User's manual

LD300 - LD301 - LD302 - LD303

Description

LD30x is an incremental multi-function display with impulse inputs for connecting incremental encoders or sensors. The user's interface is a multifunction keyboard fitted with 3 keys and a 7 -segment and 6-digit LED display. Model LD300 is a display only version; model LD301 provides an analogue output in addition; model LD302 further offers two presets and two switching outputs; finally model LD303 is equipped with a RS-232/RS-485 serial interface for connection with a PC.

Table of contents

1 - Safety summary
2 - Identification
3 - Mounting instructions
4 - Electrical connections
5 - Operating the front keys
6 - Operator menu
7 - Set up procedure
8 - Special functions
9 - Parameters list

1 Safety summary

1.1 Safety

- Always adhere to the professional safety and accident prevention regulations applicable to your country during device installation and operation;
- installation and maintenance operations have to be carried out by qualified personnel only, with power supply disconnected and stationary mechanical parts;
- device must be used only for the purpose appropriate to its design: use for purposes other than those for which it has been designed could result in serious personal and/or the environment damage;
- high current, voltage and moving mechanical parts can cause serious or fatal injury;
- warning ! Do not use in explosive or flammable areas;
- failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the equipment;
- Lika Electronic assumes no liability for the customer's failure to comply with these requirements.

1.2 Electrical safety

- Turn OFF power supply before connecting the device;
- connect following to explanation in the "4 - Electrical connections" section;
- in compliance with 2004/108/EC norm on electromagnetic compatibility, following precautions must be taken:
- before handling and installing the equipment, discharge
 electrical charge from your body and tools which may come in touch with the device;
- power supply must be stabilized without noise; install EMC filters on device power supply if needed;
- always use shielded cables (twisted pair cables whenever possible);
- avoid cables runs longer than necessary;
- avoid running the signal cable near high voltage power cables;
- mount the device as far as possible from any capacitive or inductive noise source; shield the device from noise source if needed;
- minimize noise by connecting the unit to ground (GND). Make sure that ground (GND) is not affected by noise. The connection point to ground can be situated both on the device side and on user's side. The best solution to minimize the interference must be carried out by the user.

1.3 Mechanical safety

- Install the device following strictly the information in the "3-Mounting instructions" section;
- do not disassemble the unit;
- do not tool the unit;
- delicate electronic equipment: handle with care; do not subject the device and the shaft to knocks or shocks;
- respect the environmental characteristics of the device.

2 Identification

Device can be identified through the ordering code and the serial number printed on the label applied to its body. Information is listed in the delivery document too. Please always quote the ordering code and the serial number when reaching Lika Electronic for purchasing spare parts or needing assistance. For any information on the technical characteristics of the product, refer to the technical catalogue.

3 Mounting instructions

WARNING

Mount the unit with power supply disconnected.

Mount the display into the provided cut-out (approx. $91 \times 44 \mathrm{~mm}$) without panel clips.
Install panel clips on the display housing and screw until fixed.

Panel cut out: $91 \times 44 \mathrm{~mm}$ (3.583×1.732)

4 Electrical connections

WARNING

Turn OFF the power supply before connecting the device.

LD300 Display unit only Special versions with TL inputs (option -M8-) provide a +5 V aux. output on terminal 7, instead of $+24 \mathrm{~V}$ Units with option -P4- provide 24 / 42 Vac power supply instead of 115 / 230 Vac (option -PM-)	
LD301 Display unit with analogue output Special versions with TL inputs (option -M8-) provide a +5 V aux. output on terminal 7, instead of $+24 \mathrm{~V}$ Units with option -P4- provide 24 / 42 Vac power supply instead of 115 / 230 Vac (option -PM-)	
LD302 Display unit with 2 presets and transistor outputs Special versions with TL inputs (option -M8-) provide a +5 V aux. output on terminal 7, instead of $+24 \mathrm{~V}$ Units with option -P4- provide 24 / 42 Vac power supply instead of 115 / 230 Vac (option -PM-)	
LD303 Display unit with serial interface Special versions with TL inputs (option -M8-) provide a +5 V aux. output on terminal 7, instead of $+24 \mathrm{~V}$ Units with option -P4- provide 24 / 42 Vac power supply instead of 115 / 230 Vac (option -PM-)	

LD30x

4.1 Power supply

The unit accepts DC power supply from 17 V to 30 V when using terminals 1 and 2 and the consumption depends on the level of the supply voltage (typically between 80 mA and 150 mA plus current taken from aux. output).
For AC supply, terminals $0 \mathrm{Vac}, 115 \mathrm{Vac}$ or 230 Vac can be used. The total AC power consumption is 7.5 VA .
Units with option LD30x-P4-... are designed for either 24 Vac or 42 Vac power supply and the screw terminals are marked correspondingly.
The pictures in the previous page show a dotted line for grounding to PE. This connection is not necessary, neither for safety nor for EMC. However, with specific applications, it can be useful to ground the common potential of all signal lines.

(i)

NOTE

When using this earthing option, please note that:

1. all terminals and potentials marked "GND" will be earthed;
2. you should avoid multiple earthing, e.g. when you use a DC power supply where the Minus is already connected to earth etc. Especially under poor earthing and grounding conditions, multiple earth connections may cause serious EMC problems.

4.2 Aux. voltage output

Terminal 7 provides a $24 \mathrm{Vdc} / 120 \mathrm{~mA}$ max. auxiliary output for supply of sensors and encoders. Units with TL inputs (option -M8-) provide a $5 \mathrm{Vdc} / 120$ mA auxiliary output on terminal 7 instead.

4.3 Inputs A, B and Reset

In the basic set-up menu (see the "7.1 Basic settings" section on page 14) these inputs can be configured to PNP (switch to +) or to NPN (switch to -). This configuration is valid for all three inputs at a time.
The factory setting is always PNP.
With standard units the input level is always HTL (Low < 2.0 V and High > 9.0 V). Units equipped with option -M8- provide TLL / CMOS) level (Low $<0.8 \mathrm{~V}$ and High >3.5V).

