supported by the
drive interface
402 | MC_TouchProbe SMC_TP_COMM_ERROR Communication error
410 | MC_AbortTrigger SMC_AT_TRIGGERNOTOCCUPIED Trigger condition has been terminated
SMC
426 - . . SMC_MCR_INVALID_VELACC_VALUES Invalid velocity or acceleration values
MoveContinuousRelative
SMC_ N
427 . . SMC_MCR_INVALID_DIRECTION Direction error
MoveContinuousRelative
SMC_ . . .
451 . SMC_MCA_INVALID_VELACC_VALUES Invalid velocity or acceleration values
MoveContinuousAbsolute
SMC_ . .
452 . SMC_MCA_INVALID_DIRECTION Direction error
MoveContinuousAbsolute
SMC_ . . .
453 . SMC_MCA_DIRECTION_NOT_APPLICABLE Direction= fastest unavailable
MoveContinuousAbsolute
600 | SMC_CamRegister SMC_CR_NO_TAPPETS_IN_CAM Cam does not contain any tappet
601 | SMC_CamRegister SMC_CR_TOO_MANY_TAPPETS Tappet group ID reaches MAX_NUM_TAPPETS
602 | SMC_CamRegister SMC_CR_MORE_THAN_32_ACCESSES More than 32 interfaces in a CAM_REF
625 | MC_CamIN SMC_CI_NO_CAM_SELECTED No cam is selected
626 | MC_CamlIN SMC_CI_MASTER_OUT_OF_SCALE Master axis out of range
627 | MC_CamiN SMC_CI_RAMPIN_NEEDS_VELACC_VALUES Velocity and acceleration must be precisely
specified for ramp_in function block
628 | MC_CamIN SMC_CI_SCALING_INCORRECT Incorrect scale variables fEditor/
TableMasterMin/Max
640 SMC_CAMBounds, SMC_ SMC_CB_NOT_IMPLEMENTED Function block given in cam format is not
CamBounds_Pos supported
675 | MC_Gearln SMC_GI_RATIO_DENOM RatioDenominator=0
676 | MC_Gearln SMC_GI_INVALID_ACC Invalid acceleration
677 | MC_Gearln SMC_GI_INVALID_DEC Invalid acceleration
725 | MC_Phase SMC_PH_INVALID_VELACCDEC Invalid velocity/acceleration/deceleration
726 | MC_Phase SMC_PH_ROTARYAXIS_PERIODO Rotary axis fPositionPeriod = 0
All modules using MC . .
7 - MC_N AM_REF_TYPE Th f M AM_REF
50 CAM_REF as input SMC_NO_CAM_REF_ e given cam is not of type MC_CAM_
SMC_CAM_TABLE_DOES_NOT_COVER_ If the data- retrieved from CamTable is n.ot the
751 | MC_CamTableSelect master axis area (xStart and xEnd) obtained
MASTER_SCALE .
by data transformation
The master axis changes its rotational
775 | MC_GearlnPos SMC_GIP_MASTER_DIRECTION_CHANGE . . . .
direction during slave coupling.
M E i io (fBacklash
800 SMC_ . SMC_BC_BL_TOO_BIG xcgsgve ge:ar return ratio (fBacklash) (>
BacklashCompensation position period/2)
Function block iri
1000 une .|on ockrequinng SMC_NO_LICENSE Target has no CNC license
CNC license
Path ity =
1001 | SMC_Interpolator SMC_INT_VEL_ZERO Oat cannot be processed because velocity
1002 | SMC_Interpolator SMC_INT_NO_STOP_AT_END Previous path object Vel_End >0
Warning: GEOINFO list is processed in Dataln,
but the list is not set at the end. Reason:
1003 | SMC_Interpolator SMC_INT_DATA_UNDERRUN Forgetting to set EndOfList in Dataln or SMC_
Interpolator is faster than path compilation
module
1004 | SMC_Interpolator SMC_INT_VEL_NONZERO_AT_STOP Stop velocity >0

-267-



-268-

6. Common MC Instructions

Error
code

Generation Source

Variable

Error Cause

1005

SMC_Interpolator

SMC_INT_TOO_MANY_RECURSIONS

Excessive use of SMC_Interpolator,
SoftMotion call error

1006

SMC_lInterpolator

SMC_INT_NO_CHECKVELOCITIES

Input-OutQueue Dataln is not used as a final
processing module for SMC_CHeckVelocities