NOTE

1. Independently of your setting, all functions of the unit are "active HIGH" and the unit triggers to positive transitions (rising edge).
2. With NPN setting please be aware that an open or unused RESET input is HIGH. Therefore the unit will be kept in a continuous RESET state and will not work, unless you tie the Reset line to GND (terminal 1 or 6).
3. When you use 2-wire NAMUR type sensors, please select NPN, connect the negative wire of the sensor to GND and the positive wire to the corresponding input.

Typical input circuit (standard version with HTL inputs):

The counting inputs A and B are designed for input frequencies up to 100 kHz (with all counter modes) and up to 25 kHz (with all other operating modes).
The minimum pulse duration on the Reset input must be $500 \mu \mathrm{sec}$. (maximum frequency 1 kHz)
All inputs are designed to receive impulses from an electronic impulse source. Should you exceptionally need to use mechanical contacts, please connect an external capacitor between GND (-) and the corresponding input (+). With a capacity of $10 \mu \mathrm{~F}$, the maximum input frequency will reduce to 20 Hz and miscounting due to contact bouncing will be eliminated.

4.4 Adjustable analogue output (LD301 model only)

A voltage output is available, operating in a range of $0 \ldots+10 \mathrm{~V}$ or $-10 \mathrm{~V} . . .+10$ V according to setting. Furthermore, a current output $0 / 4-20 \mathrm{~mA}$ is available. Both outputs refer to the GND potential and the signal polarity changes with the sign in the display. The outputs provide a 14-bit resolution and the response time at each change of the measuring value is approx. 7 msec . (fin $>143 \mathrm{~Hz}$). The maximum current of the voltage output is 2 mA and the load on the current output can vary between 0 and max. 270 ohms.

WARNING
Voltage output and Current output cannot be used together!
Please never connect mA output and V output simultaneously!

4.5 Optocoupler / transistor outputs (LD302 model only) *

Outputs provide programmable switching characteristics and are potential-free. Please connect terminal $8(\mathrm{COM}+$) to the positive potential of the voltage you want to switch (range 5V ... 30V). You must not exceed the maximum output current of 150 mA . If you switch inductive loads, please provide filtering of the coil by means of an external diode.

* For relay outputs please contact Lika Electronic.

4.6 Serial RS-232 / RS-485 interface (LD303 model only)

Ex factory the unit is set to RS-232 communication. This setting can be changed to RS-485 (2-wire) by means of an internal DIL switch. To access the DIL switch, please remove the screw terminal connectors and the back panel. Then pull the board to the rear to remove the PCB from its housing.

Removal of the back panel
RS-232

Location of the DIL switch
RS-485

WARNING

1. Never set DIL switch positions 1 and 2 or DIL switch positions $\underline{3 \text { and } 4}$ to ON at the same time!
2. After setting the switch, shift the print carefully back to its housing, in order to avoid damaging the front pins for connection with the front plate.

5 Operating the front keys

For set-up and other operations the unit is fitted with three front keys which will be denominated as follows in the next pages:

4		\%
ENTER (Input)	SET (Setting)	CMD (Command)

The functions of the keys are depending on the actual operating state of the unit.
The following three operating states apply:

- Normal display state (see the "5.1 Normal display state" section on page 8)
- Set-up state (see the " 5.2 Selection and setting of parameters" section on page 9)
- Basic set-up (see the "7.1 Basic settings" section on page 14)
- Operational parameters set-up (see the "7.2 Operational parameters" section on page 16)
- Teach operation (see the "5.3 Teach operation" section on page 10)

5.1 Normal display state

NOTE

You can only change over to other operation states while the unit is in display state.

Change over to	Key operation
Basic set-up	Keep ENTER and SET down simultaneously for 3 seconds
Operational parameter set-up	Keep ENTER down for 3 seconds
Teach operation	Keep CMD down for 3 seconds

The CMD key is only used to execute the Teach procedure with linearisation. For more details please refer to the " 8.1 Linearisation" and " 8.2 Manual input or "teaching" of the interpolation points" sections on page 30.

5.2 Selection and setting of parameters

5.2.1 Selecting a parameter

The ENTER key will scroll through the menu. The SET key allows to select the corresponding item and change the setting or the numeric value. After this, the selection can be saved by pressing the ENTER key again, which automatically changes over to the next menu item.

5.2.2 Changing parameter settings

With numerical entries, at first the lowest digit will blink. When keeping the SET key continuously down, the highlighted digit will scroll in a continuous loop from 0 to 9 and again from 0 to 9; and so on. After releasing the SET key, the actual value will remain and the next digit will be highlighted (blink). This procedure allows setting all digits to the desired values. After the most significant digit has been set, the low order digit will blink again and you can make corrections if necessary.
With signed parameters, the high order digit will scroll from " 0 " to " 9 " (positive) followed by "-" and "-1" (negative).

5.2.3 Saving settings

To save the actual setting, press the ENTER key, which will also automatically scroll forward the menu.

NOTE

At any time the unit changes from programming mode to normal display operation, when you keep the ENTER key down again for 3 seconds at least.

5.2.4 Time-out function

A "time-out" function will automatically terminate every menu level, when for a break period of 10 seconds no key has been pressed. In this case, all changes which have not been confirmed by ENTER yet would remain unconsidered.

5.3 Teach operation

(2)

NOTE

The time-out function remains disabled during all Teach operations.

Key	Function
	ENTER key will terminate or abort any Teach operation in

For further details on the Teach procedure see the " 8.2 Manual input or "teaching" of the interpolation points" section on page 32.

5.4 Setting all registers to "Default" values

At any time you can return all settings to the factory default values.

WARNING

This action will reset all parameters to factory default values and your own settings will be lost. You will have to repeat your individual set-up procedure.
Factory default values are shown in the subsequent parameter tables (see the "Parameters list" section on page 34).

To reset the unit to default values:

- switch power off;
- press the ENTER key on the front;
- keep ENTER down while you power up again.

5.5 Code locking of the keypad

When the code locking of the keypad has been switched on (see on page 15), any key access first results as follows:

To access the menu you must press the following key sequence:

within 10 seconds, otherwise the unit will automatically return to the normal display mode.

6 Operator menu

The menu provides one section with "Basic Parameters" (see the "7.1 Basic settings" section on page 14)and another section with "Operational Parameters" (see the "7.2 Operational parameters" section on page 16). On the display you will only find those parameters which have been enabled by the basic settings. E.g. when the Linearisation function has been disabled in the basic set-up, the associated linearisation parameters will also not appear in the parameter menu. All parameters, as good as possible, are designated by text fragments. Even though the possibilities of forming texts are very limited with a 7-segment display, this method has proved to be most suitable for simplification of the programming procedure.
The subsequent table shows the general structure of the menu.
Detailed descriptions of all parameters will follow in the "7-Set up procedure" section on page 14.

6.1 Overview of basic parameters

LD300	LD301	LD302	LD303
Type (Application mode)	Type (Application mode)	Type (Application mode)	Type (Application mode)
Input characteristics	Input characteristics	Input characteristics	Input characteristics
Brightness	Brightness	Brightness	Brightness
Code	Code	Code	Code
Linearisation mode *	Linearisation mode *	Linearisation mode *	Linearisation mode *
	Analogue output mode Analogue offset Analogue gain	Preselection mode 1	Serial unit number
		Preselection mode 2	Serial format
		Hysteresis 1	Serial baud rate
		Hysteresis 2	

* This parameter only appears with "rPm" and "Count" modes.
6.2 Operational parameters overview

	Mode "RPM" (Tachometer) page 16	Mode "Time" (Baking Time) page 17	Mode "Timer" (Stopwatch) page 18	Mode "Count" (Counter) page 19	Mode "Speed" (Transition speed) page 20
LD300	Frequency	Display Format	Base (Resolution)	Counter Mode	Time
	Display Value	Frequency	Start/Stop	Scaling Factor	Display Value
	Decimal Point	Decimal Value	Auto Reset	Set Value	Decimal Point
	Wait Time	Wait Time	Latch Function	Reset/Set	Wait Time
	Average Filter	Average Filer		Decimal Point	
LD301	Frequency	Display Format	Base (Resolution)	Counter Mode	Time
	Display Value	Frequency	Start/Stop	Scaling Factor	Display Value
	Decimal Point	Decimal Value	Auto Reset	Set Value	Decimal Point
	Wait Time	Wait Time	Latch Function	Reset/Set	Wait Time
	Average Filter	Average Filer		Decimal Point	
	Analogue Begin				
	Analogue End				
LD302	Preselection 1				
	Preselection 2				
	Frequency	Display Format	Base (Resolution)	Counter Mode	Time
	Display Value	Frequency	Start/Stop	Scaling Factor	Display Value
	Decimal Point	Decimal Value	Auto Reset	Set Value	Decimal Point
	Wait Time	Wait Time	Latch Function	Reset/Set	Wait Time
	Average Filter	Average Filer		Decimal Point	
LD303	Frequency	Display Format	Base (Resolution)	Counter Mode	Time
	Display Value	Frequency	Start/Stop	Scaling Factor	Display Value
	Decimal Point	Decimal Value	Auto Reset	Set Value	Decimal Point
	Wait Time	Wait Time	Latch Function	Reset/Set	Wait Time
	Average Filter	Average Filer		Decimal Point	
	Serial Timer				
	Serial Mode				
	Serial Code				
All units	P01_H*			P01_H*	
	P01_Y*			P01_Y*	
	
	P16_H*			P16_H*	
	P16_Y*			P16_Y*	

* This parameter only appears with "rPm" and "Count" modes when the linearisation function is enabled.

7 Set up procedure

For better understanding the following "7.1 Basic settings" and "7.2 Operational parameters" sections explain settings related to the display only model (LD300). Model-specific settings for analogue output model (LD301), Preselections model (LD302) and Serial Link model (LD303) will be explained separately under sections from "7.3 Model LD301: additional settings for the analogue output" to "7.5 Model LD303: additional settings for the serial interface".

7.1 Basic settings

Customarily these settings have to be carried out one time only upon the very first use of the unit. The basic set-up selects the desired operation mode of the unit, the input characteristics PNP/NPN and the desired brightness of the LED display.

NOTE

To access the Basic Set-up press the ENTER and SET keys simultaneously for at least 3 seconds.

Menu		Setting range	Default
EYPE	Operation Mode Tachometer, frequency meter (see the "7.2.1 RPM, operation as tachometer or frequency counter" section). Baking time / processing time indicator (see the "7.2.2 Time, display of baking or processing time (reciprocal speed)" section). Timer, Stopwatch (see the "7.2.3 Timer, Stopwatch" section). Counter for position or event (see the "7.2.4 Count, Counter mode" section). Speed calculation from differential transition time (see the "7.2.5 Speed from differential time between a Start and a Stop input" section).	rPm time timEr Count SPEEd	rPm
CHPr	Switching characteristics of the inputs NPN, switch to "-" PNP, switch to "+"	$\begin{aligned} & \boldsymbol{n} \boldsymbol{P} \boldsymbol{n} \\ & \boldsymbol{P} \boldsymbol{P} \end{aligned}$	PחP
briGht	Brightness of the LED display	$\begin{gathered} 20 \%, 40 \%, 60 \%, \\ 80 \%, 100 \% \end{gathered}$	100\%

Menu		Setting range	Default
CodE	Keypad protection code		no
	Keypad enabled continuously.	n0	
	Keypad locked for any access.	Ali	
	Keypad locked, except for access to preselections 1 and 2 (LD302 only, see the "7.4 Model LD302: additional settings for preselections" section).	P_FrEE	
LmodE	Linearisation mode *		
	For details please refer to the "8.1 Linearisation" and "8.2 Manual input or „teaching" of the interpolation points" sections.		n0
	The linearisation is switched off.	no	
	Linearisation settings for the positive range only (negative values will appear as a mirror).	$\|-n\| \text { IF }$	
	Linearisation over the full numeric range.		

* This parameter is only available with "rPm" Tachometer mode and "Count" Counter mode.