1007

SMC_lInterpolator

SMC_INT_PATH_EXCEEDED

Internal/Numeric error

1008

SMC_Interpolator

SMC_INT_VEL_ACC_DEC_ZERO

Velocity, acceleration or deceleration is
empty or too low

1009

SMC_Interpolator

SMC_INT_DWIPOTIME_ZERO

FB call dwlpoTime =0

1050

SMC_Interpolator2Dir

SMC_INT2DIR_BUFFER_TOO_SMALL

Data buffer too small

1051

SMC_Interpolator2Dir

SMC_INT2DIR_PATH_FITS_NOT_IN_QUEUE

Path is not fully contained in the queue

1100

SMC_CheckVelocities

SMC_CV_ACC_DEC_VEL_NONPOSITIVE

Velocity, deceleration or acceleration value is
not in positive direction

1120

SMC_Controlaxisbypos

SMC_CA_INVALID_ACCDEC_VALUES

Variables fGapVelocity/fGapAcceleration/
fGapDeceleration are not positive values

1200

SMC_NCDecoder

SMC_DEC_ACC_TOO_LITTLE

Acceleration value is not allowed

1201

SMC_NCDecoder

SMC_DEC_RET_TOO_LITTLE

Deceleration value is not allowed

1202

SMC_NCDecoder

SMC_DEC_OUTQUEUE_RAN_EMPTY

Data below Queue is read and is empty

1203

SMC_NCDecoder

SMC_DEC_JUMP_TO_UNKNOWN_LINE

The line number jJumped cannot be executed
because of an unknown line number

1204

SMC_NCDecoder

SMC_DEC_INVALID_SYNTAX

Syntax error

1205

SMC_NCDecoder

SMC_DEC_3DMODE_OBJECT_NOT_SUPPORTED

These objects do not support 3D mode

1300

SMC_GCodeViewer

SMC_GCV_BUFFER_TOO_SMALL

Buffer too small

1301

SMC_GCodeViewer

SMC_GCV_BUFFER_WRONG_TYPE

Buffer element type error

1302

SMC_GCodeViewer

SMC_GCV_UNKNOWN_IPO_LINE

Current interpolation line cannot be found

1500

All function blocks using
SMC_CNC_REF

SMC_NO_CNC_REF_TYPE

The given CNC program is not of the SMC_
CNC_REF type

1501

All function blocks using
SMC_OUTQUEUE

SMC_NO_OUTQUEUE_TYPE

The given OutQueue is not of the SMC_
OUTQUEUE type

1600

CNC function block

SMC_3D_MODE_NOT_SUPPORTED

This function block is only available in 2D
path

2000

SMC_ReadNCFile

SMC_RNCF_FILE_DOESNT_EXIST

File does not exist

2001

SMC_ReadNCFile

SMC_RNCF_NO_BUFFER

No buffer allocation

2002

SMC_ReadNCFile

SMC_RNCF_BUFFER_TOO_SMALL

Buffer too small

2003

SMC_ReadNCFile

SMC_RNCF_DATA_UNDERRUN

Low buffer data in buffer area is read and is
empty

2004

SMC_ReadNCFile

SMC_RNCF_VAR_COULDNT_BE_REPLACED

Placeholder variable cannot be replaced

2005

SMC_ReadNCFile

SMC_RNCF_NOT_VARLIST

Input pvl cannot point to SMC_VARLIST
object

2050

SMC_ReadNCQueue

SMC_RNCQ_FILE_DOESNT_EXIST

File cannot be opened

2051

SMC_ReadNCQueue

SMC_RNCQ_NO_BUFFER

No buffer definition

2052

SMC_ReadNCQueue

SMC_RNCQ_BUFFER_TOO_SMALL

Buffer too small

2053

SMC_ReadNCQueue

SMC_RNCQ_UNEXPECTED_EOF

Unknown end of file

2100

SMC_AxisDiagnosticLog

SMC_ADL_FILE_CANNOT_BE_OPENED

File cannot be opened

2101

SMC_AxisDiagnosticLog

SMC_ADL_BUFFER_OVERRUN

Buffering out of range; WriteToFile must be
called more often

2200

SMC_ReadCAM

SMC_RCAM_FILE_DOESNT_EXIST

File cannot be opened

2201

SMC_ReadCAM

SMC_RCAM_TOO_MUCH_DATA

Too much data saved to cam

2202

SMC_ReadCAM

SMC_RCAM_WRONG_COMPILE_TYPE

Wrong compile mode