7.2 Operational parameters

7.2.1 RPM, operation as tachometer or frequency counter

(Input A = frequency input, Input B not in use)

Menu	Setting Range OS*	Default
FrEquFrequency Set a typical operating application.	$\begin{gathered} 1 \mathrm{~Hz} \text { to } \\ 25000 \mathrm{~Hz} \end{gathered}$	1000
diSPLDisplay Value Set the value you would like to see on your display with above frequency at the input.	1 ... 99999	1000
Decimal Point Select the desired position as shown in the display. no decimal point decimal point at position 1 ----> decimal point at position 5	$\begin{aligned} & 000000 \\ & 00000.0 \\ & 0.00000 \end{aligned}$	000.000
WFit Wait Time \quad Define a "waiting time", this is the time expressed in seconds that the unit will wait from one input pulse to the next, before it sets the display to zero. The minimum range is limited to 0.1 sec ., lower values do not make any sense as the unit should wait forever and show the last result till the next input. The setting of this parameter automatically limits frequency correspondingly. With "WAit" set to e.g. respond to frequencies $>10 \mathrm{~Hz}$ only and all low display 0.	$0.1 \ldots 99.9 \mathrm{sec}$ the minimum input . 0.1 sec . the unit will frequencies will just	1.0
Average Filter Selectable average filter to suppress unstable display with unsteady input frequencies. No filtering $2,4,8,16=$ number of floating average cycles.	DFF 0 IG 1	DFF

* OS only with LD303

NOTE

LD301 model also provides a signed speed display with the +/- sign changing according to the direction of rotation (see the "7.3 Model LD301: additional settings for the analogue output" section).
7.2.2 Time, display of baking or processing time (reciprocal speed)
(Input A = frequency input, Input B not in use)

Menu		Setting Range 0S*	Default
diSfor	Display Format Select between seconds, minutes, minutes and seconds or minutes with two decimal positions. This will also automatically set your decimal point to the proper place. Seconds Minutes Minutes and seconds Minutes with two decimal positions	SEC 0 \min 1 $\operatorname{mi-5E}$ 2 min. \square 3	SEL
FrEqu	Frequency Set a typical operating frequency for your application.	$\begin{gathered} 1 \mathrm{~Hz} \text { to } \\ 25000 \mathrm{~Hz} \end{gathered}$	100
displ	Display Value Set the value you would like to see on your display with above frequency at the input.	1 ... 999999	100
WRit	Wait Time Define a "waiting time", this is the time in seconds that the unit will wait from one input pulse to the next, before it sets the display to zero. The minimum range is limited to 0.1 sec ., lower values do not make any sense as the unit should wait forever and show the last result till the next input. The setting of this parameter automatically limit frequency correspondingly. With "WAit" set to will respond to frequencies $>10 \mathrm{~Hz}$ only and all just display 0.	0.1 ... 99.9 sec the minimum input e.g. 0.1 sec . the unit ower frequencies will	5.0
FiLEEr	Average Filter Selectable averages filter to suppress unstable display with unsteady input frequencies. No filtering. $2,4,8,16=$ number of floating average cycles.	DFF 0 IE 1	DFF

* OS only with LD303

7.2.3 Timer, Stopwatch

Please note that open NPN inputs are always "HIGH" and open PNP inputs are always "LOW".

Menu		Setting Range	OS*	Default
bR5E	Time base / Resolution of the timer Milliseconds 1/100 seconds 1/10 seconds Integer seconds Minutes with two decimal positions Minutes with one decimal position Hours : minutes : seconds	SEC. 000 SEC.OD SEC. 0 SEL min. 00 min. 1 H-m-5	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	SE득ㅁ
LRr	Start / Stop of time measurement Time count is active while input A is HIGH. Rising edge on input A starts the count. Rising edge on input B stops the count. Period time measurement. Repeating display of the time between two rising edges on input A. Time count is active while input A is LOW.	Hi_Loo 5L_5 R_StSP Loo_Hi	0 1 2 2	5t_5P
rESEL	Auto Reset Time count goes on and never restarts. No automatic Reset. Use the Reset input to set to zero. Every start initializes a new count starting from zero.		0	n0
LRLCH	Latch Function Real time display, count visible. Frozen display of the final count result after every Stop. The timer counts in the background.		0	10

[^0]7．2．4 Count，Counter mode

Menu		Setting Range	OS＊	Default
modE	Counting Mode			R＿b．i
	Input A counts and input B selects the counting direction（LOW＝increment，HIGH＝decrement）． Summing counter， $\mathrm{A}+\mathrm{B}$ ． Differential counter，A－B． Quadrature up／down counter A / B with single edge count（x1）． Quadrature up／down counter A／B with double edge count（x2）． Quadrature up／down counter A／B with（x4）edge count．	R＿bdir $R \cup b$ R－b R＿b． 1 R＿b ． 2 R＿b 4	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	
FRctor	Impulse Scaling Factor Example：setting 1.2345 results in display of 12345 after 10000 input pulses．	$\begin{gathered} \hline 0.0001 \\ \ldots \\ 9.9999 \end{gathered}$		1.0000
SEL	Set Value Every Reset signal will set the display to the value entered here．	$\begin{gathered} -199999 \\ \ldots \\ 999999 \\ \hline \end{gathered}$		0
rESEt	Reset／Set Enable No setting or resetting of the counter is possible． Set／Reset by the front SET key． Set／Reset by remote signal to the Reset input． Set／Reset by front SET key and by external input．	no Front E＿tErn FruE	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	FruE
dPaint	Decimal Point Select the desired position as shown in the display． no decimal point one decimal position －－－－＞ five decimal positions	$\begin{aligned} & 000000 \\ & 00000.0 \\ & 0.00000 \\ & \hline \end{aligned}$		000.000

＊OS only with LD303

NOTE

－The counting range of the unit is limited from－1a0a0a $+n$ aag999．In case of underflow or overflow the unit will display \square
－The counter stores all counting data also in power－down state（EEProm with data retention >10 years）．
－With the summing mode $(A+B)$ and the differential mode $(A-B)$ please note that the impulse scaling factor will only affect input A ．

7.2.5 Speed from differential time between a Start and a Stop input

Input A operates as a start input and input B operates as a Stop input. The differential time between start and stop will be converted into the speed of the passing object.

Menu		Setting Range	Default
time	Time Enter a typical delay time which you expect between the start and stop signals.	$\begin{gathered} 000.001 \\ \ldots \\ 999.999 \mathrm{sec} \end{gathered}$	1.000 sec
diSPL	Display Value Enter the speed you would like to see in the display when an object passes within above time.	$\begin{gathered} \hline 000.001 \\ \ldots \\ 999.999 \end{gathered}$	1.000
dPaint	Decimal Point Select the desired position as shown in the display. no decimal point one decimal position ----> five decimal positions	$\begin{array}{r} 000000 \\ 00000.0 \\ 0.00000 \\ \hline \end{array}$	000.000
uFit	Wait Time How long should the last result remain in the display before it returns to zero? Set the desired waiting time. With setting "0" the display will freeze and wait until the next measuring cycle.	$\begin{gathered} 0.00 \\ \ldots . \\ 9.99 \end{gathered}$	1.00

7.2.6 Linearisation points

The linearisation points will only appear with "rPm" or "Count" operation modes when Linearisation is enabled.

Menu		Setting Range	Default
P01_X	Linearisation point 1 X value of the first interpolation point.	$\begin{gathered} -199999 \\ . . .999999 \\ \hline \end{gathered}$	999999
P01_Y	Linearisation point 1 Y value of the first interpolation point.	$\begin{gathered} \hline-199999 \\ . . .999999 \\ \hline \end{gathered}$	999999
$\begin{aligned} & \ldots \\ & \ldots \\ & \hline \end{aligned}$			
P16_X	Linearisation point 16 X value of the 16. interpolation point.	$\begin{gathered} \hline-199999 \\ \ldots . .999999 \\ \hline . \end{gathered}$	999999
P16_Y	Linearisation point 16 Y value of the 16. interpolation point.	$\begin{gathered} \hline-199999 \\ \ldots . .999999 \\ \hline . \end{gathered}$	999999

For more details about linearisation please refer to the "8.1 Linearisation" section on page 30.
7.3 Model LD301: additional settings for the analogue output

The Basic menu provides the following additional settings:

Menu		Setting Range OS**	Default
R-ChRr	Analogue characteristics Select one of the following options:		-1 \square^{1}
	+/-10 V (bipolar)	- 10, 10 0	
	0-10 V (positive output only)	C-18	
	4-20 mA current output.	4_2ロ	
	0-20 mA current output	-_ᄅ 3	
	When you set the output to $+/-10$ Volts, your input signals A / B must be of quadrature type with phase displacement. The polarity of the output follows the sign in the display (operation as a counter Count mode- or as a speed display -SPEEd modewith detection of direction of rotation).		
DFFSEL	Analogue Offset * Set this register to " 0 " when your output range should begin at zero (or 4 mA) If you desire another initial output value, set this register correspondingly. Setting 5.000 means your output will start at 5 Volts instead of zero.	-9.999 ... +9.999	0.000
GRin	Analogue Gain * Set the analogue stroke you desire: setting 1000 means 10 Volts or 20 mA . Setting 200 reduces the stroke to 2 Volts or 4 mA .	00.00 ... 99.99	10.00

* See the next page for more details.
** OS only with LD303

Response time of the analogue output:

Operation mode	Response time analogue output
Tachometer, frequency meter (see the "7.2.1 RPM, operation as tachometer or frequency counter" section on page 16)	330 ms at $\mathrm{f}>3 \mathrm{~Hz}$ $1 / \mathrm{f}$ at $\mathrm{f}<3 \mathrm{~Hz}$
Baking time / processing time indicator (see the a7.2.2 Time, display of baking or processing time (reciprocal speed)" section on page 17)	330 ms at $\mathrm{f}>3 \mathrm{~Hz}$ $1 / \mathrm{f}$ at $\mathrm{f}<3 \mathrm{~Hz}$
Timer, Stopwatch (see the "7.2.3 Timer, Stopwatch" section on page 18)	7 ms (With latch function after every measurement)
Counter for position or event (see the "7.2.4 Count, Counter mode" section on page 19)	Counter value + 7ms
Speed calculation from differential transition time (see the "7.2.5 Speed from differential time between a Start and a Stop input" section on page $20)$	Runtime + 7ms

The analogue output behaves like the display output.

The following Operational Parameters provide scaling of the analogue output:

Menu	Setting Range	Default	
AnRbEG	Analogue-Begin Start value of the analogue output.	$-199999 \ldots 999999$	0
AnREnd	Analogue-End End value of the analogue output.	-199999 ... 999999	$\mathbf{1 0 0 0 0}$

By means of these two parameters any window of the whole display range can be mapped onto the analogue output.

The example below shows how to convert the display range from 1400 to 2200 into an analogue signal of $2-10$ volts.

NOTE

All settings refer to the scaled values which are shown in the display of the unit.
7.4 Model LD302: additional settings for preselections

The basic set-up menu provides the following additional parameters:

Menu	Range	OS***		Default
CHRr 1	Switching \square -_r LE -n_ GE _n_ LE \qquad -n_ 5	0 1 2 3 4 5	of output 1 Greater/Equal: output to switch statically "ON" when display value \geq preset value. Lower/Equal: output to switch statically "ON" when display value \leq preset value. Greater/Equal: output to switch dynamically "ON" when display value \geq preset value. (timed pulse output *) Lower/Equal: output to switch dynamically "ON" when display value \leq preset value. (timed pulse output *) Reset: Timed impulse output *) and automatic Reset to zero when the display value reaches Preset 1. Set: Timed impulse output *) and automatic setting to preset 1 when the display value reaches zero.	--r GE
CHRr 2	Switching $\begin{aligned} & -\infty \quad G \\ & -\infty \quad L \\ & -n_{-} G \\ & -n_{-} L \\ & -\infty \quad 1 \end{aligned}$ $-n_{-} 1$	0 1 2 3 4 5	of output 2 see CHR 1 see CHRr see CHRr I see CHR Output switches statically ON when display value \geq Preset 1 - Preset $2{ }^{* *}$. Output switches dynamically ON when display value \geq Preset 1 - Preset $2{ }^{* *}$.	--r GE
HYSL 1	Hysteresis 1 Setting range	stable 99999	steresis for output $1^{* * *}$. splay units.	0
HYSL 2	Hysteresis Setting rang	$\begin{aligned} & \text { tabl } \\ & 999 \\ & \hline \end{aligned}$	steresis for output $2{ }^{* * *}$. splay units.	0

* Fixed pulse duration of 500 msec (factory adjustable only).
** This feature is meant to generate an anticipation signal with a fixed distance to the preset 1 signal. The anticipation automatically follows the setting of preset 1 (trailing preset).
*** Switching hysteresis is only active with "rPm" and "timE" operation modes.
**** OS only with LD303.