2203

SMC_ReadCAM

SMC_RCAM_WRONG_VERSION

File version error

2204

SMC_ReadCAM

SMC_RCAM_UNEXPECTED_EOF

Unknown end of file

3001

SMC_
WriteDriveParamsToFile

SMC_WDPF_CHANNEL_OCCUPIED

SMC_WDPF_TIMEOUT_PREPARING_LIST




6. Common MC Instructions

WriteDriveParamsToFile

Error
Generation Source Variable Error Cause
code
SMC_ .
3002 . . . SMC_WDPF_CANNOT_CREATE_FILE File cannot be created
WriteDriveParamsToFile
SMC_ . R
3003 . . . SMC_WDPF_ERROR_WHEN_READING_PARAMS | Error in reading file parameters
WriteDriveParamsToFile
SMC_ . . . .
3004 SMC_WDPF_TIMEOUT_PREPARING_LIST Time error in preparing parameter list

5000

SMC_Encoder

SMC_ENC_DENOM_ZERO

Conversion factor (dwRatioTechUnitsDenom)
of the decoder reference is 0.

5001

SMC_Encoder

SMC_ENC_AXISUSEDBYOTHERFB

Other modules are handling the decoder
axis.

5002

Drive interface

SMC_ENC_FILTER_DEPTH_INVALID

Invalid filter

-269-



“ “H“Hmm“““H“H“HH“HW S

19012378A00

Shenzhen Inovance Technology CO., Ltd. Add.: Inovance Headquarters Tower, High-tech Industrial Park,
Guanlan Street, Longhua New District, Shenzhen

WWW.inovance.com Tel: (0755) 2979 9595 Fax: (0755) 2961 9897

Suzhou Inovance Technology CO.' Ltd. Add.: No. 16 Youxiang Road, Yuexi Town,

Wuzhong District, Suzhou 215104, P.R. China
www.inovance.com Tel: (0512) 6637 6666 Fax: (0512) 6285 6720



	Preface
	1 Overview of the PLCopen Specification
	2 Composition of the Motion Control Application System
	3. Composition of the Motion Control Program
	3.1 User Program Structure
	3.1.1 User Program Composition
	3.1.2 Task Type
	3.1.3 Benefits of a User Program Consisting of Multiple POUs
	3.1.4 How to Achieve Both Logic Control and Motion Control in User Program

	3.2 Writing and Commissioning a Simple User Program
	3.2.1 Creating a Project
	3.2.2 Writing POUs for Function Processing
	3.2.3 Setting Motor Parameters
	3.2.4 Writing Marquee Control Logic
	3.2.5 Associating a Variable with the Hardware Output Port
	3.2.6 Troubleshooting User Program Compilation
	3.2.7 Monitoring the Running of the User Program
	3.2.8 Summary of Typical Steps of Writing a Motion Control Project


	4. Execution Mechanism of the Motion Control Program
	4.1 Task and Configuration in the User Project
	4.2 Dataflow Analysis of the EtherCAT Bus Network
	4.3 Data Process for Communication with Servo Slaves
	4.3.1 Control Information Process
	4.3.2 CiA402 Data Object Dictionary and Common Objects for Servo Drives
	4.3.3 Configuration of Servo Axis Motor Parameters
	4.3.4 EtherCAT Network Status Initialization and Management
	4.3.5 Servo Axis and I/O Port Control Data Refresh

	4.4 Timing of MC Data Transmission
	4.5 Processing Mechanism for Executing MC Function Blocks
	4.5.1 Cyclic Synchronous Position Control Mode for Servo Motion Commands
	4.5.2 Data Structure of the Servo Axis
	4.5.3 Servo Axis Status and Transition Rules
	4.5.4 Execution Logic of the MC Function Block
	4.5.5 Data Interaction Between POUs of Tasks of Different Priorities