The following operational parameters provide setting of the switching points:

Menu	Setting Range		Default
PrES_1 Preselection 1	$-199999 \ldots$ 999999	10000	
PrES_2	Preselection 2	$-199999 \ldots$ 999999	5000

The working direction of the Hysteresis depends on the setting of the switching characteristics.
With settings "GE" or "LE" respectively, the following switch points will result:

It is possible to check up on the actual switching state of the outputs at any time.
For this, just tap on the ENTER key shortly.
The display will then show for the next two seconds one of the following information:

Display	Meaning	
1_20FF	Both outputs are actually off.	
20ח	Both outputs are actually on.	
100	Output 1 is on.	Output 2 is off.
20n	Output 1 is off.	Output 2 is on.

7.5 Model LD303: additional settings for the serial interface

The basic set-up menu contains the main parameters for configuration of the serial interface.

Menu		Setting Range	OS*	Default
5-Unit	Serial Unit Number You can assign any address number between 11 and 99 to your unit. The address must not contain a "0" because such numbers are reserved for collective addressing.	0 ... 99		11
S-Forn	Serial data format The first character indicates the number of Data Bits. The second character specifies the Parity Bit ("even" or "odd" or "none") The third character indicates the number of Stop Bits.	7 E 1 7 E 2 7 0 1 7 0 2 7 $n 0$ 1 7 $n 0$ 2 B E 1 8 0 1 8 $n o$ 1 8 $n o$ 2	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & \hline 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$7 E 1$
5-bPidd	Baud rate The following baud rates can be selected.	9600 4800 2400 1200 600 19200 38400	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	965

* OS only with LD303

The following operational parameters provide setting of the communication profile:

Menu				Setting Range	OS*	Default
5-tim	Serial Timer Setting 0.000 allows transmission at any tim cycle time for automatic mod item is set to " and on page 29). Between two transm pause depending on times for timer transmiss	ual activ All other transmiss ter-mode" n cycles baud rate ons are s m Cycle T	of a serial data ing specify the ovided the $\mathbf{5}$ the next item nit will allow a minimum cycle in the table. sec] 384 192 96 48 24 12 6	$\begin{gathered} 0.000 \\ 0.010 \ldots \\ 9.999 \mathrm{sec} \end{gathered}$		0.1 sec
S-mod	Serial Mode Operation according "7.5.1 PC-Mode" section Transmission of string Mode" section on pag Transmission of strin Mode" section on pag	ommunic on page ype 1 (se). pe 2 (se).	profile (see the "7.5.2 Printer"7.5.2 Printer-	PC Print 1 Print2	0 1 2	$P C$
5-CodE	Serial Register-Cod It specifies the reg transmitted. The mos actual display value code.	code portant the seria S-Code 101 60	data to be codes are the eset command	$\begin{gathered} 100 \\ \ldots \\ 120 \end{gathered}$		101

* OS only with LD303

7.5.1 PC-Mode

Communication in PC mode allows free readout of all parameters and registers of the unit. The example below shows the details of communication for serial readout of the actual display value.

This is the general format of a serial request string:

EOT	AD1	AD2	C1	C2	EN0
EOT $=$ Control character (Hex 04)					
AD1 $=$ Unit address, High Byte					
AD2 $=$ Unit address, Low Byte					
C1 $=$ Register code, High Byte					
C2 $=$ Register code, Low Byte					
EN0 $=$ Control character (Hex 05)					

Example

Request for the actual display value from unit number 11.

ASCII-Code	EOT	1	1	$:$	1	ENQ
Hexadecimal	04	31	31	$3 A$	31	05
Binary	00000100	00110001	00110001	00111010	00110001	00000101

Upon a correct request the unit will respond as shown on the right. Leading zeros will be suppressed
BCC represents a block check character generated from an Exclusive-OR of all characters

STX	C1	C2	x $x \times x \times x \times$ x	ETX	BCC
STX $=$ Control character (Hex 02)					
C1 $=$ Register code, High Byte					
C2 $=$ Register code, Low Byte					
x $x \times x \times$ Register data					
ETX $=$ Control character (Hex 03)					
BCC = Block check character					

With incorrect request strings, the unit only responds STX C1 C2 EOT or just NAK.

Provided the actual display value of the unit is "-180" for instance, the full response of the unit will be as shown below:

ASCII	STX	$:$	1	-	1	8	0	ETX	BCC
Hex	02	$3 A$	31	$2 D$	31	38	30	03	$1 C$
Binary	0000	0011	0011	0010	0011	0011	0011	0000	0001
	0010	1010	0001	1101	0001	1000	0000	0011	1100

Again BCC represents the block check character formed from the Exclusive-OR of all characters from C1 through ETX.

Units with serial link also allow setting or resetting the counter by serial command (similar to the external input or front key function). To activate the Reset command, please write " 1 " to register code " 60 ". To release the Reset command again, write " 0 " to the same register.

Example
The following strings show how to set or reset a unit with unit No. 11:

Reset 0N:

ASCII	EOT	AD1	AD2	STX	C1	C2	Data	ETX	BCC
Hex	04	31	31	02	36	30	31	03	34
Binary	0000	0011	0011	0000	0011	0011	0011	0000	0011
	0100	0001	0001	0010	0110	0000	0001	0011	0100

Reset OFF:

ASCII	EOT	AD1	AD2	STX	C1	C2	Data	ETX	BCC
Hex	04	31	31	02	36	30	30	03	35
Binary	0000	0011	0011	0000	0011	0011	0011	0000	0011
	0100	0001	0001	0010	0110	0000	0000	0011	0101

For more details about serial communication please refer to the additional documentation.

7.5.2 Printer-Mode

The Printer mode allows cyclic or manual activation of transmissions of the specified register data. The corresponding register can be specified by means of parameter 5-CodE.
Another parameter called $\mathbf{5}$-mod allows the selection between two different string types:

"S-mod"	Transmission string type														
"Print1"	Space	Sign			Data								Line feed LF	Carriage return CR	
		+/-			X		X	X	X		X	X			
"Print2"	Sign	Data											Carriage return		
	+/-	X		X		X		X		X		X			

The mode of activation of serial transmissions can be determined as follows:

Cyclic (timed) transmissions	Set the $\mathbf{5}$-tim item (see on page 25) to any value \geq 0.010 sec. Select the desired string type next to the $\mathbf{5}$-mod parameter. After exiting the menu the timed transmissions will start automatically.
Manual activation of transmissions	Set the $\mathbf{5}$-tim item (see on page 25) to 0.000. Select the desired string type next to the $\mathbf{5}$-mod parameter.
After exiting the menu a transmission can be activated at any time by shortly pressing the ENTER key.	

8 Special functions

8.1 Linearisation

This function allows a non-linear input signal to be converted into a linear representation or vice versa. 16 interpolation points are available, they can be freely arranged over the whole measuring range at any distance. Between two points the unit will interpolate automatically straight lines.
It is advisable to set several points into areas with strong bending and to use only a few points in areas with little bending. "Linearisation Mode" has to be set to either $\mathbf{1 - q U R}$ or $\mathbf{4 - q U R}$ (see LmodE item in the "7.1 Basic settings" section) to enable the linearisation function (see subsequent drawing).
Parameters PD I_x to P I6_x select 16 x-coordinates, representing the display values which the unit would normally show in the display. With parameters PO I_y to P IG_y you can specify which values you would like to display instead of the corresponding _x values.
This means e.g. that the unit will replace the previous POD_x value by the new POZ_y value.

NOTE

- With respect to the consistency of the linearisation, the x - registers have to use continuously increasing values, e.g. the x - registers must conform to the constraint $\mathbf{P O} \mathbf{I}_{-} \mathbf{x}<\mathbf{P O Z} \mathbf{x}<\ldots<\mathbf{P}$ IS_x $<\mathbf{P}$ I6_x.
- Independently of the selected linearisation mode, the possible setting
 -199999 ... 999999.
- With measuring values lower than PO I_x the display will always show PO I_Y.
- With measuring values higher than \mathbf{P} I6_x, the display will always show P أן.

* Mirror of positive range

EXAMPLE

The picture below shows a sluiceway where the gate is controlled by means of an incremental encoder. We would like to display the clearance of the gate "d", but the existing encoder information is proportional to the angular information φ.

8.2 Manual input or „teaching" of the interpolation points

Interpolation points to form the linearisation curve can be entered one after each other, using the same procedure as for all other numeric parameters. This means you will have to enter all parameters PD I_x to PIE_x and POI_y to P IG_Y manually using the keypad.

WARNING
During manual input of interpolation points the unit will not examine the settings PD I_x to $\mathbf{P} \mathbf{1 6} \mathbf{x}$. Therefore the operator is responsible for adherence

In most cases it should however be much more convenient to use the Teach function.
For this method we have to move the encoder, step by step, from one interpolation point to the next. After each step we enter the desired display value through the keypad.

How to use the "Teach" function

- Please select the desired range of linearisation (see the "7.1 Basic settings" section).
- Hold down the CMD key for 3 seconds, until the display shows tERCh. Now the unit has switched over to the Teach mode. To start the teach procedure please press again the CMD key within the next 10 seconds. The display will then show PO I_X.
- With respect to the consistency required for linearisation, all parameters from PD I_X to PI6_y will be overwritten by suitable initial values first. Initial values for PO I_x and PD I_צ are -199999 and all other values will start with 999999 .
- Press once more CMD key to display the actual encoder position. Then move the encoder to the first of the desired interpolation points.
- When you read the x-value of your first interpolation point in the display, press CMD key again. This will automatically store the actual display value in the PD I-X register. For about 1 second you will read PO I_Y on the display, followed by the same reading again that has been stored previously.
- This display value now can be edited like a regular parameter and you can change it to the desired PO I_Y value.
- When you read the desired PD I_Y value in your display, save it by pressing CMD key again. This will cause the display to automatically scroll to the next interpolation point POZ_x.
- Once we have reached and stored the last interpolation points $\mathbf{P} \mathbf{I 6} \mathbf{x} / \mathbf{y}$, the routine will restart with $\mathbf{P D} \mathbf{I}_{\mathbf{x}}$ again. You are free to double-check your settings once more or to make corrections.
- To finish the Teach procedure, keep ENTER key down for about 2 seconds. In the display you will read StOP for a short time and then the unit returns to the normal operation. At the same time all linearisation points have been finally saved.

NOTE

- The unit will examine the constraint valid for the x-values of interpolation points. Every interpolation point must be higher than its preceding point. If this constraint is breached, all 6 decimal points will blink automatically as a warning. Pressing the CMD key will not store the illegal value, but result in an error text E.r.r.-.L.D.
- To exit the teach mode again, you have the following two possibilities:

1. Press the ENTER key for 2 seconds. On the display you will read StOP for a short time and then the unit will switch back to the normal mode.
2. Just do nothing. After 10 seconds the unit will switch back to the normal mode automatically. In both cases the parameters of linearisation PO I_x to PIG_Y will not change.