	5. Application Programming of User Program
	5.1. MC Programming For Single-axis MC Positioning
	5.1.1 Notes for MC Application Programming
	5.1.2 MC Function Blocks Commonly Used for Single-Axis Control
	5.1.3 MC Commands and PDO/SDO Configuration

	5.2 Motion Control Programming for Multi-axis Cam Synchronization
	5.2.1 Main Function Blocks For Cam Running
	5.2.2 Master and Slave Axes in Relative Position Mode
	5.2.3 Master Axis in Absolute Position Mode and Slave Axis in Relative Position Mode
	5.2.4 Master Axis in Relative Position Mode and Slave Axis in Absolute Position Mode

	5.3 Cyclic Mode Characteristics of the Cam Table
	5.3.1 Offset for CamIn Operation
	5.3.2 Calculation of Master Axis Scaling During Cam Running
	5.3.3 Calculation of Slave Axis Scaling During Cam Running
	5.3.4 Characteristics of and Precautions for Using Offset and Scale in Cam Running
	5.3.5 MC_CamOut FB for Exiting Cam Running Status

	5.4 MC_Phasing FB for Cam Master Axis Phase Adjustment
	5.5 Cam Table Design and Its Data Structure
	5.5.1 Characteristics of the Cam Table
	5.5.2 Input Mode of the Cam Table 
	5.5.3 Internal Data Structure and Arrays of the Cam Table 
	5.5.4 Reference and Dynamic Switchover of the Cam Table


	6. Common MC Instructions
	6.1 Single-axis Instructions
	MC_AccelerationProfile
	MC_Halt
	MC_HaltSuperImposed
	MC_Home
	MC_MoveAbsolute
	MC_MoveAdditive
	MC_MoveRelative
	MC_MoveSuperImposed
	MC_MoveVelocity
	MC_MoveFeed
	MC_PositionProfile
	MC_Power
	MC_ReadActualPosition
	MC_ReadAxisError
	MC_ReadStatus
	MC_ReadParameter
	MC_Reset
	MC_Stop
	MC_VelocityProfile
	MC_WriteBoolParameter
	MC_WriteParameter
	MC_AbortTrigger
	MC_ReadActualTorque
	MC_ReadActualVelocity
	MC_SetPosition
	MC_TouchProbe
	SMC_MoveContinuousAbsolute
	SMC_MoveContinuousRelative
	MC_Jog
	SMC_Inch
	SMC3_PersistPosition
	SMC3_PersistPositionSingleturn
	SMC_CheckAxisCommunication
	SMC_FollowPosition
	SMC_FollowPositionVelocity
	SMC_FollowVelocity
	SMC_FollowSetValues
	SMC_SetControllerMode
	SMC_CheckLimits
	SMC_GetMaxSetAccDec
	SMC_GetMaxSetVelocity
	MC_GetTrackingError
	SMC_InPosition
	SMC_ReadSetPosition
	SMC_SetTorque
	SMC_BacklashCompensation
	SMC_ChangeGearingRatio
	SMC_ReadFBError
	SMC_ClearFBError
	SMC3_PersistPositionLogical
	SMC_Homing
	MC_TorqueControl
	MC_ImmediateStop
	MC_ResetFollowingError
	MC_SetTorqueLimit
	MC_ReadDigitalInput
	HMC_Reset
	SMC_SetSoftwareLimits

	6.2 Axis Group Instructions (Master/Slave Axis Instructions)
	SMC_CamRegister
	SMC_GetCamSlaveSetPosition
	SMC_GetTappetValue
	MC_CamTableSelect
	MC_Camin
	MC_CamOut
	MC_GearIn
	MC_GearOut
	MC_Phasing
	SMC_CAMBounds
	SMC_CAMBounds_Pos
	SMC_WriteCAM

	6.3 Other Functional Specifications
	6.3.1 Instruction Cache
	6.3.2 Hitting Limit
	6.3.3 Defaults of Motion Control Function Blocks
	6.3.4 Curve Reversal Prevention


	7. Simulation and Commissioning
	7.1 Simulation Controller
	7.2 Simulation Servo Drive

	Appendix A Homing Modes Supported by IS620N
	A.1 Description of Homing Modes:

	Appendix B: CiA402 Common Data Objects Supported by IS620N
	Appendix C Error Codes