LD30x

9 Parameters list

9.1 General

Description	Text	Min. value	Max. value	Default value	Positions	Characters	Serial code
See the "7.1 Basic settings" section on page 14							
Unit Type	LYPE	0	4	0	1	0	00
Characteristic	CHRr	0	1	1	1	0	01
Brightness	briGht	0	4	0	1	0	02
Code	Code	0	2	0	1	0	03
See the "7.2.1 RPM, operation as tachometer or frequency counter" section on page 16							
Frequency (Hz)	FrEqu	1	25000	1000	5	0	04
Display Value	diSPL	1	99999	1000	5	0	05
Decimal point	dPoint	0	5	3	1	0	06
Wait Time (sec)	Whit	1	999	10	3	1	07
Average Filter	FiltEr	0	4	0	1	0	08
See the "7.2.2 Time, display of baking or processing time (reciprocal speed)" section on page 17							
Display Format	diSFor	0	3	0	1	0	09
Frequency (Hz)	FrEqu	1	25000	100	5	0	10
Display Value	diSPL	1	999999	100	6	0	11
Wait Time (sec)	Whit	1	999	50	3	1	12
Average Filter	FiLtEr	0	4	0	1	0	13
See the "7.2.3 Timer, Stopwatch" section on page 18							
Base	bRSE	0	6	0	1	0	14
Start / Stop	StRrt	0	3	1	1	0	15
Auto Reset	rESEt	0	1	0	1	0	16
Latch Function	LRtch	0	1	0	1	0	17
See the "7.2.4 Count, Counter mode" section on page 19							
Count Mode	mode	0	5	3	1	0	18
Factor	FRictor	1	99999	10000	5	4	19
Set Value	SEt	-199999	999999	0	86	0	20
Reset / Set	rESEt	0	3	3	1	0	21
Decimal point	dPoint	0	5	0	1	0	22
See the "7.2.5 Speed from differential time between a Start and a Stop input" section on page 20							
Measuring Time (sec)	timE	1	999999	1000	6	3	23
Display Value	diSPL	1	999999	1000	6	0	24
Decimal point	dPoint	0	5	0	1	0	25
Wait Time (s)	Whit	0	999	100	3	1	26

LD30x
9．2 Linearisation
See the＂7．2．6 Linearisation points＂section on page 20

Description	Text	Min． value	Max． value	Default value	Positions	Characters	Serial code
L＿Mode	LmodE	0	2	0	1	0	D2
P1（x）	PD i＿H	－199999	999999	999999	86	0	A0
P1（y）	PO L＿J	－199999	999999	999999	86	0	A1
P2（x）	POE＿H	－199999	999999	999999	86	0	A2
P2（y）	PO2＿צ	－199999	999999	999999	86	0	A3
P3（x）	PO3＿H	－199999	999999	999999	86	0	A4
P3（y）	PO3＿y	－199999	999999	999999	86	0	A5
P4（x）	POY＿H	－199999	999999	999999	86	0	A6
P4（y）	POY＿〕	－199999	999999	999999	86	0	A7
P5（x）	PO5＿H	－199999	999999	999999	86	0	A8
P5（y）	POS＿Y	－199999	999999	999999	86	0	A9
P6（x）	PO6＿H	－199999	999999	999999	86	0	B0
P6（y）	PO6＿3	－199999	999999	999999	86	0	B1
P7（x）	Pロר＿H	－199999	999999	999999	86	0	B2
P7（y）	Pロר＿リ	－199999	999999	999999	86	0	B3
P8（x）	POB＿H	－199999	999999	999999	86	0	B4
P8（y）	PO8＿3	－199999	999999	999999	86	0	B5
P9（x）	PO9＿H	－199999	999999	999999	86	0	B6
P9（y）	PO9＿4	－199999	999999	999999	86	0	B7
P10（x）	P ID＿H	－199999	999999	999999	86	0	B8
P10（y）	P IO＿U	－199999	999999	999999	86	0	B9
P11（x）	P！i＿H	－199999	999999	999999	86	0	C0
P11（y）	P：1＿U	－199999	999999	999999	86	0	C1
P12（x）	Pi2＿H	－199999	999999	999999	86	0	C2
P12（y）	PI2＿Y	－199999	999999	999999	86	0	C3
P13（x）	P：3＿H	－199999	999999	999999	86	0	C4
P13（y）	P13＿y	－199999	999999	999999	86	0	C5
P14（x）	P：4．H	－199999	999999	999999	86	0	C6
P14（y）	P！	－199999	999999	999999	86	0	C7
P15（x）	PiS＿H	－199999	999999	999999	86	0	C8
P15（y）	P15＿J	－199999	999999	999999	86	0	C9
P16（x）	P 16＿H	－199999	999999	999999	86	0	D0
P16（y）	P ا6＿J	－199999	999999	999999	86	0	D1

9.3 Analogue output (model LD301)

See the "7.3 Model LD301: additional settings for the analogue output" section on page 21

Description	Text	Min. value	Max. value	Default value	Positions	Characters	Serial code
Analogue Start	RnRbEG	-199999	999999	0	86	0	31
Analogue End	RnREnd	-199999	999999	10000	86	0	32
Analogue Mode	R-ChRr	0	3	1	1	0	33
Offset	OFFSEt	-9999	9999	0	84	3	34
Gain	GRin	0	9999	1000	4	2	35

9.4 Preselections (model LD302)

See the "7.4 Model LD302: additional settings for preselections" section on page 23

Description	Text	Min. value	Max. value	Default value	Positions	Characters	Serial code
Preselection Value 1	PrE5_ 1	-199999	999999	10000	86	0	27
Preselection Value 2	PrES_2	-199999	999999	5000	86	0	28
Preselection Mode 1	CHRr 1	0	5	0	1	0	29
Preselection Mode 2	CHPr 2	0	5	0	1	0	30
Hysteresis 1	HY5t 1	0	99999	0	5	0	31
Hysteresis 2	HY5t 2	0	99999	0	5	0	32

9.5 Serial interface (model LD303)

See the "7.5 Model LD303: additional settings for the serial interface" section on page 25

Description	Text	Min. value	Max. value	Default value	Positions	Characters	Serial code
Serial Timer (s)	5-tim	0	9999	100	4	3	38
Serial Mode	5-mod	0	2	0	1	0	39
Serial Code	S-CodE	100	120	101	3	0	40
Serial Unit Nr	5-Linit	0	99	11	2	0	90
Serial Format	5-Forn	0	9	0	1	0	92
Serial Baud rate	5-bRUd	0	6	0	1	0	91

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

Document release	Description
1.0	1st issue
1.1	"WAit" \&t "LmodE" parameters description updated, "Loo_Hi" parameter added, "4.4 Adjustable analogue output (LD301 model only)" section updated, OS range numbers added, revised edition

Lika Electronic

Via S. Lorenzo, 25-36010 Carrè (VI) - Italy

[^0]: * OS only with LD303

